UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :QA Mathematics
Main Author :Tan, Yee Ting
Title :The analysis of homological functors of some torsion free crystallographic groups with symmetric point group of order six
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2017
Notes :doctoral
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
This study aims to analyze the homological functors of some torsion free crystallographic groups, namely Bieberbach groups, with symmetric point group of order six. The polycyclic presentations for these groups are constructed based on their matrix representations given by Crystallographic, Algorithms, and Tables package, followed by checking their consistency. The homological functors which include the nonabelian tensor square, the G-trivial subgroup of the nonabelian tensor square, the central subgroup of the nonabelian tensor square, the nonabelian exterior square, and the Schur multiplier are determined by using the computational method for polycyclic groups. The structures of the nonabelian tensor squares are explored and the generalization of the homological functors of these groups are developed up to n dimension. The findings reveal that the nonabelian tensor squares and the nonabelian exterior squares of these groups are nonabelian while the rest of the homological functors are abelian. Besides, the structures of the nonabelian tensor squares of some of these groups are found split while some are found non-split. Also, the generalizations of some homological functors, which are abelian, can be represented by the products of cyclic groups while for the homological functors which are nonabelian, their generalized presentation are constructed. In conclusion, based on the formulation of the homological functors of Bieberbach groups with symmetric point group of lowest dimension, the homological functors can be generalized up to n dimension. As the implication, this study contributes new theoretical results to the field of theoretical and computational group theory and also benefit some chemists and physicists who are interested in crystallography and spectroscopy.

References

Adnin Afifi Nawi, Nor Muhainiah Mohd Ali, Nor Haniza Sarmin, & Samad Rashid

(2016). The Schur multiplier of pairs of nonabelian groups of order p4. Jurnal

Teknologi, 78(3-2), 39–43. doi:10.11113/jt.v78.7810

 

Bacon, M. R. (1994). On the nonabelian tensor square of a nilpotent

group of class two. Glasgow Mathematical Journal, 36(3), 291–296.

doi:10.1017/S0017089500030883

 

Bacon, M. R., & Kappe, L. C. (1993). The nonabelian tensor square of a

2-generator p-group of class 2. Archiv der Mathematik, 61(6), 508–516.

doi:10.1007/BF01196588

 

Bacon, M. R., & Kappe, L. C. (2003). On capable p-group of nilpotency

class two. Illinois Journal of Mathematics, 47, 49–62. Retrieved from

http://projecteuclid.org/euclid.ijm/1258488137

 

Bacon, M. R., Kappe, L. C., & Morse, R. F. (1997). On the nonabelian

tensor square of a 2-Engel group. Archiv de Mathematik, 69(5), 353–364.

doi:10.1007/s000130050133

 

Bastos, R., & Rocco, N. R. (2016). The non-abelian tensor square of residually finite

groups. Monatshefte fr Mathematik, 1–9. doi:10.1007/s00605-016-0932-y

 

Beuerle, J. R., & Kappe, L. C. (2000). Infinite metacyclic groups and their non-abelian

tensor squares. Proceedings of the Edinburgh Mathematics Society, 43(3), 651–

662. doi:10.1017/S0013091500021258

 

Blyth, R. D., Fumagalli, F., & Morigi, M. (2010). Some structural results on the

non-abelian tensor square of groups. Journal of Group Theory, 13(1), 83–94.

doi:10.1515/jgt.2009.032

 

Blyth, R. D., Moravec, P., & Morse, R. F. (2008). On the nonabelian tensor squares

of free nilpotent groups of finite rank. Contemporary Mathematics, 470, 27–44.

Retrieved from http://faculty.evansville.edu/rm43/publications/bmmpaper1.pdf

 

Blyth, R. D., Morse, R. F., & Redden, J. L. (2004).On computing the non-abelian tensor

squares of the free 2-Engel groups. Proceeding of the Edinburgh Mathematical

Society, 47(2), 305–323. doi:10.1017/S0013091502000998

 

Blyth, R. D., & Morse, R. F. (2009). Computing the nonabelian tensor

squares of polycyclic groups. Journal of Algebra, 321(8), 2139–2148.

doi:10.1016/j.jalgebra.2008.12.029

 

Bovdi, V. A., Gudivok, P. M., & Rudko, V. P. (2002). Torsion-free groups with

indecomposable holonomy group. I. Journal of Group Theory, 5(1), 75–96.

Retrieved from http://arvix.org/abs/math/0107017

 

Bovdi, V. A., Gudivok, P. M., & Rudko, V. P. (2004). Torsion-free crystallographic

groups with indecomposable holonomy group. II. Journal of Group Theory,

7(4), 555–569. doi:10.1515/jgth.2004.7.4.555

 

Brown, R., Johnson, D. L., & Robertson, E. F. (1987). Some computations of

non-abelian tensor products of groups. Journal of Algebra, 111(1), 177–202.

doi:10.1016/0021-8693(87)90248-1

 

Brown, R., & Loday, J. L. (1987). Van kampen theorems for diagrams of spaces.

Topology, 26(3), 311–335. doi:10.1016/0040-9383(87)90004-8

Cid, C., & Schulz, T. (2001). Computation of five and six dimensional

bieberbach groups. Experimental Mathematics, 10(1), 109–115.

doi:10.1080/10586458.2001.10504433

 

Eick, B., & Nickel, W. (2008). Computing the Schur multiplicator and the nonabelian

tensor square of a polycyclic group. Journal of Algebra, 320(2), 927–944.

doi:10.1016/j.jalgebra.2008.02.041

 

Ellis, G., & Leonard, F. (1995). Computing Schur multipliers and tensor products

of finite groups. Proceedings of the Royal Irish Academy, 95A(2), 137–147.

Retrieved from http://www.jstor.org/stable/20490165

 

Ellis, G. (1998). On the computation of certain homotopical functors. LMS Journal of

Computation and Mathematics, 1, 25–41. doi:10.1112/S1461157000000139

 

Feng, B., Hanany, A., He, Y. H., & Prezas, N. (2001). Discrete torsion, nonabelian

orbifolds and the Schur multiplier. Journal of High Energy Physics

2001 (01), 033. Retrieved from http://iopscience.iop.org/article/10.1088/1126-

6708/2001/01/033/meta

 

Fisher, B. N., & Rabson, D. A. (2003). Applications of group cohomology to the

classification of quasicrystal symmetries. Journal of Physics A: Mathematical and

General 36, 10195. doi:10.1088/0305-4470/36/40/005

 

Gallian, J. A. (2010). Contemporary abstract Algebra (7th ed.). USA: Cengage

Learning.

 

Hartl, M. (1996). The nonabelian tensor product and Schur multiplicator

of nilpotent groups of class 2. Journal of Algebra, 179(2), 416–440.

doi:10.1006/jabr.1996.0018

 

Hazzirah Izzati Mat Hassim, Nor Haniza Sarmin, Nor Muhainiah Mohd Ali, & Mohd

Sham Mohamad (2011). On the computations od some homological functors of

2-engel groups of order at most 16. Journal of Quality Measurement of Analysis,

7(1), 153–159. Retrieved from http://eprints.utm.my/39932/2/11491909.pdf

 

Hazzirah Izzati Mat Hassim, Nor Haniza Sarmin, Nor Muhainiah Mohd Ali, Rohaidah

Masri, & Nor’ashiqin Mohd Idrus (2013a). The exterior squares of some

crystallographic groups. Jurnal Teknologi, 62(3), 7–13. doi:10.11113/jt.v62.1882

 

Hazzirah Izzati Mat Hassim, Nor Haniza Sarmin, Nor Muhainiah Mohd Ali, Rohaidah

Masri, & Nor’ashiqin Mohd Idrus (2013b). The Schur multipliers of certain

Bieberbach groups with abelian point groups. AIP Conference Proceedings,

1522, 1069–1074. doi:10.1063/1.4801248

 

Hazzirah Izzati Mat Hassim, Nor Haniza Sarmin, Nor Muhainiah Mohd Ali, Rohaidah

Masri, & Nor’ashiqin Mohd Idrus (2014). The homological functor of a

Bieberbach groups with a cyclic point group of order two. AIP Conference

Proceedings, 1605, 672–677. doi:10.1063/1.4887670

 

Hazzirah Izzati Mat Hassim (2014). The homological functors of Bieberbach Groups

with cyclic point groups of order two, three and five. (Unpublished doctoral

dissertation). Universiti Teknologi Malaysia, Johor Bahru.

 

Hiller, H. (1986). Crystallography and cohomology of groups. The

American Mathematical Monthly, 93(10), 765–779. Retrieved from

http://www.jstor.org/stable/2322930

 

Hiss, G., & Sczepanski, A. (1991). On torsion free crystallographic groups. Journal of

Pure and Applied Algebra, 74(1), 39–56. doi:10.1016/0022-4049(91)90047-6

Hungerford, T. W. (1974). Graduate texts in Mathematics: Algebra. New York:

Springer-Verlag.

 

Jafari, H. (2015). On The Relative Non-Abelian Tensor Product of a Pair of Prime

Power Group. Journal of Mathematical Extension, 9, 79–87. Retrieved from

http://www.ijmex.com/index.php/ijmex/article/view/276

 

Kappe, L. C., Visscher, M. P., & Sarmin, N. H. (1999). Two-generator

two-groups of class two and their nonabelian tensor squares.

Glasgow Mathematical Journal, 41(3), 417–430. Retrieved from

http://journals.cambridge.org/article S0017089599000014

 

Nor’ashiqin Mohd Idrus, & Nor Haniza Sarmin (2010, December). The nonabelian

tensor square of a centerless Bieberbach group with dihedral point group of

order 8: theory and calculation. Paper presented at the 15th Asian Technology

Conference in Mathematics, Universiti Malaya, Kuala Lumpur. Retrieved from

http://atcm.mathandtech.org/EP2010/regular/3052010 18455.pdf

 

Nor’ashiqin Mohd Idrus (2011). Bieberbach groups with finite point groups.

(Unpublished doctoral dissertation). Universiti Teknologi Malaysia, Johor Bahru.

Opgenorth, J., Plesken, W., & Schulz, T. (1998). Crystallographic algorithms

and tables. Acta Crystallographica Section A, 54(5), 517–531.

doi:10.1107/S010876739701547X

 

Plesken, W., & Schulz, T. (2000). Counting crystallographic groups

in low dimensions. Experimental Mathematics, 9(3), 407–411.

doi:10.1080/10586458.2000.10504417

 

Rashid, S., Sarmin, N. H., Erfanian, A., & Mohd Ali, N. M. (2011). On the nonabelian

tensor square and capability of groups of order p2q. Archiv der Mathematik,

97, 299–306. doi:10.1007/s0013-011-0304-8

 

Robinson, D. J. S. (1993). A course in the theory of groups.New York: Springer-Verlag

 

Rocco, N. R. (1991). On a construction related to the non-abelian tensor square

of a group. Boletim da Sociedade Brasileira de Matemtica- Bulletin/Brazilian

Mathematical Society, 22(1), 63–79. doi:10.1007/BF01244898

 

Rocco, N. R., & Rodrigues, E. C. (2016). Q-tensor square of finitely generated

nilpotent groups, q  0. arXiv preprint arXiv:1603.05424. Retrieved from

http://arxiv.org/abs/1603.05424

 

Rohaidah Masri, Noraini Aris, Nor Haniza Sarmin, & Morse, F. M. (2008). The

nonabelian tensor square of one family of a Bieberbach group with point group

C2. In Shaharuddin Salleh (Ed.), Advances in fundamental and social sciences

(pp. 113-131). Johor, Malaysia: Penerbit UTM Press.

 

Rohaidah Masri (2009). The nonabelian tensor squares of certain Bieberbach groups

with cyclic point group of order two. (Unpublished doctoral dissertation).

Universiti Teknologi Malaysia, Johor Bahru.

 

Rohaidah Masri, Hazzirah Izzati Mat Hassim, Nor Haniza Sarmin, Nor Muhainiah

Mohd Ali, & Nor’ashiqin Mohd Idrus (2014a). The generalization of the exterior

square of a Bieberbach group. AIP Proceeding Conference, 1602, 849–854.

doi:10.1063/1.4882583

 

Rohaidah Masri, Hazzirah Izzati Mat Hassim, Nor Haniza Sarmin, Nor Muhainiah

Mohd Ali, & Nor’ashiqin Mohd Idrus (2014b). The generalization of the Schur

multipliers of Bieberbach groups. AIP Proceeding Conference, 1635, 461–468.

doi:10.1063/1.4903622

 

Rosita Zainal, Nor Muhainiah Mohd Ali, Nor Haniza Sarmin, & Samad Rashid (2014).

The homological functors of some abelian groups of prime power order. Jurnal

Teknologi, 71(5), 5–7. doi:10.11113/jt.v71.3843

 

Rotman, J. J. (1995). An introduction to the theory of groups (4th. ed.). New York:

Springer-Verlag.

 

Rotman, J. J. (2003). Advanced modern algebra (2nd. ed.).New York: Springer-Verlag.

 

Siti Afiqah Mohammad, Nor Haniza Sarmin, Nor Muhainiah Mohd Ali, & Hazzirah

Izzati Mat Hassim (2014). A homological invariant of a Bieberbach group with

dihedral extension. Jurnal Teknologi, 71(5), 9–11. doi:10.11113/jt.v71.3844

 

Siti Afiqah Mohammad, Nor Haniza Sarmin, & Hazzirah Izzati Mat Hassim (2015).

Polycyclic presentations of the torsion free space with quaternion point group of

order eight. Jurnal Teknologi, 77(34), 151–156. doi:10.11113/jt.v77.7020

 

Siti Afiqah Mohammad, Nor Haniza Sarmin, & Hazzirah Izzati Mat Hassim (2016).

Consistent polycyclic presentation of a Bieberbach group with a nonabelian point

group. AIP Proceeding Conference, 1707, 1–6. doi:10.1063/1.4940813

 

The GAP Group. GAP- Group, Algorithms and Programming. Version 4.7.5. Retrieved

from http://www.gap-system.org

 

The CARAT homepage. Retrieved from http://wwwb.mathrwthaachen.

de/carat/bieberbach.html

 

Wan Nor Farhana Wan Mohd Fauzi, Nor’ashiqin Mohd Idrus, Rohaidah Masri, &

Nor Haniza Sarmin (2013). The nonabelian tensor square of Bieberbach group

of dimension five with dihedral point group of order eight. AIP Proceeding

Conference, 1605, 611–616. doi: 10.1063/1.4887659

 

Wan Nor Farhana Wan Mohd Fauzi (2015). Formulation of the homological functors of

some Bieberbach groups with dihedral point group. (Unpublishedmaster’s thesis).

Universiti Pendidikan Sultan Idris, Tanjung Malim.

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.