UPSI Digital Repository (UDRep)
|
|
|
Full Text : |
Guru merupakan panggilan kepada seorang pendidik yang mengajar di sekolah. Kecemerlangan seseorang pelajar biasanya berkait rapat dengan kecemerlangan guru yang mengajar. Kewujudan guru cemerlang amat diperlukan di semua sekolah dan masalah yang biasa dihadapi oleh pihak pentadbiran sekolah ialah menjadikan seseorang guru itu guru yang cemerlang. Oleh itu tujuan kajian ini dilakukan adalah untuk mendapatkan model guru cemerlang yang terbaik menggunakan dua algoritma dalam teknik pepohon keputusan. Algoritma yang digunakan ialah C4.5 (J48) dan Hutan Rawak (RF). Kajian ini menggunakan data guru cemerlang di sekolah. Atribut yang digunakan merupakan 4 faktor dengan 26 kriteria pemilihan guru cemerlang sebagai input serta 1 output. Set data diambil daripada Sistem Pengurusan Latihan Kementerian Pelajaran Malaysia (SPL KPM) yang ditadbir oleh Sektor Latihan ICT, BPG. Keputusan kajian menunjukkan bahawa Model 2 algoritma J48 memperolehi keputusan yang lebih baik iaitu ketepatan sebanyak 98.86% dengan min kuasa dua ralat (RMSE) hanya 0.1061 berbanding dengan algoritma Hutan Rawak (RF). |
References |
1. Al-Radaideh, Q. A., & Al Naqi, E. (2012). Using Data Mining Techniques to Build a Classification Model for Predicting Employees Performance. (IJACSA) International Journal of Advanced Computer Science and Applications, 3(2), 144–151. Retrieved from www.ijacsa.thesai.org.
2. Bhardwaj, B. K., & Pal, S. (2011). Data Mining : A prediction for performance improvement using classification. International Journal of Computer Science and Information Security, 9(4).
3. Delahaye, B. (2011). Human Resource Development Managing Learning and Knowledge Capital (Third Edit). Australia: Tilde University Press.
4. Hamidah Jantan. (2011). Kerangka Kerja Sistem Sokongan Keputusan Cerdas Untuk Pengurusan Bakat. Universiti Kebangsaan Malaysia.
5. Hamidah Jantan, Hamdan, A. R., & Othman, Z. A. (2010). Human Talent Prediction in HRM using C4.5 Classification Algorithm. (IJCSE) International Journal on Computer Science and Engineering, 02(08), 2526–2534.
6. Hamidah, Mazidah, Razak, A., & Ali, Z. (2010). Applying Data Mining Classification Techniques for Employee’s Performance Prediction, 601–607. Retrieved from http://www.kmice.cms.net.my/ProcKMICe/KMICe2010/Paper/PG601-607.pdf
7. Kabakchieva, D., & Kl, S. (2009). Analyzing University Data for Determining Student Profiles and Predicting Performance. In Proceedings of the 4th International Cenference on Educational Data mining, Eindhoven. The Netherlands.
8. Karahoca, A., Karahoca, D., & Kaya, O. (2008). Data Mining To Cluster Human Performance By Using Online Self Regulating Clustering Method. In 1st WSEAS International Conference on Multivariate Analysis and its Application in Science and Engineering (MAASE) ’08). Instanbul (pp. 198–203).
9. Kova, Z. J. (2012). Predicting student success by mining enrolment data. Research in Higher Education Journal, 15(iii), 1–20.
10. KPM. (2010). Terma Rujukan Konsep Guru Cemerlang.
11. KPM. (2012). Laporan Awal Pelan Pembangunan Pendidikan Malaysia 2013-2025.
12. Lewichi, P., & Hill, T. (2005). Statistics : Methods and Applications. (StatSoft, Ed.) (1st ed.). Tulsa: Statistica Data Analysis Software and Services.
13. Martinsons, M. G. (1995). Knowledge-based systems leverage human resource management expertise. International Journal of Manpower, 16(2), 17–34.
14. Minaei-bidgoli, B., Kashy, D. A., Kortemeyer, G., & Punch, W. F. (2003). Predicting student performance: an application of data mining methods with an educational Web-based system. In FIE 2003 33rd Annual (p. T2A–13). Frontiers in Education.
15. Pandey, U. K., & Pal, S. (2011). Data Mining : A prediction of performer or underformer using classification. (IJCSIT) International Journal of Computer Science and Information Technologies. 2(2), 686–690.
16. Rey, T. D., Dow, T., Company, C., Wells, C., Kauhl, J., & Services, T. C. (2013). Using Data Mining in Forecasting Problems.
17. Sembiring, S., Zarlis, M., Hartama, D., Ramliana, S., & Wani, E. (2011). Prediction Of Student Academic Performance By An Application Of Data Mining Techniques. In International Conference on Management and Artificial Intelligence IPEDR vil.6 (2011). Bali, Indonesia.
18. Stavrou-Costea, E. (2005). The challenges of human resource management towards organizational effectiveness: A comparative study in Southern EU. Journal of European Industrial Training, 29(2), 112–134.
19. Unit Komunikasi Korporat. (2009, June 23). Laluan Naik Pangkat Pegawai Perkhidmatan Pendidikan “istimewa.” Utusan Online. Putrajaya. Retrieved from http://ww1.utusan.com.my/utusan/info.asp?y=2009&dt=0623&pub=Utusan_Malaysia&sec=Forum&pg=fo_03.htm
20. Unit Komunikasi Korporat. (2010, September 28). Guru Cemerlang Sedia Dipantau. Berita Harian.
21. Weiss, S. M., & Indurkhya, N. (1998). Predictive Data Mining A Practical Guide. (M. B. Morgan, Ed.). San Franscisco: Morgan Kaufman Publishers.
22. Wook, M., Yahaya, Y. H., Wahab, N., Mohd Isa, M. R., Awang, N. F., & Seong, H. Y. (2009). Predicting NDUM Student’s Academic Performance Using Data Mining Techniques. In 2009 Second International Conference on Computer and Electrical Engineering (pp. 357–361). Dubai. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |