UPSI Digital Repository (UDRep)
|
|
|
Full Text : |
Meiofauna are an important component of deep-sea benthic communities because they are highly abundant and play an important role in the sediment. This review describes trends in the ecology of deep-sea meiofauna based on results from studies published since the review by Soltwedel (2000),with a focus on spatial distribution patterns of deep-sea meiofauna communities at regional (~100–10,000 km), habitat (~0.1–100 km), local (~0.1–100 m), and small scales (~0.1–10 cm), and with reference to the effects of environmental variables and disturbance (biological and human) that influence these patterns. The focus of deep-sea meiofauna studies has shifted from investigations of patterns related to water depth, regions, and vertical gradients in the sediment to the effect of deep-sea habitats on meiofauna communities, the relative importance of different spatial scales, and the relative impacts of disturbance on meiofauna communities. Although deep-sea meiofauna community attributes (abundance, diversity, and community structure) are shown to vary across all spatial scales, the greatest variability is generally observed at regional and sediment depth scales. However, generalisations are difficult to make due to the limited number of studies that allow direct comparisons across multiple scales. At the regional scale, variation in meiofaunal communities appears mostly related to differences in surface productivity, other food proxies, and physical disturbance; however, geological history, oceanographic boundaries and ocean current flows may also contribute to regional patterns. At the small sediment depth scale, meiofauna communities are typically influenced by food proxies, oxygen availability, sediment characteristics,seafloor topography proxies, microhabitat heterogeneity, and bioturbation by larger fauna. Overall, there have been a limited number of studies of small horizontal scale patterns, at seamounts, and in certain geographic regions such as the Indian Ocean and Antarctica. Fewer studies have been conducted in deep ocean basins compared to continental margin. Most studies have focused on nematodes, while other meiofauna taxa such as harpacticoid copepods have not been investigated as often in deep-sea ecological studies. The findings of this review provide a new perspective on the state of knowledge of the factors influencing meiofauna in the deepsea ecosystem, and highlights the need for future meiofauna studies to provide information that can assist the management of human activities in vulnerable deep-sea areas. |
References |
1. Ahnert A, Schriever G (2001) Response of abyssal Copepoda Harpacticoida (Crustacea) and other meiobenthos to an artificial disturbance and its bearing on future mining for polymetallic nodules. Deep-Sea Res. II Top. Stud. Oceanogr. 48:3779–3794. https://
doi.org/10.1016/s0967-0645(01)00067-4
2. Alkemade R, Wielemaker A, Dejong SA, Sandee AJJ (1992)
Experimental-evidence for the role of bioturbation by the marine nematode diplolaimella-dievengatensis in stimulating the mineralization of spartina-anglica detritus. Mar Ecol Prog Ser 90:149–155.
https://doi.org/10.3354/meps090149
3. Ansari ZA (2000) Distribution of deep-sea benthos in the proposed mining area of Central Indian Basin. Mar Georesour Geotechnol 18: 201–207. https://doi.org/10.1080/10641190009353788
4. Baguley JG, Montagna PA, Hyde LJ, Kalke RD, Rowe GT (2006a) Metazoan meiofauna abundance in relation to environmental variables in the northern Gulf of Mexico deep sea. Deep-Sea Res Part IOceanogr Res Pap 53:1344–1362. https://doi.org/10.1016/j.dsr.2006.05.012
5. Baguley JG, Montagna PA, Lee W, Hyde LJ, Rowe GT (2006b) Spatial and bathymetric trends in Harpacticoida (Copepoda) community structure in the Northern Gulf of Mexico deep-sea. J Exp Mar Biol Ecol 330:327–341. https://doi.org/10.1016/j.jembe.2005.12.037
6. Baguley JG, Montagna PA, Cooksey C, Hyland JL, Bang HW, Morrison C, Kamikawa A, Bennetts P, Saiyo G, Parsons E, Herdener M, Ricci M (2015) Community response of deep-sea soft-sediment metazoan meiofauna to the Deepwater Horizon blowout and oil spill. Mar Ecol Prog Ser 528:127–140
7. Baldrighi E, Aliani S, Conversi A, Lavaleye M, Borghini M, Manini E (2013) From microbes to macrofauna: an integrated study of deep benthic communities and their response to environmental variables along the Malta Escarpment (Ionian Sea). Sci Mar 77:625–639.
https://doi.org/10.3989/scimar.03811.03B
8. Baldrighi E, Manini E (2015) Deep-sea meiofauna and macrofauna diversity and functional diversity: are they related? Mar Biodivers 45: 469–488. https://doi.org/10.1007/s12526-015-0333-9
9. Balsamo M, Semprucci F, Frontalini F, Coccioni R (2012) Meiofauna as a tool for marine ecosystem biomonitoring. In:Cruzado A (ed) Marine Ecosystems InTech
10. Bashmachnikov I, Loureiro CM, Martins A (2013) Topographically induced circulation patterns and mixing over Condor seamount. Deep Sea Research Part II: Topical Studies in Oceanography 98, Part A:38–51. https://doi.org/10.1016/j.dsr2.2013.09.014
11. Berkenbusch K, Probert PK, Nodder SD (2011) Comparative biomass of sediment benthos across a depth transect, Chatham Rise, Southwest Pacific Ocean. Mar Ecol Prog Ser 425:79–90. https://doi.org/10.3354/meps09014
12. Bernhard JM, Morrison CR, Pape E, Beaudoin DJ, Todaro MA,Pachiadaki MG (2015) Metazoans of redoxcline sediments in Mediterranean deep-sea hypersaline anoxic basins. BMC Biol 13. https://doi.org/10.1186/s12915-015-0213-6
13. Bett BJ et al (1994) Sampler bias in the quantitative study of deep-sea meiobenthos. Mar Ecol Prog Ser 104:197–203. https://doi.org/10.3354/meps104197
14. Bianchelli S, Gambi C, Pusceddu A, Danovaro R (2008) Trophic conditions and meiofaunal assemblages in the Bari Canyon and the adjacent open slope (Adriatic Sea). Chem Ecol 24:101–109. https://doi. org/10.1080/02757540801963386
15. Bianchelli S, Gambi C, Zeppilli D, Danovaro R (2010) Metazoan meiofauna in deep-sea canyons and adjacent open slopes: a largescale comparison with focus on the rare taxa. Deep-Sea Res Part IOceanogr Res Pap 57:420–433. https://doi.org/10.1016/j.dsr.2009.12.001
16. Bianchelli S, Gambi C, Mea M, Pusceddu A, Danovaro R (2013) Nematode diversity patterns at different spatial scales in bathyal sediments of the Mediterranean Sea. Biogeosciences 10:5465–5479. https://doi.org/10.5194/bg-10-5465-2013
17. Bik HM, Thomas WK, Lunt DH, Lambshead PJD (2010) Low endemism, continued deep-shallow interchanges, and evidence for cosmopolitan distributions in free-living marine nematodes (order Enoplida). BMC Evol Biol 10:1–10. https://doi.org/10.1186/1471-2148-10-389
18. Boeckner MJ, Sharma J, Proctor HC (2009) Revisiting the meiofauna paradox: dispersal and colonization of nematodes and other meiofaunal organisms in low- and high-energy environments. Hydrobiologia 624:91–106. https://doi.org/10.1007/s10750-008-9669-5
19. Bongiorni L, Ravara A, Parretti P, Santos RS, Rodrigues CF, Amaro T,Cunha MR (2013) Organic matter composition and macrofaunal diversity in sediments of the Condor Seamount (Azores, NE Atlantic). Deep Sea Research Part II: Topical Studies in Oceanography 98, Part A:75–86. https://doi.org/10.1016/j.dsr2.2013.08.006
20. Boucher G, Lambshead PJD (1995) Ecological biodiversity of marine nematodes in samples from temperate, tropical, and deep sea regions. Conservation Biology 9(6):1594–1604. https://doi.org/10.
1046/j.1523-1739.1995.09061594.x
21. Bright M, Plum C, Riavitz LA, Nikolov N, Martinez Arbizu P, Cordes EE, Gollner S (2010) Epizooic metazoan meiobenthos associated with tubeworm and mussel aggregations from cold seeps of the northern Gulf of Mexico. Deep Sea Res Part II Top Stud Oceanogr
57:1982–1989. https://doi.org/10.1016/j.dsr2.2010.05.003
22. Brown CJ, Lambshead PJD, Smith CR, Hawkins LE, Farley R (2001) Phytodetritus and the abundance and biomass of abyssal nematodes in the central, equatorial Pacific. Deep-Sea Res I Oceanogr Res Pap 48:555–565. https://doi.org/10.1016/S0967-0637(00)00049-2
23. Canals M, Danovaro R, Durrieu de Madron X, Heussner S, Palanques A, Fabres J (2006) Flushing submarine canyons. Nature 444:354–357
24. Clark MR, Rowden AA, Schlacher T, Williams A, Consalvey M, Stocks KI, Rogers AD, O’Hara TD, White M, Shank TM, Hall-Spencer JM (2010) The Ecology of Seamounts: Structure, Function, and Human
Impacts. In: Annual Review of Marine Science, vol 2. Annual Review of Marine Science. Annual Reviews, Palo Alto, pp 253-278. https://doi.org/10.1146/annurev-marine-120308-081109
25. Cook AA, Lambshead PJD, Hawkins LE, Mitchell N, Levin LA (2000) Nematode abundance at the oxygen minimum zone in the Arabian Sea. Deep-Sea Res Part II-Top Stud Oceanogr 47:75–85. https://doi.
org/10.1016/s0967-0645(99)00097-1
26. Copley JTP, Flint HC, Ferrero TJ, Van Dover CL (2007) Diversity of melofauna and free-living nematodes in hydrothermal vent mussel beds on the northern and southern East Pacific Rise. J Mar Biol Assoc
U K 87:1141–1152. https://doi.org/10.1017/s0025315407055956
27. Coull BC (1990) Are members of the meiofauna food for higher trophic levels. Trans Am Microsc Soc 109:233–246. https://doi.org/10.2307/3226794
28. Coull BC, Chandler GT (1992) Pollution and meiofauna - field, laboratory, and mesocosm studies. Oceanogr Mar Biol 30:191–271
29. Covazzi Harriague A, Bavestrello G, Bo M, Borghini M, Castellano M, Majorana M, Massa F, Montella A, Povero P, Misic C (2014) Linking environmental forcing and trophic supply to benthic communities in the Vercelli Seamount area (Tyrrhenian Sea). PLoS One 9. https://doi.org/10.1371/journal.pone.0110880
30. Cullen DJ (1973) Bioturbation of Superficial Marine Sediments by Intertitial Meiobenthos. Nature 242:323–324
Cuvelier D, Beesau J, Ivanenko VN, Zeppilli D, Sarradin P-M, Sarrazin J (2014) First insights into macro- and meiofaunal colonisation patterns on paired wood/slate substrata at Atlantic deep-sea hydrothermal vents. Deep Sea Research Part I: Oceanographic Research
Papers 87:70–81.https://doi.org/10.1016/j.dsr.2014.02.008
31. Danovaro R, Tselepides A, Otegui A, Della Croce N (2000) Dynamics of meiofaunal assemblages on the continental shelf and deep-sea sediments of the Cretan Sea (NE Mediterranean): relationships with seasonal changes in food supply. Prog Oceanogr 46:367–400.
https://doi.org/10.1016/s0079-6611(00)00026-4
32. Danovaro R, Gambi C, Della Croce N (2002) Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean. Deep-Sea Res I Oceanogr Res Pap 49:843–857. https://doi.org/10.1016/S0967-0637(01)00084-X
33. Danovaro R, Dell’Anno A, Pusceddu A (2004) Biodiversity response to climate change in a warm deep sea. Ecol Lett 7:821–828. https://doi.org/10.1111/j.1461-0248.2004.00634.x
34. Danovaro R, Gambi C, Lampadariou N, Tselepides A (2008) Deep-sea nematode biodiversity in the Mediterranean basin: testing for longitudinal, bathymetric and energetic gradients. Ecography 31:231–
244. https://doi.org/10.1111/j.0906-7590.2008.5484.x
35. Danovaro R, Bianchelli S, Gambi C, Mea M, Zeppilli D (2009) α-, β-, γ-, δ- and ε- diversity of deep-sea nematodes in canyons and open slopes of Northeast Atlantic and Mediterranean margins. Mar Ecol
Prog Ser 396:197–209. https://doi.org/10.3354/MEPS08269
36. Danovaro R, Compy JB, Corinaldesi C, D’Onghia G, Galil B, Gambi C, Gooday AJ, Lampadariou N, Luna GM, Morigi C, Olu K, Polymenakou P, Ramirez-Llodra E, Sabbatini A, Sarda F, Sibuet M, Tselepides A (2010a) Deep-Sea Biodiversity in the Mediterranean
Sea: The Known, the Unknown, and the Unknowable. PLoS One
5. https://doi.org/10.1371/journal.pone.0011832
37. Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Mobjerg Kristensen R (2010b) The first metazoa living in permanently anoxic conditions. BMC Biol 8. https://doi.org/10.1186/1741-7007-8-30
38. Danovaro R, Carugati L, Corinaldesi C, Gambi C, Guilini K, Pusceddu A, Vanreusel A (2013) Multiple spatial scale analyses provide new clues on patterns and drivers of deep-sea nematode diversity. DeepSea Res Part II-Top Stud Oceanogr 92:97–106. https://doi.org/10.
1016/j.dsr2.2013.03.035
39. Danovaro R, Gambi C, Dell’Anno A, Corinaldesi C, Pusceddu A, Neves RC, Kristensen RM (2016) The challenge of proving the existence of metazoan life in permanently anoxic deep-sea sediments. BMC Biol 14:43. https://doi.org/10.1186/s12915-016-0263-4
40. De Mesel I, Derycke S, Swings J, Vincx M, Moens T (2006) Role of nematodes in decomposition processes: Does within-trophic group diversity matter? Mar Ecol Prog Ser 321:157–166. https://doi.org/10.3354/meps321157
41. de Stigter HC, Boer W, de Jesus Mendes PA, Jesus CC, Thomsen L, van den Bergh GD, van Weering TCE (2007) Recent sediment transport and deposition in the Nazaré Canyon, Portuguese continental margin. Mar Geol 246:144–164. https://doi.org/10.1016/j.margeo.2007.04.011
42. Degen R, Riavitz L, Gollner S, Vanreusel A, Plum C, Bright M (2012) Community study of tubeworm-associated epizooic meiobenthos from deep-sea cold seeps and hot vents. Mar Ecol Prog Ser 468:135–148. https://doi.org/10.3354/meps09889
43. Dinet A (1973) Quantitative distribution of deep-sea meiobenthos in Walvis ridge area (South-West-Africa). Mar Biol 20:20–26. https://doi.org/10.1007/bf00387670
44. Easton EE, Thistle D (2016) Do some deep-sea, sediment-dwelling species of harpacticoid copepnods have 1000-km-scale range sizes? Mol Ecol 25:4301–4318. https://doi.org/10.1111/mec.13744
45. Etter RJ, Grassle JF (1992) Patterns of species-diversity in the deep-sea as a function of sediment particle-size diversity. Nature 360:576–578.
https://doi.org/10.1038/360576a0
46. Feller RJ, Coull BC (1995) Non-selective ingestion of meiobenthos by juvenile spot (Leiostomus xanthurus) (Pisces) and their daily ration. Vie Et Milieu-Life Environ 45:49–59
47. Findlay S, Tenore KR (1982) Effect of a free-living marine nematode (Diplolaimella chitwoodi) on detrital carbon mineralization. Mar Ecol Prog Ser 8:161–166. https://doi.org/10.3354/meps008161
48. Flach E, Muthumbi A, Heip C (2002) Meiofauna and macrofauna community structure in relation to sediment composition at the Iberian margin compared to the Goban Spur (NE Atlantic). Prog Oceanogr
52:433–457. https://doi.org/10.1016/S0079-6611(02)00018-6
49. Flint HC, Copley JTP, Ferrero TJ, Van Dover CL (2006) Patterns of nematode diversity at hydrothermal vents on the East Pacific Rise. Cah Biol Mar 47:365–370
50. Fonseca G, Muthumbi AW, Vanreusel A (2007) Species richness of the genus Molgolaimus (Nematoda) from local to ocean scale along continental slopes. Mar Ecol 28:446–459. https://doi.org/10.1111/j.1439-0485.2007.00202.x
51. Fonseca G, Soltwedel T (2007) Deep-sea meiobenthic communities underneath the marginal ice zone off Eastern Greenland. Polar Biol 30:607–618. https://doi.org/10.1007/s00300-006-0220-8
52. Fonseca G, Soltwedel T (2009) Regional patterns of nematode assemblages in the Arctic deep seas. Polar Biol 32:1345–1357. https://doi.org/10.1007/s00300-009-0631-4
53. Fonseca G, Soltwedel T, Vanreusel A, Lindegarth M (2010) Variation in nematode assemblages over multiple spatial scales and environmental conditions in Arctic deep seas. Prog Oceanogr 84:174–184.
https://doi.org/10.1016/j.pocean.2009.11.001
54. Fujii T, Kilgallen NM, Rowden AA, Jamieson AJ (2013) Deep sea amphipod community structure across abyssal to hadal depths in the Peru–Chile and Kermadec trenches. Mar Ecol Prog Ser 492:125–138
55. Galéron J, Myriam S, Marie-Laure M, Alain D (2000) Variation in structure and biomass of the benthic communities at three contrasting sites in the tropical Northeast Atlantic. Mar Ecol Prog Ser 197:121–137
56. Gallucci F, Fonseca G, Soltwedel T (2008a) Effects of megafauna exclusion on nematode assemblages at a deep-sea site. Deep-Sea Res Part I-Oceanogr Res Pap 55:332–349. https://doi.org/10.1016/j.dsr.2007.12.001
57. Gallucci F, Moens T, Vanreusel A, Fonseca G (2008b) Active colonisation of disturbed sediments by deep-sea nematodes: evidence for the patch mosaic model. Mar Ecol Prog Ser 367:173–183. https://doi.org/10.3354/meps07537
58. Gallucci F, Moens T, Fonseca G (2009) Small-scale spatial patterns of meiobenthos in the Arctic deep sea. Mar Biodivers 39:9–25
59. Gambi C, Vanreusel A, Danovaro R (2003) Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean). Deep-Sea Res I Oceanogr Res Pap 0:103–117. https://doi.org/10.1016/S0967-0637(02)00143-7
60. Gambi C, Danovaro R (2006) A multiple-scale analysis of metazoan meiofaunal distribution in the deep Mediterranean Sea. Deep-Seaes Part I-Oceanogr Res Pap 53:1117–1134. https://doi.org/10.1016/j.dsr.2006.05.003
61. Gambi C, Pusceddu A, Benedetti-Cecchi L, Danovaro R (2014) Species richness, species turnover and functional diversity in nematodes of the deep Mediterranean Sea: searching for drivers at different spatial
scales. Glob Ecol Biogeogr 23:24–39. https://doi.org/10.1111/geb.12094
62. Gambi C, Danovaro R (2016) Biodiversity and life strategies of deep-sea meiofauna and nematode assemblages in the Whittard Canyon (Celtic margin, NE Atlantic Ocean). Deep Sea Research Part I:Oceanographic Research Papers 108:13–22. https://doi.org/10. 1016/j.dsr.2015.12.001
63. Garcia R, Koho KA, De Stigter HC, Epping E, Koning E, Thomsen L (2007) Distribution of meiobenthos in the Nazare canyon and adjacent slope (western Iberian Margin) in relation to sedimentary composition. Mar Ecol Prog Ser 340:207–220. https://doi.org/10.3354/meps340207
64. García R, van Oevelen D, Soetaert K, Thomsen L, De Stigter HC, Epping E (2008) Deposition rates, mixing intensity and organic content in two contrasting submarine canyons. Prog Oceanogr 76:192–215.
https://doi.org/10.1016/j.pocean.2008.01.001
65. George KH, Veit-Kohler G, Martinez Arbizy P, Seifried S, Rose A, Willen E, Brohldick K, Corgosinho PH, Drewes J, Menzel L, Moura G, Schminke HK (2014) Community structure and species diversity of Harpacticoida (Crustacea: Copepoda) at two sites in the
deep sea of the Angola Basin (Southeast Atlantic). Org Divers Evol 14:57–73. https://doi.org/10.1007/s13127-013-0154-2
66. Giere O (2009) Meiobenthology. The microscopic motile fauna of aquatic sediments. Springer-Verlag, Berlin
Gollner S, Zekely J, Van Dover CL, Govenar B, Le Bris N, Nemeschkal HL, Bright M (2006) Benthic copepod communities associated with tubeworm and mussel aggregations on the East Pacific Rise. Cah
Biol Mar 47:397–402
67. Gollner S, Zekely J, Govenar B, Le Bris N, Nemeschkal HL, Fisher CR,Bright M (2007) Tubeworm-associated permanent meiobenthic communities from two chemically different hydrothermal vent sites on the East Pacific Rise. Mar Ecol Prog Ser 337:39–49. https://doi.
org/10.3354/meps337039
68. Gollner S, Riemer B, Arbizu PM, Le Bris N, Bright M (2010) Diversity of Meiofauna from the 9 degrees 50 ' N East Pacific Rise across a Gradient of Hydrothermal Fluid Emissions. PLoS One 5:14.
https://doi.org/10.1371/journal.pone.0012321
69. Gollner S, Miljutina M, Bright M (2013) Nematode succession at deepsea hydrothermal vents after a recent volcanic eruption with the description of two dominant species. Org Divers Evol 13:349–
371. https://doi.org/10.1007/s13127-012-0122-2
70. Gollner S, Govenar B, Fisher CR, Bright M (2015a) Size matters at deepsea hydrothermal vents: different diversity and habitat fidelity patterns of meio- and macrofauna. Mar Ecol Prog Ser 520:57–66.
https://doi.org/10.3354/meps11078 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |