UPSI Digital Repository (UDRep)
|
|
|
Abstract : |
Bieberbach groups with symmetric point group are polycyclic. The properties of the groups can be explored by computing their homological functors. In this paper, some homological functors of a Bieberbach group with symmetric point group, such as the Schur multiplier and the G-trivial subgroup of the nonabelian tensor square, are generalized up to finite dimension and are represented in the form of direct product of cyclic groups. |
References |
1. Brown, R., Johnson, D.L., Robertson, E.F. Some computations of non-abelian tensor products of groups (Open Access) (1987) Journal of Algebra, 111 (1), pp. 177-202. Cited 138 times. doi: 10.1016/0021-8693(87)90248-1 2. Bacon, M.R., Kappe, L.-C. On capable p-groups of nilpotency class two (2003) Illinois Journal of Mathematics, 47 (1-2), pp. 49-62. Cited 29 times. 3. Ellis, G. (1998) LMS Journal of Computation and Mathematics, 1, pp. 25-41. Cited 9 times. 4. Ellis, G., Leonard, F. (1995) Proc. Roy. Irish Acad., 95 A (2), pp. 137-147. Cited 35 times. 5. Masri, R., Hassim, H.I.M., Sarmin, N.H., Ali, N.M.M., Idrus, N.M. The generalization of the Schur multipliers of Bieberbach groups(2014)AIP Conference Proceedings,1635,pp. 461-464. http://scitation.aip.org/content/aip/proceeding/aipcp ISBN: 978-073541274-3 doi: 10.1063/1.4903622 6. Rocco, N.R. On a construction related to the non-abelian tensor square of a group (1991) Boletim da Sociedade Brasileira de Matemática, 22 (1), pp. 63-79. Cited 48 times. doi: 10.1007/BF01244898 7. Blyth, R.D., Morse, R.F. Computing the nonabelian tensor squares of polycyclic groups (Open Access) (2009) Journal of Algebra, 321 (8), pp. 2139-2148. Cited 28 times. doi: 10.1016/j.jalgebra.2008.12.029 8. Rotman, J.J. (1995) An Introduction to the Theory of Groups. Cited 606 times. (Springer-Verlag, New York) 9. Idrus, N.M., Tan, Y.T., Masri, R., Sarmin, N.H., Hassim, H.I.M. The generalization of the exterior square of a Bieberbach group with symmetric point group Journal of Informatics and Mathematical Sciences (in press) 10. Tan, Y.T., Idrus, N.M., Masri, R., Sarmin, N.H., Hassim, H.I.M. On the generalization of the nonabelian tensor square of a Bieberbach group with symmetric point group Indian Journal of Science and Technology (in press) |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |