UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This study aimed to develop an optical stiffness calibration system using three
methods. The used methods were Boltzmann statistics (BS), equipartition theorem (ET) and power
spectrum density (PSD) analysis. This study consisted of two phases; system development phase and
testing phase. System development phase involved hardware and software components. Testing phase
involved actual experimental optical stiffness calibration. The finding of the study was a
calibration system consisting hardware and software parts. The hardware part was an optical
tweezers that was equipped with quadrant photodiode (QPD) and piezostage. The software part was a
custom made software which was constructed on LabVIEW 2012 platform, namely OSCal. This study
showed the conversion factor (used in ET and BS methods) and optical stiffness depends on trapping
laser power. In conclusion, this study successfully developed the aimed system with comparable
optical stiffness between each method and other reference studies. The implication of this study is
that the time spent for calibration for optical tweezers procedure can be shortened so that other
researcher can focus more on the intended applications of the optical tweezers.
|
References |
Amamou, H., Ferhat, B., & Bois, A. (2013). Calculation of the Voigt Function in the Region of Very Small Values of the Parameter a Where the Calculation Is Notoriously Difficult. American Journal of Analytical Chemistry, 4(12), 725– 731.
Ashkin, A. (1970). Pressure, Acceleration and trapping of particles by radiation. Phys Rev Lett, (24), 156–159.
Ashkin, A. (1992). Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophysical Journal, 61(2), 569–82.
Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., & Chu, S. (1986). Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett, 11(5), 288.
Berg-Sørensen, K., & Flyvbjerg, H. (2004). Power spectrum analysis for optical tweezers. Review of Scientific Instruments, 75(3), 594–612.
BiOPT lab. (2017). Power spectrum. Retrieved January 25, 2017, from http://biopt.ub.edu/force-detection/brownian
Boukellal, Y., & Ducourtieux, S. (2015). Development of a position sensor based on a four quadrant structured optic fiber bundle. Measurement Science and Technology, 26(1), 15201.
Bradley, M. (2007). Curve Fitting in Raman and IR Spectroscopy : Basic Theory of Line Shapes and Applications. Application Note: 50733, 0–3. Retrieved from http://thermo.fr/eThermo/CMA/PDFs/Product/productPDF_57565.PDF
Brouhard, G., Schek, H., & Hunt, A. (2003). Advanced optical tweezers for the study of cellular and molecular biomechanics. IEEE Transactions on Biomedical Engineering, 50(1), 121–125.
Brown, A. J. (2006). Spectral curve fitting for automatic hyperspectral data analysis. IEEE Transactions on Geoscience and Remote Sensing, 44(6), 1601–1607.
Brown, R. (1828). A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philosophical Magazine Series 2, 4(21), 161–173.
Castberg, R. C. (2008). Characterisation and calibration of Optical tweezers. University of Oslo.
Cogliati, S., Verhoef, W., Kraft, S., Sabater, N., Alonso, L., Vicent, J., … Colombo, R. (2015). Retrieval of sun-induced fluorescence using advanced spectral fitting methods. Remote Sensing of Environment, 169, 344–357.
DDBST. (2007). Liquid Dynamic Viscosity. Retrieved May 5, 2017, from http://ddbonline.ddbst.com/VogelCalculation/VogelCalculationCGI.exe
Dholakia, K., & Zemánek, P. (2010). Colloquium: Gripped by light: Optical binding. Reviews of Modern Physics, 82(2), 1767–1791.
Dieckmann, K., Spreeuw, R., Weidemüller, M., & Walraven, J. (1998). Two- dimensional magneto-optical trap as a source of slow atoms. Physical Review A, 58(5), 3891–3895.
Dodd, J. G., DeNoyer, L. K., Calmers, J. M., & Griffiths, P. G. (2006). Curve-Fitting: Modeling Spectra. Handbook of Vibrational Spectroscopy, 3, 2215–2223.
Eom, N., Stevens, V., Wedding, A. B., Sedev, R., & Connor, J. N. (2014). Probing fluid flow using the force measurement capability of optical trapping. Advanced Powder Technology, 25(4), 1249–1253.
Florin, E.-L., Pralle, a., Stelzer, E. H. K., & Hörber, J. K. H. (1998). Photonic force microscope calibration by thermal noise analysis. Applied Physics A: Materials Science & Processing, 66(7), S75–S78.
Flyvbjerg, H. (2004). spectrum analysis for optical tweezers . Rev . Sci ., (April), 594–612.
Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (1998). Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394(October), 348–350.
Gao, A., Qin, W., Liu, W., & Cai, C. (2009). Lorentzian function curve fitting of longitudinal mode of pulsed laser based on LabVIEW. Proceedings of SPIE, 7522, 75226J. Gennerich, A. (Ed.). (2017). Optical tweezers. (1st ed.). Humana Press.
Gier, D. (1997). Optical tweezers in colloid and interface science. Inc, Curr Opin Colloid, (2), 264–270.
He, H., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (1995). Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity. Physical Review Letters, 75(5), 826–829.
Herrera-Gomez, A. (2011). A double Lorentzian shape for asymmetric photoelectron peaks, 1–8.
Horst, A. van der, & Forde, N. R. (2010). Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth. Optics Express, 18(8), 7670–7677.
Huisstede, J., van der Werf, K., Bennink, M., & Subramaniam, V. (2005). Force detection in optical tweezers using backscattered light. Optics Express, 13(4), 1113–1123.
James, J. F. (2001). A Student’s Guide to Fourier Transforms. Design (Third Edit). Cambridge University Press.
Jullien, T., Roulleau, P., Roche, B., Cavanna, A., Jin, Y., & Glattli, D. C. (2014). Quantum tomography of an electron. Nature, 514(7524), 603–7.
Jurado, A., & Kiggins, J. (2010). Polystyrene Bead Size Behavior in Optical Trapping. Spring.
Keen, S., Leach, J., Gibson, G., & Padgett, M. J. (2007). Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers. Journal of Optics A: Pure and Applied Optics, 9, S264–S266.
Kotsifaki, D. G., Makropoulou, M., & Serafetinides, A. A. (2013). Efficient and low cost multiple optical trap, based on interference. Optik, 124(7), 617–621.
MacDonald, M. P., Spalding, G. C., & Dholakia, K. (2003). Letters To Nature. Nature, 426(November), 421–424.
Maier, B. (2005). Using laser tweezers to measure twitching motility in Neisseria. Current Opinion in Microbiology, 8(3), 344–349.
Mas, J., Farré, A., Cuadros, J., Juvells, I., & Carnicer, A. (2011). Understanding optical trapping phenomena: A simulation for undergraduates. IEEE Transactions on Education, 54(1), 133–140.
Meng, J., Liu, C., Zheng, J., Lin, R., & Song, L. (2014). Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers. Journal of Biomedical Opics, 3, 36003.
MIT Department of Physics. (2014). Optical trapping. Retrieved September 10, 2016, from http://web.mit.edu/8.13/www/JLExperiments/JLExp51.pdf
Motoyama, E. M., Yu, G., Vishik, I. M., Vajk, O. P., Mang, P. K., & Greven, M. (2007). Spin correlations in the electron-doped. Nature, 445(January), 11–14.
Muhammad Yunus, H., Shahrul Kadri, A., Wan Nor Suhaila, W. A., & Yusof, M. (2016). Spatial Distribution of an Optically Trapped Bead in Water. Buletin Optik 2016, 2016(2), 29–36.
National Instruments. (2015). Understanding FFTs and Windowing. (White Papers), (No. 4844), 1–11. Retrieved from http://www.ni.com/white-paper/4844/en/
Nemet, B. a, & Cronin-Golomb, M. (2003). Measuring microscopic viscosity with optical tweezers as a confocal probe. Applied Optics, 42(10), 1820–32.
Neuman, K. C., & Block, S. M. (2004). Optical trapping. The Review of Scientific Instruments, 75(9), 2787–809.
Ng, T. W., Tan, H. Y., & Foo, S. L. (2007). Small Gaussian laser beam diameter measurement using a quadrant photodiode. Optics and Laser Technology, 39(5), 1098–1100.
Norregaard, K., Jauffred, L., Berg-Sørensen, K., & Oddershede, L. B. (2014). Optical manipulation of single molecules in the living cell. Physical Chemistry Chemical Physics : PCCP, 16(25), 12614–24.
Nørrelykke, S. F., & Flyvbjerg, H. (2010). Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers. Review of Scientific Instruments, 81(7).
Osterman, N. (2010). TweezPal - Optical tweezers analysis and calibration software. Computer Physics Communications, 181(11), 1911–1916.
Pan, Y. (2012). Optical Trapping Force on a Plasmonic Substrate. KTH Information and Communication Technology.
Peyre, J. J., & Principi, G. (1972). Linear combination of lorentzian and gaussian profiles to fit resonance spectra. Nuclear Instruments and Methods, 101(3), 605–606.
Pilát, Z., Ježek, J., Šerý, M., Trtílek, M., Nedbal, L., & Zemánek, P. (2013). Optical trapping of microalgae at 735-1064 nm: Photodamage assessment. Journal of Photochemistry and Photobiology B: Biology, 121, 27–31.
Polysciences, I. (2013). Polybead ® Polystyrene Microspheres [Technical Data Sheet 238]. Retrieved June 3, 2017, from http://www.polysciences.com/skin/frontend/default/polysciences/pdf/TDS 238.pdf
Radenovic, A. (2007). Optical Trapping. Advanced Bioengineering Methods Laboratory Optical Trapping, 1–25.
Ribeiro, M. (2004). Gaussian probability density functions: Properties and error characterization. Institute for Systems and Robotics, Technical Report, (February), 1–30. Retrieved from http://hans.fugal.net/comps/papers/ribeiro_2004.pdf
Rice, A., & Fischer, R. (2010). Calibration of Optical Tweezers. Retrieved January 2, 2016, from http://hank.uoregon.edu/experiments/Optical-Tweezers/Calibration of Optical Tweezers.pdf
Shaevitz, J. W. (2006). A Practical Guide to Optical Trapping. Retrieved May 23, 2017, from http://genomics.princeton.edu/shaevitzlab/OT_Practicle_Guide.pdf
Shindel, M. M., Swan, J. W., & Furst, E. M. (2013). Calibration of an optical tweezer microrheometer by sequential impulse response. Rheologica Acta, 52(5), 455– 465.
Soler, J. M. (2008). Force calibration of a plurality of optical traps by video- based methods. University of Barcelona. Retrieved from Master Science Thesis
Stancik, A. L., & Brauns, E. B. (2008). A simple asymmetric lineshape for fitting infrared absorption spectra. Vibrational Spectroscopy, 47(1), 66–69.
Stevenson, D. J., Gunn-Moore, F., & Dholakia, K. (2015). Light forces the pace: optical manipulation for biophotonics. Journal of Biomedical Optics, 15(4), 41503.
Svoboda, K., & Block, S. M. (1994). Biological applications of optical forces. Annu Rev Biophys Biomol Struct, (23), 247–85.
Toli´c-Nørrelykke, I., Berg-Sørensen, K., & Flyvbjerg, H. (2004). MatLab program for precision calibration of optical tweezers. Computer Physics Communications, 159(3), 225–240.
Tolic-Norrelykke, S. F., Schaffer, E., Howard, J., Pavone, F. S., Julicher, F., & Flyvbjerg, H. (2006). Calibration of optical tweezers with positional detection in the back focal plane. Review of Scientific Instruments, 77(10), 1–11.
Weisstein, E. (n.d.). Full Width at Half Maximum. Retrieved June 14, 2016, from http://mathworld.wolfram.com/FullWidthatHalfMaximum.html
Westmoquette, M. S. (2007). Super star clusters, their environment, and the formation of galactic winds. ProQuest Dissertations And Theses; Thesis (Ph.D.)--University of London. University of London. Retrieved from http://adsabs.harvard.edu/abs/2007PhDT.......226W
Woerdemann, M., Alpmann, C., Esseling, M., & Denz, C. (2013). Advanced optical trapping by complex beam shaping. Laser & Photonics Reviews, 7(6), 839–854. http://doi.org/10.1002/lpor.201200058
Xia, K., & Zhang, J.-Q. (2015). Tuning optical spectrum between Fano and Lorentzian line shapes with phase control. Optics Communications, 354, 128– 131.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |