UPSI Digital Repository (UDRep)
|
|
|
Full Text : |
Zinc oxide (ZnO)/carbon spheres (CS) nanocomposites were successfully synthesised using waste engine oil as precursor for the CS production. ZnO nanorods were grown using sol-gel immersion method with MgZnO as the seeded catalyst and thermal chemical vapour deposition was used to synthesise CS. Different configurations of ZnO/CS structures were prepared i.e. CScoated ZnO and ZnO-coated CS. The structures of composite samples were analysed using field emission scanning electron microscopy (FESEM), Energy-Dispersive X-ray (EDX), micro-Raman and X-ray Diffraction Spectroscopy (XRD). FESEM observations revealed the structural changes of pristine ZnO and CS in composite structures. The as-present of ZnO or CS was believed to affect the subsequent growth of another structure. Field electron emission (FEE) properties of both nanocomposites were also investigated. It was found that ZnO-coated CS sample has better FEE properties with lower turn-on (3.48 Vµm-1) and threshold field (6.35 Vµm-1) obtained at current density of 0.1 and 1 µAcm-2 , respectively. This study highlighted that nanocomposites of ZnO and CS have successfully enhanced the field emission performances of materials compared with pristine ZnO or CS due to the structural changes of material emitter. |
References |
1. Patra, R., Ghosh, S., Sharma, H. and Vankar V. D. (2013). High stability field emission from zinc oxide coated multiwalled carbon nanotube films. Advanced Materials Letters, 4 (11): 849 – 855.
2. Fowler, R. H. and Nordheim, L. (1928). Electron emission in intense electric fields. Proceedings of the Royal Society of London. Series A, 119 (781): 173 – 18.
3. Leong, J. G. S. (2008). Controlled growth of uniform diameter multiwall carbon nanotube arrays via chemical
vapor deposition for application in field emission devices. Master Thesis Northeastern University, Boston,
Massachusetts, USA.
4. Ghosh, P., Subramanian, M., Afre, R. A., Zamri, M., Soga, T., Jimbo, T., Filip, V. and Tanemura, M. (2009).
Growth of Y-junction bamboo-shaped CNx Nanotubes on GaAs substrate using single feedstock. Applied Surface Science, 255(8): 4611 – 4615.
5. Ghosh, P., Zamri, M., Subramanian, M., Soga, T., Jimbo, T., Katoh, R. and Tanemura, M. (2008). Bambooshaped aligned CNx nanotubes synthesized using single feedstock at different temperature and study of their field electron emission. Journal of Physics D: Applied Physics, 41 (15): 155405 – 155412.
6. Srivastava, S. K., Vankar, V. D., Sridhar Rao, D. V. and Kumar, V. (2006). Enhanced field emission
characteristics of nitrogen-doped carbon nanotube films grown by microwave plasma enhanced chemical vapor
deposition process. Thin Solid Films, 515: 1851 – 1856.
7. Hu, H., Zhang, D., Liu, Y., Yu, W. and Guo, T. (2015). Highly enhanced field emission from CuO nanowire arrays by coating of carbon nanotube network films. Vacuum, 115: 70 – 74.
8. Yan, X., Tay, B. K. and Miele, P. (2008). Field emission from ordered carbon nanotube-ZnO heterojunction
arrays. Carbon, 46: 753 – 758.
9. Cai, D. and Liu, L. (2013). The screening effects of carbon nanotube arrays and its field emission optimum
density. AIP Advances, 3 (12): 122103.
10. Heo, Y. W., Tien, L. C., Kwon, Y., Norton, D. P., Pearton, S. J., Kang, B. S. and Ren, F. (2004). Depletionmode ZnO nanowire field-effect transistor. Applied Physics Letters, 85 (12): 2274 – 2276.
11. Suriani, A. B., Dalila, A. R., Mohamed, A., Mamat, M. H., Malek, M. F., Soga, T. and Tanemura, M. (2016).
Fabrication of vertically aligned carbon nanotubes–zinc oxide nanocomposites and their field electron emission
enhancement. Materials Design, 90: 185 – 195.
12. Suriani, A. B., Safitri, R. N., Mohamed, A., Alfarisa, S., Isa, I. M., Kamari, A., Hashim, N., Ahmad, M. K.,Malek, M. F. and Rusop M. (2015). Enhanced field electron emission of flower-like zinc oxide on zinc oxide
nanorods grown on carbon nanotubes. Materials Letters, 149: 66 – 69.
13. Suriani, A. B., Safitri, R. N., Mohamed, A., Alfarisa, S., Malek, M. F., Mamat, M. H. and Ahmad M. K. (2016).Synthesis and field electron emission properties of waste cooking palm oil-based carbon nanotubes coated on different zinc oxide nanostructures. Journal of Alloys and Compounds, 656: 368 –377.
14. Dutta, M. and Basak, D. (2019). Multiwalled carbon nanotubes/ZnO nanowires composite structure with
enhanced ultraviolet emission and faster ultraviolet response. Chemical Physics Letters, 480(4-6): 253 –257.
15. Flickyngerová, S., Tvarožek, V. and Gašpierik, P. (2010). Zinc oxide - A unique material for advanced
photovoltaic solar cells. Journal of Electrical Engineering, 61(5): 291 – 295.
16. Nohavica, D. and Gladkov. P. (2010). ZnO nanoparticles and their applications-new achievements.
Proceedings of the 2nd International Conference on Nanotechnology, 10: 12 – 14.
17. Vaseem, M., Umar, A. and Hahn, Y. B. (2010). ZnO nanoparticles: Growth, properties, and applications.
American Scientific Publishers, New York: pp. 1 – 36.
18. Jin, H., Li, Y., Li, J. and Gu, C. (2009). Field emission from ZnO nanostructures with different morphologies. Microelectronic Engineering, 86 (4): 1159 – 1161.
19. Mamat, M. H., Khusaimi, Z., Zahidi, M. M., Suriani, A. B., Siran, Y. M., Rejab, S. A. M., Asis, A. J.,
Tahiruddin, S., Abdullah, S. and Rusop M. (2011). Controllable growth of vertically aligned aluminum-doped
zinc oxide nanorod arrays by sonicated sol–gel immersion method depending on precursor solution. Japanese
Journal of Applied Physics, 50: 1 – 6.
20. Banerjee, D., Sen, D. and Chattopadhyay, K. K. (2013). Simple chemical synthesis of porous carbon spheres and its improved field emission by water vapor adsorption. Microporous and Mesoporous Materials, 171: 201– 207.
21. Suriani, A. B., Alfarisa, S., Mohamed, A., Isa, I. M., Kamari. A., Hashim, N., Mamat, M. H., Mohamed, A. R.
and M. Rusop, M. (2015). Quasi-aligned carbon nanotubes synthesised from waste engine oil. Materials Letters, 139: 220 – 223.
22. Suriani, A. B., Alfarisa, S., Mohamed, A., Kamari. A., Hashim, N., Isa, I. M., Mamat, M. H., Malek, M. F. and Ahmad, M. K. (2015). Amorphous Al–Cu alloy nanowires decorated with carbon spheres synthesised from waste engine oil. Journal of Alloys and Compounds, 642: 111 – 116.
23. Suriani, A. B., Nor, R. M. and Rusop, M. (2010). Vertically aligned carbon nanotubes synthesized from waste cooking palm oil. Journal Ceramic Society Japan, 118: 963 – 968.
24. Suriani, A. B., Dalila, A. R., Mohamed, A., Mamat, M. H., Salina, M., Rosmi M. S., Rosly, J., Nor, R. M. and
Rusop, M. (2013), Vertically aligned carbon nanotubes synthesized from waste chicken fat. Materials Letters,
101: 61 – 64.
25. Suriani, A. B., Dalila, A. R., Mohamed, A., Isa, I. M., Kamari, A., Hashim, N., Soga, T. and Tanemura, M.
(2015). Synthesis of carbon nanofibres from waste chicken fat for field electron emission applications. Materials Research Bulletin, 70: 524 – 529.
26. Suriani, A. B., Norhafizah, J., Mohammed, A., Mamat, M. H., Malek, M. F. and Ahmad, M. K. (2016). Scaledup prototype of carbon nanotube production system utilizing waste cooking palm oil precursor and its nanocomposite application as supercapacitor electrodes. Journal of Materials Science: Materials in Electronics,27(11): 11599 – 11605.
27. Suriani, A. B., Dalila, A. R., Mohamed, A., Soga, T. and Tanemura, M. (2015). Synthesis, structural, and field
electron emission properties of quasi-aligned carbon nanotubes from gutter oil. Materials Chemistry and
Physics, 165: 1 – 7.
28. Azmina, M. S., Suriani, A. B., Falina, A. N., Salina, M. and Rusop, M. (2012). Temperature effects on the
production of carbon nanotubes from palm oil by thermal chemical vapor deposition method. Advanced Materials Research, 364: 359 – 362.
29. Azmina, M. S., Suriani, A. B., Falina, A. N., Salina, M., Rosly, J. and Rusop, M. (2012). Preparation of palm
oil based carbon nanotubes at various ferrocene concentration. Advanced Materials Research, 364: 408 – 441.
30. Shamsudin, M. S., Suriani, A. B., Abdullah, S., Yahya, S. Y. S. and Rusop, M. (2013). Impact of thermal
annealing under nitrogen ambient on structural, micro-raman, and thermogravimetric analyses of camphoricCNT. Journal of Spectroscopy, 2013: 1 – 7.
31. Azmina, M. S., Suriani, A. B., Salina, M., Azira, A. A., Dalila, A. R., Asli, N. A., Rosly, J., Nor, R. M. and
Rusop, M. (2012). Variety of bio-hydrocarbon precursors for the synthesis of carbon nanotubes. Nano Hybrids,
2: 43 – 63.
32. Zobir, S. A. M., Bakar, S. A., Abdullah, S., Zainal, Z., Sarijo, S. H. and Rusop, M. (2012). Raman
spectroscopic study of carbon nanotubes prepared using Fe/ZnO-palm olein-chemical vapour deposition. Journal of Nanomaterials, 2012: 1 – 6.
33. Asli, N. A., Shamsudin, M. S., Suriani, A. B., Rusop, M. and Abdullah, S. (2013). Effect of the ratio of catalyst to carbon source on the growth of vertically aligned carbon nanotubes on nanostructured porous silicon
templates. International Journal of Industrial Chemistry, 4(23): 1 – 7.
34. Asli, N. A., Shamsudin, M. S., Falina, A. N., Azmina, M. S., Suriani, A. B., Rusop, M. and Abdullah, S.
(2013). Field electron emission properties of vertically aligned carbon nanotubes deposited on a nanostructured
porous silicon template: the hidden role of the hydrocarbon/catalyst ratio. Microelectronic Engineering, 108: 86– 92.
35. Suriani, A. B., Azira, A. A., Nik, S. F., Nor R. M. and Rusop, M. (2009). Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor. Materials Letters, 63(30): 2704 – 2706.
36. Shamsudin, M. S., Achoi, M. F., Asiah, M. N., Ismail, L. N., Suriani, A. B., Abdullah, S., Yahya, S. Y. S. and
Rusop, M. (2012). Synthesis and nucleation-growth mechanism of almost catalyst-free carbon nanotubes grown
from Fe-filled sphere-like graphene-shell surface. Journal of Nanostructure in Chemistry, 3(13): 1 – 12.
37. Salina, M., Ahmad, R., Suriani, A. B. and Rusop, M. (2012). Bandgap alteration of transparent zinc oxide thin
film with Mg dopant. Transactions on Electrical and Electronic Materials, 13(2): 64 – 68.
38. Wu, X., Wei, Z., Zhang, L., Wang, X., Yang, H. and Jiang, J. (2014). Optical and magnetic properties of Fe
doped ZnO nanoparticles obtained by hydrothermal synthesis. Journal of Nanomaterials, 2014: 1 – 6. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |