UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This study aims to analyze the homological functors of some torsion free crystallographic groups, namely Bieberbach groups, with symmetric point group of order six. The polycyclic presentations for these groups are constructed based on their matrix representations given by Crystallographic, Algorithms, and Tables package, followed by checking their consistency. The homological functors which include the nonabelian tensor square, the G-trivial subgroup of the nonabelian tensor square, the central subgroup of the nonabelian tensor square, the nonabelian exterior square, and the Schur multiplier are determined by using the computational method for polycyclic groups. The structures of the nonabelian tensor squares are explored and the generalization of the homological functors of these groups are developed up to n dimension. The findings reveal that the nonabelian tensor squares and the nonabelian exterior squares of these groups are nonabelian while the rest of the homological functors are abelian. Besides, the structures of the nonabelian tensor squares of some of these groups are found split while some are found non-split. Also, the generalizations of some homological functors, which are abelian, can be represented by the products of cyclic groups while for the homological functors which are nonabelian, their generalized presentation are constructed. In conclusion, based on the formulation of the homological functors of Bieberbach groups with symmetric point group of lowest dimension, the homological functors can be generalized up to n dimension. As the implication, this study contributes new theoretical results to the field of theoretical and computational group theory and also benefit some chemists and physicists who are interested in crystallography and spectroscopy. |
References |
Adnin Afifi Nawi, Nor Muhainiah Mohd Ali, Nor Haniza Sarmin, & Samad Rashid (2016). The Schur multiplier of pairs of nonabelian groups of order p4. Jurnal Teknologi, 78(3-2), 39–43. doi:10.11113/jt.v78.7810
Bacon, M. R. (1994). On the nonabelian tensor square of a nilpotent group of class two. Glasgow Mathematical Journal, 36(3), 291–296. doi:10.1017/S0017089500030883
Bacon, M. R., & Kappe, L. C. (1993). The nonabelian tensor square of a 2-generator p-group of class 2. Archiv der Mathematik, 61(6), 508–516. doi:10.1007/BF01196588
Bacon, M. R., & Kappe, L. C. (2003). On capable p-group of nilpotency class two. Illinois Journal of Mathematics, 47, 49–62. Retrieved from http://projecteuclid.org/euclid.ijm/1258488137
Bacon, M. R., Kappe, L. C., & Morse, R. F. (1997). On the nonabelian tensor square of a 2-Engel group. Archiv de Mathematik, 69(5), 353–364. doi:10.1007/s000130050133
Bastos, R., & Rocco, N. R. (2016). The non-abelian tensor square of residually finite groups. Monatshefte fr Mathematik, 1–9. doi:10.1007/s00605-016-0932-y
Beuerle, J. R., & Kappe, L. C. (2000). Infinite metacyclic groups and their non-abelian tensor squares. Proceedings of the Edinburgh Mathematics Society, 43(3), 651– 662. doi:10.1017/S0013091500021258
Blyth, R. D., Fumagalli, F., & Morigi, M. (2010). Some structural results on the non-abelian tensor square of groups. Journal of Group Theory, 13(1), 83–94. doi:10.1515/jgt.2009.032
Blyth, R. D., Moravec, P., & Morse, R. F. (2008). On the nonabelian tensor squares of free nilpotent groups of finite rank. Contemporary Mathematics, 470, 27–44. Retrieved from http://faculty.evansville.edu/rm43/publications/bmmpaper1.pdf
Blyth, R. D., Morse, R. F., & Redden, J. L. (2004).On computing the non-abelian tensor squares of the free 2-Engel groups. Proceeding of the Edinburgh Mathematical Society, 47(2), 305–323. doi:10.1017/S0013091502000998
Blyth, R. D., & Morse, R. F. (2009). Computing the nonabelian tensor squares of polycyclic groups. Journal of Algebra, 321(8), 2139–2148. doi:10.1016/j.jalgebra.2008.12.029
Bovdi, V. A., Gudivok, P. M., & Rudko, V. P. (2002). Torsion-free groups with indecomposable holonomy group. I. Journal of Group Theory, 5(1), 75–96. Retrieved from http://arvix.org/abs/math/0107017
Bovdi, V. A., Gudivok, P. M., & Rudko, V. P. (2004). Torsion-free crystallographic groups with indecomposable holonomy group. II. Journal of Group Theory, 7(4), 555–569. doi:10.1515/jgth.2004.7.4.555
Brown, R., Johnson, D. L., & Robertson, E. F. (1987). Some computations of non-abelian tensor products of groups. Journal of Algebra, 111(1), 177–202. doi:10.1016/0021-8693(87)90248-1
Brown, R., & Loday, J. L. (1987). Van kampen theorems for diagrams of spaces. Topology, 26(3), 311–335. doi:10.1016/0040-9383(87)90004-8 Cid, C., & Schulz, T. (2001). Computation of five and six dimensional bieberbach groups. Experimental Mathematics, 10(1), 109–115. doi:10.1080/10586458.2001.10504433
Eick, B., & Nickel, W. (2008). Computing the Schur multiplicator and the nonabelian tensor square of a polycyclic group. Journal of Algebra, 320(2), 927–944. doi:10.1016/j.jalgebra.2008.02.041
Ellis, G., & Leonard, F. (1995). Computing Schur multipliers and tensor products of finite groups. Proceedings of the Royal Irish Academy, 95A(2), 137–147. Retrieved from http://www.jstor.org/stable/20490165
Ellis, G. (1998). On the computation of certain homotopical functors. LMS Journal of Computation and Mathematics, 1, 25–41. doi:10.1112/S1461157000000139
Feng, B., Hanany, A., He, Y. H., & Prezas, N. (2001). Discrete torsion, nonabelian orbifolds and the Schur multiplier. Journal of High Energy Physics 2001 (01), 033. Retrieved from http://iopscience.iop.org/article/10.1088/1126- 6708/2001/01/033/meta
Fisher, B. N., & Rabson, D. A. (2003). Applications of group cohomology to the classification of quasicrystal symmetries. Journal of Physics A: Mathematical and General 36, 10195. doi:10.1088/0305-4470/36/40/005
Gallian, J. A. (2010). Contemporary abstract Algebra (7th ed.). USA: Cengage Learning.
Hartl, M. (1996). The nonabelian tensor product and Schur multiplicator of nilpotent groups of class 2. Journal of Algebra, 179(2), 416–440. doi:10.1006/jabr.1996.0018
Hazzirah Izzati Mat Hassim, Nor Haniza Sarmin, Nor Muhainiah Mohd Ali, & Mohd Sham Mohamad (2011). On the computations od some homological functors of 2-engel groups of order at most 16. Journal of Quality Measurement of Analysis, 7(1), 153–159. Retrieved from http://eprints.utm.my/39932/2/11491909.pdf
Hazzirah Izzati Mat Hassim, Nor Haniza Sarmin, Nor Muhainiah Mohd Ali, Rohaidah Masri, & Nor’ashiqin Mohd Idrus (2013a). The exterior squares of some crystallographic groups. Jurnal Teknologi, 62(3), 7–13. doi:10.11113/jt.v62.1882
Hazzirah Izzati Mat Hassim, Nor Haniza Sarmin, Nor Muhainiah Mohd Ali, Rohaidah Masri, & Nor’ashiqin Mohd Idrus (2013b). The Schur multipliers of certain Bieberbach groups with abelian point groups. AIP Conference Proceedings, 1522, 1069–1074. doi:10.1063/1.4801248
Hazzirah Izzati Mat Hassim, Nor Haniza Sarmin, Nor Muhainiah Mohd Ali, Rohaidah Masri, & Nor’ashiqin Mohd Idrus (2014). The homological functor of a Bieberbach groups with a cyclic point group of order two. AIP Conference Proceedings, 1605, 672–677. doi:10.1063/1.4887670
Hazzirah Izzati Mat Hassim (2014). The homological functors of Bieberbach Groups with cyclic point groups of order two, three and five. (Unpublished doctoral dissertation). Universiti Teknologi Malaysia, Johor Bahru.
Hiller, H. (1986). Crystallography and cohomology of groups. The American Mathematical Monthly, 93(10), 765–779. Retrieved from http://www.jstor.org/stable/2322930
Hiss, G., & Sczepanski, A. (1991). On torsion free crystallographic groups. Journal of Pure and Applied Algebra, 74(1), 39–56. doi:10.1016/0022-4049(91)90047-6 Hungerford, T. W. (1974). Graduate texts in Mathematics: Algebra. New York: Springer-Verlag.
Jafari, H. (2015). On The Relative Non-Abelian Tensor Product of a Pair of Prime Power Group. Journal of Mathematical Extension, 9, 79–87. Retrieved from http://www.ijmex.com/index.php/ijmex/article/view/276
Kappe, L. C., Visscher, M. P., & Sarmin, N. H. (1999). Two-generator two-groups of class two and their nonabelian tensor squares. Glasgow Mathematical Journal, 41(3), 417–430. Retrieved from http://journals.cambridge.org/article S0017089599000014
Nor’ashiqin Mohd Idrus, & Nor Haniza Sarmin (2010, December). The nonabelian tensor square of a centerless Bieberbach group with dihedral point group of order 8: theory and calculation. Paper presented at the 15th Asian Technology Conference in Mathematics, Universiti Malaya, Kuala Lumpur. Retrieved from http://atcm.mathandtech.org/EP2010/regular/3052010 18455.pdf
Nor’ashiqin Mohd Idrus (2011). Bieberbach groups with finite point groups. (Unpublished doctoral dissertation). Universiti Teknologi Malaysia, Johor Bahru. Opgenorth, J., Plesken, W., & Schulz, T. (1998). Crystallographic algorithms and tables. Acta Crystallographica Section A, 54(5), 517–531. doi:10.1107/S010876739701547X
Plesken, W., & Schulz, T. (2000). Counting crystallographic groups in low dimensions. Experimental Mathematics, 9(3), 407–411. doi:10.1080/10586458.2000.10504417
Rashid, S., Sarmin, N. H., Erfanian, A., & Mohd Ali, N. M. (2011). On the nonabelian tensor square and capability of groups of order p2q. Archiv der Mathematik, 97, 299–306. doi:10.1007/s0013-011-0304-8
Robinson, D. J. S. (1993). A course in the theory of groups.New York: Springer-Verlag
Rocco, N. R. (1991). On a construction related to the non-abelian tensor square of a group. Boletim da Sociedade Brasileira de Matemtica- Bulletin/Brazilian Mathematical Society, 22(1), 63–79. doi:10.1007/BF01244898
Rocco, N. R., & Rodrigues, E. C. (2016). Q-tensor square of finitely generated nilpotent groups, q 0. arXiv preprint arXiv:1603.05424. Retrieved from http://arxiv.org/abs/1603.05424
Rohaidah Masri, Noraini Aris, Nor Haniza Sarmin, & Morse, F. M. (2008). The nonabelian tensor square of one family of a Bieberbach group with point group C2. In Shaharuddin Salleh (Ed.), Advances in fundamental and social sciences (pp. 113-131). Johor, Malaysia: Penerbit UTM Press.
Rohaidah Masri (2009). The nonabelian tensor squares of certain Bieberbach groups with cyclic point group of order two. (Unpublished doctoral dissertation). Universiti Teknologi Malaysia, Johor Bahru.
Rohaidah Masri, Hazzirah Izzati Mat Hassim, Nor Haniza Sarmin, Nor Muhainiah Mohd Ali, & Nor’ashiqin Mohd Idrus (2014a). The generalization of the exterior square of a Bieberbach group. AIP Proceeding Conference, 1602, 849–854. doi:10.1063/1.4882583
Rohaidah Masri, Hazzirah Izzati Mat Hassim, Nor Haniza Sarmin, Nor Muhainiah Mohd Ali, & Nor’ashiqin Mohd Idrus (2014b). The generalization of the Schur multipliers of Bieberbach groups. AIP Proceeding Conference, 1635, 461–468. doi:10.1063/1.4903622
Rosita Zainal, Nor Muhainiah Mohd Ali, Nor Haniza Sarmin, & Samad Rashid (2014). The homological functors of some abelian groups of prime power order. Jurnal Teknologi, 71(5), 5–7. doi:10.11113/jt.v71.3843
Rotman, J. J. (1995). An introduction to the theory of groups (4th. ed.). New York: Springer-Verlag.
Rotman, J. J. (2003). Advanced modern algebra (2nd. ed.).New York: Springer-Verlag.
Siti Afiqah Mohammad, Nor Haniza Sarmin, Nor Muhainiah Mohd Ali, & Hazzirah Izzati Mat Hassim (2014). A homological invariant of a Bieberbach group with dihedral extension. Jurnal Teknologi, 71(5), 9–11. doi:10.11113/jt.v71.3844
Siti Afiqah Mohammad, Nor Haniza Sarmin, & Hazzirah Izzati Mat Hassim (2015). Polycyclic presentations of the torsion free space with quaternion point group of order eight. Jurnal Teknologi, 77(34), 151–156. doi:10.11113/jt.v77.7020
Siti Afiqah Mohammad, Nor Haniza Sarmin, & Hazzirah Izzati Mat Hassim (2016). Consistent polycyclic presentation of a Bieberbach group with a nonabelian point group. AIP Proceeding Conference, 1707, 1–6. doi:10.1063/1.4940813
The GAP Group. GAP- Group, Algorithms and Programming. Version 4.7.5. Retrieved from http://www.gap-system.org
The CARAT homepage. Retrieved from http://wwwb.mathrwthaachen. de/carat/bieberbach.html
Wan Nor Farhana Wan Mohd Fauzi, Nor’ashiqin Mohd Idrus, Rohaidah Masri, & Nor Haniza Sarmin (2013). The nonabelian tensor square of Bieberbach group of dimension five with dihedral point group of order eight. AIP Proceeding Conference, 1605, 611–616. doi: 10.1063/1.4887659
Wan Nor Farhana Wan Mohd Fauzi (2015). Formulation of the homological functors of some Bieberbach groups with dihedral point group. (Unpublishedmaster’s thesis). Universiti Pendidikan Sultan Idris, Tanjung Malim.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |