UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :TD Environmental technology. Sanitary engineering
ISSN :0126-6039
Main Author :Abd Hamid Nor Zila, Md Noorani Mohd Salmi,
Title :Aplikasi model baharu penambahbaikan pendekatan kalut ke atas peramalan siri masa kepekatan ozon
Year of Publication :2017

Full Text :
Kajian ini merupakan aplikasi pendekatan kalut ke atas peramalan siri masa bahan pencemar udara ozon di stesen asas Malaysia yang terletak di Jerantut, Pahang. Sebelum model peramalan dibina, siri masa diuji terlebih dahulu sama ada bersifat kalut atau tidak. Melalui plot ruang fasa dan kaedah Cao, siri masa bahan pencemar ozon didapati bersifat kalut bermatra rendah. Oleh itu, model peramalan melalui kaedah penghampiran linear setempat dibina.Sebagai inovasi, model ini ditambah baik. Sebagai perbandingan, model peramalan regresi linear turut dibina. Melalui pengiraan purata ralat mutlak, ralat punca purata kuasa dua dan pekali korelasi, keputusan menunjukkan bahawa model baharu penambahbaikan penghampiran linear setempat adalah lebih baik berbanding model-model yang lain. Maka, penambahbaikan yang dilakukan adalah berbaloi. Dengan itu, pendekatan kalut adalah pendekatan alternatif yang sesuai digunakan bagi membangunkan model peramalan siri masa bahan pencemar ozon. Penemuan model baharu dalam kajian ini diharap dapat membantu memudahkan usaha pihak-pihak berkepentingan dalam menguruskan isu pencemaran udara, khususnya ozon.

References
1. Abarbanel, H.D.I. 1996. Analysis of Observed Chaotic Data. New York: Springer-Verlag. 2. Adenan, N.H. & Noorani, M.S.M. 2014. Nonlinear prediction of river flow in different watershed acreage. KSCE Journal of Civil Engineering 18(7): 2268-2274. doi:10.1007/s12205-014-0646-4. 3. Adenan, N.H. & Noorani, M.S.M. 2015. Predicting time series data at floodplain area using chaos approach. Sains Malaysiana 44(3): 463-471. 4. Awang, N.R., Elbayoumi, M., Ramli, N.A. & Yahaya, A.S. 2015.Diurnal variations of ground-level ozone in three port cities in Malaysia. Air Qual Atmos Health. doi:10.1007/s11869-015-0334-7. 5. Banan, N., Latif, M.T., Juneng, L. & Ahamad, F. 2013. Characteristics of surface ozone concentrations at stations with different backgrounds in the Malaysian Peninsula. Aerosol and Air Quality Research 13: 1090-1106. doi:10.4209/aaqr.2012.09.0259. 6. Cakmak, S., Hebbern, C., Vanos, J., Crouse, D.L. & Burnett, R. 2016. Ozone exposure and cardiovascular-related mortality in the Canadian Census Health and Environment Cohort (CANCHEC) by spatial synoptic classification zone. Environmental Pollution 214(2): 589-599. doi:10.1016/j.envpol.2016.04.067. 7. Cao, L. 1997. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110: 43-50. 8. Das, A., Das, P. & Çoban, G. 2012. Chaotic analysis of the foreign exchange rates during 2008 to 2009 recession. African Journal of Business Management 6(15): 5226-5233. doi:10.5897/AJBM11.2682. 9. Domenico, M.D., Ali, M., Makarynskyy, O. & Makarynska, D. 2013. Chaos and reproduction in sea level. Applied Mathematical Modelling 37(6): 3687-3697. doi:10.1016/j. apm.2012.08.018. 10. Frazier, C. & Kockelman, K.M. 2004. Chaos theory and transportation systems: An instructive example. Transportation Research 1897: 9-17. 11. Ghazali, N.A., Ramli, N.A., Yahaya, A.S., Yusof, N.F.F.M., Sansuddin, N. & Madhoun, W.A.A. 2010. Transformation of nitrogen dioxide into ozone and prediction of ozone concentrations using multiple linear regression techniques.Environ. Monit. Assess. 165: 475-489. doi:10.1007/s10661-009-0960-3. 12. Hamid, N.Z.A. & Noorani, M.S.M. 2013. An improved prediction model of ozone concentration time series based on chaotic approach. International Journal of Mathematical, Computational Science and Engineering 7(11): 206-211. 13. Hamid, N.Z.A. & Noorani, M.S.M. 2014. A pilot study using chaotic approach to determine characteristics and forecasting of PM10 concentration time series. Sains Malaysiana 43(3): 475-481. 14. Ismail, M., Abdullah, S., Yuen, F.S. & Ghazali, N.A. 2016. A tenyear investigation on ozone and it precursors at Kemaman, Terengganu, Malaysia. Environmental Asia 9(1): 1-8.doi:10.14456/ea.1473.1. 15. Kocak, K., Saylan, L. & Sen, O. 2000. Nonlinear time series prediction of O3 concentration in Istanbul. Atmospheric Environment 34: 1267-1271. 16. Lakshmi, S.S. & Tiwari, R.K. 2009. Model dissection from earthquake time series: A comparative analysis using modern non-linear forecasting and artificial neural network approaches. Computers & Geosciences 35: 191-204. doi:10.1016/j.cageo.2007.11.011. 17. Mabrouk, M.S. 2011. A nonlinear pattern recognition of pandemic H1N1 using a state space based methods. Avicenna Journal of Medical Biotechnology 3(1): 25-29. 18. Madaniyazi, L., Nagashima, T., Guo, Y., Pan, X. & Tong, S. 2016. Projecting ozone-related mortality in East China.Environment International 92-93: 165-172. doi:10.1016/j. envint.2016.03.040. 19. Muhamad, M., Ul-saufie, A.Z. & Deni, S.M. 2015. Three days ahead prediction of daily 12 hour ozone (O3) concentrations for urban area in Malaysia. Journal of Environmental Science and Technology 8(3): 102-112. doi:10.3923/ jest.2015.102.112. 20. Norazian, M.N., Shukri, Y.A., Azam, R.N. & Bakri, A.M.M.A. 2008. Estimation of missing values in air pollution data using single imputation techniques. ScienceAsia 34: 341-345. doi:10.2306/scienceasia1513-1874.2008.34.341. 21. Petkov, B.H., Vitale, V., Mazzola, M., Lanconelli, C. & Lupi, A. 2015. Chaotic behaviour of the short-term variations in ozone column observed in Arctic. Commun. Nonlinear Sci. Numer.Simulat. 26(1-3): 238-249. doi:10.1016/j.cnsns.2015.02.020. 22. Sivakumar, B. 2002. A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers.Journal of Hydrology 258: 149-162. 23. Sivakumar, B., Liong, S.Y., Liaw, C.Y. & Phoon, K.K. 1999. Singapore rainfall behaviour: Chaotic? Journal of Hydrologic Engineering 4(1): 38-48. 24. Sprott, J.C. 2003. Chaos and Time-Series Analysis. Oxford:Oxford University Press. 25. Tan, K.C., Lim, H.S. & Jafri, M.Z.M. 2016. Prediction of column ozone concentrations using multiple regression analysis and principal component analysis techniques: A case study in peninsular Malaysia. Atmospheric Pollution Research 7(3): 533-546. doi:10.1016/j.apr.2016.01.002. 26. Toh, Y.Y., Lim, S.F. & von Glasow, R. 2013. The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia. Atmospheric Environment 70: 435-446. doi:10.1016/j. atmosenv.2013.01.018.

This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.