UPSI Digital Repository (UDRep)
|
|
|
Full Text : |
The zinc oxide nanoparticles (particles size |
References |
[1] N. Kalarikkal, R. Augustine, O.S. Oluwafemi, K. Joshy, S. Thomas, Nanomedicine and Tissue Engineering: State of the Art and Recent Trends, CRC Press, 2016.
[2] R. Augustine, E.A. Dominic, I. Reju, B. Kaimal, N. Kalarikkal, S. Thomas,Investigation of angiogenesis and its mechanism using zinc oxide nanoparticle-loaded electrospun tissue engineering scaffolds, RSC. Adv. 4
(2014) 51528–51536.
[3] E. Mirza, W. Ibrahim, B. Pingguan-Murphy, I. Djordjevic, Polyoctanediol citrate-zinc oxide nano-composite multifunctional tissue engineering scaffolds with anti-bacterial properties, Dig. J. Nanomater. Biostruct. (DJNB) 10 (2015) 415–428.
[4] L. Grenho, C. Salgado, M. Fernandes, F. Monteiro, M. Ferraz, Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles—an in vitro and in vivo study, Nanotechnology 26 (2015) 315101.
[5] A.C. Jayasuriya, A. Aryaei, A.H. Jayatissa, ZnO nanoparticles induced effects on nanomechanical behavior and cell viability of chitosan films, Mater. Sci. Eng.
C: Mater. Biol. Appl. 33 (2013) 3688–3696.
[6] R. Augustine, H.N. Malik, D.K. Singhal, A. Mukherjee, D. Malakar, N. Kalarikkal,S. Thomas, Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties, J. Polym. Res. 21 (2014) 1–17.
[7] E.A. Münchow, M.T.P. Albuquerque, B. Zero, K. Kamocki, E. Piva, R.L. Gregory,M.C. Bottino, Development and characterization of novel ZnO-loaded electrospun membranes for periodontal regeneration, Dent. Mater. 31 (2015) 1038–1051.
[8] K. Shalumon, K. Anulekha, S.V. Nair, S. Nair, K. Chennazhi, R. Jayakumar, Sodium alginate/poly (vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings, Int. J. Biol. Macromol. 49 (2011) 247–254.
[9] K.-L. Ou, H. Hosseinkhani, Development of 3D in vitro technology for medical applications, Int. J. Mol. Sci. 15 (2014) 17938–17962.
[10] J.M. Sobral, S.G. Caridade, R.A. Sousa, J.F. Mano, R.L. Reis, Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold
geometry on mechanical performance and cell seeding efficiency, Acta Biomater. 7 (2011) 1009–1018.
[11] R.M. Raftery, B. Woods, A.L. Marques, J. Moreira-Silva, T.H. Silva, S.-A. Cryan, R.L. Reis, F.J. O’Brien, Multifunctional biomaterials from the sea: assessing the
effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality, Acta Biomater. 43 (2016) 160–169.
[12] G.A. Junter, P. Thebault, L. Lebrun, Polysaccharide-based antibiofilm surfaces, Acta Biomater. 30 (2016) 13–25.
[13] C. Mahoney, M.B. McCullough, J. Sankar, N.Bhattarai, Nanofibrous structure of chitosan for biomedical applications, J. Nanomed. Biother. Discov. 02 (2012) 1–9.
[14] K.Y. Lee, L. Jeong, Y.O. Kang, S.J. Lee, W.H. Park, Electrospinning of polysaccharides for regenerative medicine, Adv. Drug Deliv. Rev. 61 (2009) 1020–1032.
[15] P.J. VandeVord, H.W. Matthew, S.P. DeSilva, L. Mayton, B. Wu, P.H. Wooley, Evaluation of the biocompatibility of a chitosan scaffold in mice, J. Biomed. Mater. Res. 59 (2002) 585–590.
[16] J.S. Mao, L.G. Zhao, Y.J. Yin, K. De Yao, Structure and properties of bilayer chitosan–gelatin scaffolds, Biomaterials 24 (2003) 1067–1074.
[17] H. Zhang, X. Luo, X. Lin, X. Lu, Y. Zhou, Y. Tang, Polycaprolactone/chitosan blends: simulation and experimental design, Mater. Des. 90 (2016) 396–402.
[18] L. Ma, C. Gao, Z. Mao, J. Zhou, J. Shen, X. Hu, C. Han, Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering, Biomaterials
24 (2003) 4833–4841.
[19] T. Barroso, R. Viveiros, T. Casimiro, A. Aguiar-Ricardo, Development of dual-responsive chitosan–collagen scaffolds for pulsatile release of bioactive molecules, J. Supercrit. Fluids 94 (2014) 102–112.
[20] L.P. Yan, Y.J. Wang, L. Ren, G. Wu, S.G. Caridade, J.B. Fan, L.Y. Wang, P.H. Ji, J.M. Oliveira, J.T. Oliveira, Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications, J. Biomed. Mater. Res. A 95 (2010) 465–475.
[21] M. Nieto-Suárez, M.A. López-Quintela, M. Lazzari, Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly, Carbohydr. Polym. 141 (2016) 175–183.
[22] P. Yilgor, K. Tuzlakoglu, R.L. Reis, N. Hasirci, V. Hasirci, Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering, Biomaterials 30 (2009) 3551–3559.
[23] I. Adekogbe, A. Ghanem, Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering,Biomaterials 26 (2005)
7241–7250.
[24] Y. Liu, L. Ma, C. Gao, Facile fabrication of the glutaraldehyde cross-linked collagen/chitosan porous scaffold for skin tissue engineering, Mater. Sci. Eng.
C: Mater. Biol. Appl. 32 (2012) 2361–2366.
[25] F. Yan, W. Yue, Y.-L. Zhang, G.-C. Mao, K. Gao, Z.-X. Zuo, Y.-J. Zhang, H. Lu, Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke, Neural Regen. Res. 10 (2015) 1421.
[26] C. Ji, J. Shi, Thermal-crosslinked porous chitosan scaffolds for soft tissue engineering applications, Mater. Sci. Eng. C: Mater. Biol. Appl. 33 (2013)
3780–3785.
[27] L.L. Fernandes, C.X. Resende, D.S. Tavares, G.A. Soares, L.O. Castro, J.M. Granjeiro, Cytocompatibility of chitosan and collagen-chitosan scaffolds for tissue engineering, Polímeros 21 (2011) 1–6.
[28] G. Li, X. Zhao, W. Zhao, L. Zhang, C. Wang, M. Jiang, X. Gu, Y. Yang, Porous chitosan scaffolds with surface micropatterning and inner porosity and their
effects on Schwann cells, Biomaterials 35 (2014) 8503–8513.
[29] S. Jana, A. Cooper, M. Zhang, Chitosan scaffolds with unidirectional microtubular pores for large skeletal myotube generation, Adv. Healthc.Mater. 2 (2013) 557–561.
[30] C.L. Baum, C.J. Arpey, Normal cutaneous wound healing: clinical correlation with cellular and molecular events, Dermatol. Surg. 31 (2005) 674–686.
[31] S. Yamada, K. Yamamoto, T. Ikeda, K. Yanagiguchi, Y. Hayashi, Potency of fish collagen as a scaffold for regenerative medicine, Biomed. Res. Int. 2014 (2014)
302932.
[32] J.Tang,T.Saito,Biocompatibility of novel type I collagen purified from Tilapia fish scale: an In vitro comparative study, Biomed. Res. Int. 2015 (2015) 139476.
[33] H.-H. Hsu, T. Uemura, I. Yamaguchi, T. Ikoma, J. Tanaka, Chondrogenic differentiation of human mesenchymal stem cells on fish scale collagen, J. Biosci. Bioeng. 122 (2016) 219–225.
[34] K. Imai, T. Nishikawa, S. Morita, T. Iseki, H. Youshida, K. Matsumoto, M. Shida, F. Ogawa, K. Suese, Influence on the long-term differentiation culture of
ES-D3 cells with string-like collagen scaffolds derived from tilapia scales, J. Oral Tissue Eng. 13 (2015) 125–130.
[35] L. Ma, C. Gao, Z. Mao, J. Zhou, J. Shen, X. Hu, C. Han, Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering, Biomaterials
24 (2003) 4833–4841.
[36] S.P. Tsai, C.Y. Hsieh, C.Y. Hsieh, D.M. Wang, L.L.H. Huang, J.Y. Lai, H.J. Hsieh, Preparation and cell compatibility evaluation of chitosan/collagen composite
scaffolds using amino acids as crosslinking bridges, J. Appl. Polym. Sci. 105 (2007) 1774–1785. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |