UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Pengesanan emosi dapat digunakan dalam pelbagai jenis aplikasi, dan ia juga wajar
digunakan dalam sistem E-pembelajaran yang dapat memberikan faedah yang terbaik. Kajian ini
dijalankan bertujuan untuk mengenal pasti emosi pelajar semasa proses pembelajaran dalam talian
(E-learning). Kajian ini menumpukan kepada tiga objektif iaitu mengenalpasti elemen-elemen yang
diperlukan dalam sistem pengesanan emosi pada masa nyata dan membangunkan sistem pengesanan emosi
yang dapat mengesan ekspresi wajah pelajar pada masa nyata. Selain itu, sistem ini akan menilai
keberkesanan sistem web yang dihasilkan menggunakan matrik penilaian accuracy, presicion dan
recall. Pembangunan sistem ini menggunakan model Rapid Application Development (RAD). Seramai 10
orang pelajar dari Fakulti Seni, Komputeran & Industri Kreatif, Universiti Pendidikan Sultan Idris
(UPSI) telah dipilih secara rawak dan diuji bagi mendapatkan ketepatan sistem tersebut. Hasil
menunjukkan sistem ini mampu mengesan emosi dengan nilai accuracy sebanyak 0.55072, precision
sebanyak 0.88583, dan recall sebanyak 0.547. Oleh itu, sistem ini diharap dapat membantu
meningkatkan proses
pembelajaran atas talian dengan lebih baik.
|
References |
Ahmad Banafa (2016, June). What is Effective Computing. Retrieved from OpenMind: https://www.bbvaopenmind.com/en/technology/digital-world/what-is-affective-co mputing/
Al-Awni, A. (2016). Mood extraction using facial features to improve learning curves of students in elearning systems. International Journal of Advanced Computer Science and Applications, 7(11), 444-453.
Altuwairqi, K., Jarraya, S. K., Allinjawi, A., & Hammami, M. (2018). A new emotion– based affective model to detect student’s engagement. Journal of King Saud University-Computer and Information Sciences.
Ayvaz, U., Gürüler, H., & Devrim, M.O. (2017). Use of Facial Emotion Recognition in e Learning Systems.
Bahreini, K., Nadolski, R., & Westera, W. (2016). Towards real-time speech emotion recognition for affective e-learning. Education and information technologies, 21(5), 1367-1386.
Basu, S., Chakraborty, J., Bag, A., & Aftabuddin, M. (2017, March). A review on emotion recognition using speech. In 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT) (pp. 109-114). IEEE.
Chunyan Ma (2016). Design of an emotional interaction mode in e-learning. World Transactions on Engineering and Technology Education Vol.14, No.1, 2016 Correa, E., Jonker, A., Ozo, M., & Stolk, R., (2016). Emotion Recognition using Deep Convolutional Neural Networks.
Deep Learning Application (2019). Advancing Human Potential. Retrieved from NVISO: https://nviso.ai/en
Deepface Portal (2019). Understanding Human Faces. Retrieved from DeepFace;https://deepface.ir/
Dillon, J., Bosch, N., Chetlur, M., Wanigasekara, N., Ambrose, G. A., Sengupta, B., & D'Mello, S. K. (2016). Student Emotion, Co-Occurrence, and Dropout in a MOOC Context. International Educational Data Mining Society.
Duncun, D., Shine, G., & English, C. (2016). Facial emotion recognition in real time. Standford University. Ewais, A., & Samra, D. A. (2017, October). Adaptive MOOCs: A framework for adaptive course based on intended learning outcomes. In 2017 2nd International Conference on Knowledge Engineering and Applications (ICKEA) (pp. 204-209). IEEE.
Fernández-Caballero, A., Martínez-Rodrigo, A., Pastor, J. M., Castillo, J. C., Lozano Monasor, E., López, M. T.,& Fernández-Sotos, A. (2016). Smart environment architecture for emotion detection and regulation. Journal of biomedical informatics, 64, 55-73.
Garcia-Garcia, J. M., Penichet, V. M., & Lozano, M. D. (2017, September). Emotion detection: a technology review. In Proceedings of the XVIII International Conference on Human Computer Interaction (p. 8). ACM.
Gil, R., Virgili-Gomá, J., García, R., & Mason, C. (2015). Emotions ontology for collaborative modelling and learning of emotional responses. Computers in Human Behavior, 51, 610-617.
Happy, S. L., Dasgupta, A., Patnaik, P., & Routray, A. (2013, December). Automated a lertness and emotion detection for empathic feedback during e-Learning. In 2013 IEEE Fifth International Conference on Technology for Education (t4e 2013) (pp. 47 50). IEEE.
Ingale, A. B., & Chaudhari, D. S. (2012). Speech emotion recognition. International Journal of Soft Computing and Engineering (IJSCE), 2(1), 235-238.
Kanimozhi, A., & Cyril, R. (2015). An Enhanced Intelligent Learning Environment for E Learner Using Cognitive Architecture-Act-R. International Journal of Engineering and Technology (IJET), 7(1).
Khediri, N., Ammar, M. B., & Kherallah, M. Towards an online Emotional Recognition System for Intelligent Tutoring Environment.
Krithika, L. B. (2016). Student emotion recognition system (SERS) for e-learning improvement based on learner concentration metric. Procedia Computer Science, 85, 767-776.
Kumar, N., Khaund, K., & Hazarika, S. M. (2016). Bispectral analysis of EEG for emotion recognition. Procedia Computer Science, 84, 31-35.
Lalitha, S., Geyasruti, D., Narayanan, R., & Shravani, M. (2015). Emotion detection using MFCC and cepstrum features. Procedia Computer Science, 70, 29-35.
Landowska, A., Brodny, G., & Wrobel, M. R. (2017). Limitations of Emotion Recognition from Facial Expressions in e-Learning Context. In CSEDU (2) (pp. 383-389).
Pathak, A., Pandey, M., & Rautaray, S., (2018). Application of Deep Learning for Object Detection. Procedia Computer Science 132 (2018) 1706–1717
Petrovica, S., Anohina-Naumeca, A., & Ekenel, H. K. (2017). Emotion recognition in affective tutoring systems: Collection of ground-truth data. Procedia Computer Science, 104, 437-444.
Pitaloka, D. A., Wulandari, A., Basaruddin, T., & Liliana, D. Y. (2017). Enhancing CNN With preprocessing stage in automatic emotion recognition. Procedia computer science, 116, 523-529.
Soltani, M., Zarzour, H., & Babahenini, M. C. (2018, March). Facial emotion detection in Massive open online courses. In World Conference on Information Systems and Technologies(pp. 277-286). Springer, Cham.
Tarnowski, P., Kołodziej, M., Majkowski, A., & Rak, R. J. (2017). Emotion recognition using facial expressions. Procedia Computer Science, 108, 1175-1184.
The emotive couch-learning emotions by capacitively sensed. Procedia computer science, 130, 263 270.
Turabzadeh, S., Meng, H., Swash, R., Pleva, M., & Juhar, J. (2018). Facial Expression Emotion Detection for Real-Time Embedded Systems. Technologies, 6(1), 17.
Tutorialspoints (2019). UML-Activity Diagrams. Retrieved from Tutoriolspoint: https://www.tutorialspoint.com/uml/uml_activity_diagram.htm
Tutorialspoints (2019). UML-Class Diagram. Retrieved from Tutorialspoint: https://www.tutorialspoint.com/uml/uml_class_diagram.htm
Tutorialspoints (2019). UML-Statechart Diagrams. Retrieved from Tutorialspoint: https://www.tutorialspoint.com/uml/uml_statechart_diagram.htm
Vaishnav, S., & Mitra, S. (2016). Speech Emotion Recognition: A Review. International Research Journal of Engineering and Technology (IRJET), 3(04).
Xu, T., Zhou, Y., Wang, Z., & Peng, Y. (2018). Learning Emotions EEG-based Recognition and Brain Activity: A Survey Study on BCI for Intelligent Tutoring
System. Procedia computer science, 130, 376-38 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |