UPSI Digital Repository (UDRep)
|
|
|
Full Text : |
In this study, we investigated the conductivity enhancement of calix[8]arene-multi-walled CNTs (MWCNTs) thin film.Two types of calix[8]arenes were used, which were 5,11,17,23,29,35,41,47-p-tert-butyl 49,50,51,52,53,54,55,56-oktakis[(carboxy)-pentoxy] -calix[8]arene (C[8]1) and 49,50,51,52,53,54,55,56 -octahydroxycalix[8]arene (C[8]2).The monolayer properties of these two types of calix[8]arene on water subphase were examined. Later, the thin films were fabricated by combining different ratios of each types of calix[8]arene with MWCNTs using spin coating deposition technique. Then, the developed thin films were characterized using surface potential meter and four point probe. Thin films of C[8]2 with hydroxyl groups at lower rims demonstrated higher surface potential and conductivity as compared to the thin films of C[8]1 with upper rims of tert-butyl groups and lower rims of carboxyl groups. These results indicated that the conductivity of calixarene thin films can be enhanced by MWCNTs through simple spin coating technique. |
References |
1. Bingol, H., Kocabas, E., Zor, E. & Coskun, A. 2010. A novel benzothiazole based azocalix[4]arene as a highly selective chromogenic chemosensor for Hg2+ Ion: A rapid test application in aqueous environment. Talanta 82(4): 1538-1542.
2. Botha, Filip, Jan Budka, Václav Eigner, Oldřich Hudeček, Lukáš Vrzal, Ivana Císařová & Pavel Lhoták. 2014. Recognition of chiral anions using calix[4]arene-based ureido receptor in the 1,3-alternate conformation. Tetrahedron 70(2): 477-483.
3. Çapan, R.,Ӧzbek, Z.,Gӧktaş, H.,Şen, S.,İnce, F.G., Ӧzel,M.E., Stanciu, G.A. & Davis, F. 2010. Characterization of Langmuir-Blodgett films of a Calix[8]arene and sensing properties towards volatile organic vapors. Sensors and Actuators B: Chemical 148(2): 358-365.
4. Chaâbane, R., Ben, M., Gamoudi, G., Guillaud, C., Jouve, F., Gaillard & Lamartine, R. 1994. Elaboration and
characterization of thin calixarene films. Synthetic Metals 66: 49-54.
5. Chen, L., Zeng, X., Ju, H., He, X. & Zhang, Z. 2000. Calixarene derivatives as the sensory molecules for silver ion-selective electrode. Microchemical Journal 65(2): 129-135.
6. Csokai, V., Grün, A., Balázs, B., A., Gábor Tóth, S. & Bitter, I. 2006. Functionalized thiacalix- and calix[4]arene-based Ag+ Ionophores: Synthesis and comparative NMR study. Tetrahedron 62(43): 10215-10222.
7. Davis, F., O’Toole, L.,Short, R. & Stirling, C.J.M. 1996. Selective ion binding by Langmuir-Blodgett films of calix(8)arenes. Langmuir 12(7): 1892-1894.
8. Gaichore, R.R. & Srivastava, A.K. 2012. Multiwalled
carbon nanotube-4-tert-butyl calix[6]arene composite
electrochemical sensor for clenbuterol hydrochloride
determination by means of differential pulse adsorptive
stripping voltammetry. Journal of AppliedElectrochemistry
42: 979-987.
9. Gokoglan, T.C., Soylemez, S., Kesik, M., Unay, H., Sayin, S., Yildiz, H.B., Cirpin, A. & Toppare, L. 2015. A novel architecture based on a conducting polymer and calixarene derivative: Its synthesis and biosensor construction. RSC Advances 5(45): 35940-35947.
10. Leblanc, R.M. & Huo, Q. 2006. Langmuir and LangmuirBlodgett films of proteins and enzymes. In Encyclopedia of Surface and Colloid Science. 2nd ed. (Vol. 5), edited by Somasundaran, P. Boca Raton: CRC Press. pp. 3233-3260.
11. Liu, K., Fu, H., Xie, Y., Zhang, L., Pan, K. & Zhou, W. 2008. Assembly of β-Cyclodextrins acting as molecular bricks onto multiwall carbon nanotubes. The Journal of Physical Chemistry C 112: 951-957.
12. Mermer, Ö., Okur, S., Sümer, F., Özbek, C., Sayın, S. & Yılmaz, M. 2012. Gas sensing properties of carbon nanotubes modified with calixarene molecules measured by QCM technique. Acta Physica Polonica A 121(1): 240-242.
13. Ӧzbek, C., Culcular, E., Okur, S., Yilmaz, M. & Kurt, M. 2013. Electrical characterization of interdigitated humidity sensors based on CNT modified calixarene molecules. Acta Physica Polonica A 123(2): 461-463.
14. Ozmen, M., Ozbek, Z., Bayrakci, M., Ertul, S., Ersoz, M. & Capan, R. 2014. Preparation and gas sensing properties of Langmuir-Blodgett thin films of calix[n]arenes: investigation of cavity effect. Sensors and Actuators B: Chemical 195: 156-164.
15. Qureshi, I., Memon, S. & Yilmaz, M. 2008. Extraction and binding efficiency of calix[8]arene derivative toward
selected transition metals. Pakistan Journal of Analytical & Environmental Chemistry 9(2): 96-100.
16. Razali, Amira Shakila, Faridah Lisa Supian, Muhammad Mat Salleh & Suriani Abu Bakar. 2015a. Characterization and detection of cadmium ion using modification calixarene with multiwalled carbon nanotubes. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering 9: 304-307.
17. Razali, Amira Shakila, Faridah Lisa Supian, Suriani Abu Bakar, Tim H. Richardson & Noor Azyyati Azahari. 2015b. The properties of carbon nanotube on novel calixarene thin film. International Journal of Nanoelectronics and Materials 8:39-45.
18. Star, A., Jean-Christophe, P., Gabriel, K.B. & Grüner, G. 2003. Electronic detection of specific protein binding using nanotube FET devices. Nano Letters 3(4): 459-463.
19. Supian, Faridah Lisa, Suriani Abu Bakar, Noor Azyyati Azahari & Tim H. Richardson. 2013. Characteristics of a novel calix[8] arene modified with carbon nanotubes thin films for metal cations detection. AIP Conference Proceedings 1528(1): 260.
20. Tabakci, B. & Yilmaz, A. 2014. Amine-derivatized calix[4]arenes for sensitive extraction of cupric ion and formation of amine radical cation. Journal of Molecular Structure 1075: 96-102.
21. Vigalok, A. & Swager, T.M. 2002. Conducting polymers of tungsten(VI)-oxo calixarene: Intercalation of neutral organic guests. Advanced Materials 14(5): 368-371.
22. Wang, L., Wang, X., Shi, G., Cheng, P. & Ding, Y. 2012. Thiacalixarene covalently functionalized multiwalled carbon nanotubes as chemically modified electrode material for detection of ultratrace Pb2+ ions. Analytical Chemistry 84(24): 10560-10567.
23. Wang, N., Chang, P.R., Zheng, P. & Ma, X. 2015. Carbon nanotubecyclodextrin adducts for electrochemical recognition of tartaric acid. Diamond and Related Materials 55: 117-122.
24. Yang, Q., Qin, X., Yan, C.& Zhu, X. 2015. A novel fluorescent chemosensor for safranine T based on calixarene-1,3-diacyl hydrazone. Sensors and Actuators B: Chemical 212: 183-189.
25. Zhu, C. & Fang, L. 2014. Mingling electronic chemical sensors with supramolecular host-guest chemistry. Current Organic Chemistry 18: 1957-1964. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |