UPSI Digital Repository (UDRep)
|
|
|
Full Text : |
Purpose This study aims to examine the biomass production of local microalgae isolates; Chlorella sp., Scenedesmus sp. and Oscillatoria sp. cultivated in high nitrate (NO3-) concentration of nitrified landfill leachate (NLL).Methods NLL concentration of 10–30 % v/v was optimized for maximum microalgae growth, NO3- removal performance, and biomass productivity. The biomass produced was further characterized for carbohydrate, lipid,and protein composition.Results NO3- was able to be removed by all microalgae isolates with a NO3- removal rate of 26.5–27.5 mg/L/day and a maximum NO3- removal percentage of 84 % (20 % NLL) by Oscillatoria sp. Highest biomass productivity (0.11 g/L/day), carbohydrate productivity (2.92 g/L/day),lipid productivity (1.41 g/L/day), and protein productivity (4.87 g/L/day) were observed for Oscillatoria sp. cultured in 10 % NLL. Meanwhile, highest lipid, carbohydrate, and protein content was observed in Chlorella sp. cultured in 10 % NLL (18.23 %), Chlorella sp. cultured in 30 % NLL (37.5 %), and Oscillatoria sp. cultured in 20 % NLL (61.4 %), respectively.Conclusions These results suggest that dual application of microalgae for phycoremediation of high NO3- wastewater and biomass production was feasible particularly for Oscillatoria sp. in term of high nitrate removal capability and biomass productivity. This finding is significant for potential application of microalgae biomass as biofuels feedstock in near future |
References |
1. Yusof,N.,Hassan,M.A.,Phang, L.Y.,Tabatabaei,M.,Othman,
M.R., Mori, M., Wakisaka, M., Sakai, K., Shirai, Y.: Nitrification of high-strength ammonium landfill leachate with microbial community analysis using fluorescence in situ hybridization (FISH). Waste Manag. Res. 29(6), 602–611 (2011). doi:10.1177/0734242X10397581
2. Campbell, M.N.: Biodiesel: algae as a renewable source for liquid fuel. Guelph Eng. J. 1, 2–7 (2008)
3. Markou, G., Angelidaki, I., Georgakakis, D.: Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl. Microbiol. Biotechnol. 96(3), 631–645 (2012). doi:10.1007/s00253-012-4398-0
4. Singh, A., Olsen, S.I.: A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl. Energy 88(10), 3548–3555 (2011). doi:10.1016/j.apenergy. 2010.12.012
5. Yeesang, C., Cheirsilp, B.: Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour. Technol. 102(3), 3034–3040 (2011). doi:10. 1016/j.biortech.2010.10.013
6. Dayananda, C., Sarada, R., Shamala, T.R., Ravishankar, G.A.:Influence of nitrogen sources on growth, hydrocarbon and fatty acid production by Botryococcus braunii. Asian J. Plant Sci. 5(5), 799–804 (2006). doi:10.3923/ajps.2006.799.804
7. Markou, G.: Fed-batch cultivation of Arthrospira and Chlorella in ammonia-rich wastewater: optimization of nutrient removal and biomass production. Bioresour. Technol. 193, 35–41 (2015)
8. Ji, F., Zhou, Y., Pang, A., Ning, L., Rodgers, K., Liu, Y., Dong,R.: Fed-batch cultivation of Desmodesmus sp. in anaerobic digestion wastewater for improved nutrient removal and biodiesel production. Bioresour. Technol. 184, 116–122 (2015)
9. Nordin, N., Samsudin, S., Yusof, N.: 18S rRNA molecular characterization of microalgae isolated for high nitrate wastewater treatment and biomass production. In: International Postgraduate Conference on Science and Mathematics 2013 (IPCSM2013), Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak (5th–6th October 2013)
10. Association, American Public Health: Standard Methods for the Examination of Water and Wastewater, 21st edn. American Public Health Association, Washington DC (2005)
11. Ji, M.K., Kim, H.C., Sapireddy, V.R., Yun, H.S., Abou, S.R.A.I.,Choi, J., Lee, W., Timmes, T.C., Inamuddin, R., Jeon, B.H.: Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW–04. Appl. Microbiol. Biotechnol. 97(6), 2701–2710 (2013). doi:10.1007/
s00253-012-4097-x
12. Guillard, R.R.L., Ryther, J.H.: Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula Confervaceae (cleve). Can. J. Microbiol. 8, 229–239 (1962)
13. George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, M.,Ghosh, T., Mishra, S.: Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus-a potential strain for biofuel production. Bioresour. Technol. 171, 367–374 (2014).
doi:10.1016/j.biortech.2014.08.086
14. Dayananda, C., Kumudha, A., Sarada, R., Ravishankar, G.A.: Isolation, characterization and outdoor cultivation of green microalgae Botryococcus sp. Sci. Res. Essays 5(17), 2497–2505 (2010)
15. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.:Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3), 350–356 (1956). doi:10.1021/ac60111a017
16. Griffiths, M.J., Harrison, S.T.L.: Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21(5), 493–507 (2009). doi:10.1007/s10811-008-9392-7
17. Blight, E.J., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37(8), 911–9117 (1959). doi:10.1139/o59-099
18. Depraetere, O., Foubert, I., Muylaert, K.: Decolorisation of piggery wastewater to stimulate the production of Arthrospira platensis. Bioresour. Technol. 148, 366–372 (2013). doi:10.1016/j.biortech.2013.08.165
19. Tam, N.F.Y., Wong, Y.S.: Effect of immobilized microalgal bead concentration in wastewater nutrient removal. Environ. Pollut. 107(1), 145–151 (2000). doi:10.1016/S0269-7491(99)00118-9
20. Kshirsagar, A.D.: Bioremediation of wastewater by using microalgae: an experimental study. Int. J. Life Sci. Biotechnol Pharm. Res. 2(3), 339–346 (2013)
21. Hongyang, S., Yalei, Z., Chunmin, Z., Xuefei, Z., Jinpeng, L.:Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour. Technol. 102(21),9884–9890 (2011) doi:10.1016/j.biortech.2011.08.016
22. Aslan, S., Kapdan, I.K.: Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 28(1), 64–70 (2006). doi:10.1016/j.ecoleng.2006.04.003
23. Craggs, R.J., McAuley, P.J., Smith, V.J.: Wastewater nutrient removal by marine microalgae grown on a corrugated raceway.Water Resour. 31(7), 1701–1707 (1997). doi:10.1016/S0043-1354(96)00093-0
24. Xin, L., Hu, H.Y., Ke, G., Sun, Y.X.: Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 101(14), 5494–5500 (2010). doi:10.1016/ j.biortech.2010.02.016
25. Cai, T., Park, S.Y., Li, Y.: Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew. Sust. Energy Rev. 19, 360–369 (2013). doi:10.1016/j.rser.2012.11.030
26. Quiros, R.: The nitrogen to phosphorus ratio for lakes: a cause or a consequence of aquatic biology? In: Cirelli, A.F., Marquisa, G.C. (eds.) El Agua en Iberoamerica: De la Limnologia a la Gestion en Sudamerica, pp. 11–26. CYTED XVII, Centro de
Estudios Transdiciplinarios del Agua, Facultad de Veterinaria, Universidad de Buenos Aires, Buenos Aires (2002)
27. Shi, J., Podola, B., Melkonian, M.: Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J. Appl. Phycol. 19(5), 417–423 (2007). doi:10.1007/s10811-006-9148-1
28. Stumm,W.,Morgan, J.J.:Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. Wiley,Hoboken (1981)
29. Li, Y., Han, D., Sommerfeld, M., Hu, Q.: Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited
conditions. Bioresour. Technol. 102(1), 123–129 (2011). doi:10.1016/j.biortech.2010.06.036
30. Samori, G., Samori, C., Guerrini, F., Pistocchi, R.: Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Water Res. 47(2), 791–801
(2013). doi:10.1016/j.watres.2012.11.006
31. Zhou, X., Yuan, S., Chen, R., Song, B.: Modelling microalgae growth in nitrogen-limited continuous culture. Energy 73,575–580 (2014).doi:10.1016/j.energy.2014.06.058
32. Ruiz-Marin, A., Mendoza-Espinosa, L.G., Stephenson, T.: Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater.Bioresour. Technol. 101(1), 58–64 (2010). doi:10.1016/j.biortech.2009.02.076
33. Kong, Q.X., Li, L., Martinez, B., Chen, P., Ruan, R.: Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl. Biochem. Biotechnol. 160(1), 9–18 (2010). doi:10.1007/s12010-009-8670-4
34. Wen, Z., Liu, J., Chen, F.: Biofuel from microalgae. Compr. Biotechnol. 1, 127–133 (2011)
35. Brune, D.E., Lundquist, T., Benemann, J.R.: Microalgal biomass for greenhouse gas reductions: potential for replacement of fossil fuels and animal feeds. J. Environ. Eng. 135, 1136–1144 (2009).
doi:10.1061/(ASCE)EE.1943-7870.0000100
36. Brennan, L., Owende, P.: Biofuels from microalgae: a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energy Rev. 14(2), 557–577 (2010). doi:10.1016/j.rser.2009.10.009
37. Roeselers, G., Loosdrecht, M.C.M., Muyzer, G.: Phototrophic biofilms and their potential applications. J. Appl. Phycol. 20(3), 227–235 (2008). doi:10.1007/s10811-007-9223-2 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |