UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :QA76 Computer software
Main Author :Muhammad Yunus Hamid
Title :The development of optical stiffness calibration software base on equipartition theorem, boltzman statistics and power spectrum density
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2018
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
This  study  aimed  to  develop  an  optical  stiffness  calibration  system  using  three methods. The used methods were Boltzmann statistics (BS), equipartition theorem (ET) and power  spectrum density (PSD) analysis. This study consisted of two phases; system development phase and  testing phase. System development phase involved hardware and software components. Testing phase  involved actual experimental optical stiffness calibration. The finding of the study was a  calibration system consisting hardware and software parts. The hardware part was an optical  tweezers that was equipped with quadrant photodiode (QPD) and piezostage. The software part was a  custom made software which was constructed on LabVIEW 2012 platform, namely OSCal. This study  showed the conversion factor (used in ET and BS methods) and optical stiffness depends on trapping  laser power. In conclusion, this study successfully developed the aimed system with comparable  optical stiffness between each method and other reference studies. The implication of this study is  that the time spent for calibration for optical tweezers procedure can be shortened so that other researcher can focus more on the intended applications of the optical tweezers.  

References

 

Amamou, H., Ferhat, B., & Bois, A. (2013). Calculation of the Voigt Function in the

Region of Very Small Values of the Parameter a Where the Calculation Is Notoriously Difficult. 

American Journal of Analytical Chemistry, 4(12), 725– 731.

 

Ashkin, A. (1970). Pressure, Acceleration and trapping of particles by radiation. Phys Rev Lett, 

(24), 156–159.

 

Ashkin, A. (1992). Forces of a single-beam gradient laser trap on a dielectric sphere in the ray 

optics regime. Biophysical Journal, 61(2), 569–82.

 

Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., & Chu, S. (1986). Observation of a single-beam 

gradient force optical trap for dielectric particles. Opt Lett, 11(5), 288.

 

Berg-Sørensen, K., & Flyvbjerg, H. (2004). Power spectrum analysis for optical tweezers. Review of 

Scientific Instruments, 75(3), 594–612.

 

BiOPT lab. (2017). Power spectrum. Retrieved January 25, 2017, from 

http://biopt.ub.edu/force-detection/brownian

 

Boukellal, Y., & Ducourtieux, S. (2015). Development of a position sensor based on a four quadrant 

structured optic fiber bundle. Measurement Science and Technology, 26(1), 15201.

 

Bradley, M. (2007). Curve Fitting in Raman and IR Spectroscopy : Basic Theory of Line Shapes and 

Applications. Application Note: 50733, 0–3. Retrieved from 

http://thermo.fr/eThermo/CMA/PDFs/Product/productPDF_57565.PDF

 

Brouhard, G., Schek, H., & Hunt, A. (2003). Advanced optical tweezers for the study of cellular and 

molecular biomechanics. IEEE Transactions on Biomedical Engineering, 50(1), 121–125.

 

Brown, A. J. (2006). Spectral curve fitting for automatic hyperspectral data analysis.

IEEE Transactions on Geoscience and Remote Sensing, 44(6), 1601–1607.

 

Brown, R. (1828). A brief account of microscopical observations made in the months of June, July 

and August 1827, on the particles contained in the pollen of plants; and  on  the  general  

existence  of  active  molecules  in  organic  and  inorganic

bodies. Philosophical Magazine Series 2, 4(21), 161–173.

 

 

Castberg,  R.  C.  (2008).  Characterisation  and  calibration  of  Optical  tweezers.

University of Oslo.

 

Cogliati, S., Verhoef, W., Kraft, S., Sabater, N., Alonso, L., Vicent, J., … Colombo,

R. (2015). Retrieval of sun-induced fluorescence using advanced spectral fitting methods. Remote 

Sensing of Environment, 169, 344–357.

 

DDBST. (2007). Liquid Dynamic Viscosity. Retrieved May 5, 2017, from 

http://ddbonline.ddbst.com/VogelCalculation/VogelCalculationCGI.exe

 

Dholakia, K., & Zemánek, P. (2010). Colloquium: Gripped by light: Optical binding.

Reviews of Modern Physics, 82(2), 1767–1791.

 

Dieckmann, K., Spreeuw, R., Weidemüller, M., & Walraven, J. (1998). Two- dimensional 

magneto-optical trap as a source of slow atoms. Physical Review A, 58(5), 3891–3895.

 

Dodd, J. G., DeNoyer, L. K., Calmers, J. M., & Griffiths, P. G. (2006). Curve-Fitting: Modeling 

Spectra. Handbook of Vibrational Spectroscopy, 3, 2215–2223.

 

Eom, N., Stevens, V., Wedding, A. B., Sedev, R., & Connor, J. N. (2014). Probing fluid flow using 

the force measurement capability of optical trapping. Advanced Powder Technology, 25(4), 1249–1253.

 

Florin, E.-L., Pralle, a., Stelzer, E. H. K., & Hörber, J. K. H. (1998). Photonic force microscope 

calibration by thermal noise analysis. Applied Physics A: Materials Science & Processing, 66(7), 

S75–S78.

 

Flyvbjerg, H. (2004). spectrum analysis for optical tweezers . Rev . Sci ., (April), 594–612.

 

Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (1998). Optical 

alignment and spinning of laser-trapped microscopic particles. Nature, 394(October), 348–350.

 

Gao, A., Qin, W., Liu, W., & Cai, C. (2009). Lorentzian function curve fitting of longitudinal mode 

of pulsed laser based on LabVIEW. Proceedings of SPIE, 7522, 75226J.

Gennerich, A. (Ed.). (2017). Optical tweezers. (1st ed.). Humana Press.

 

Gier, D. (1997). Optical tweezers in colloid and interface science. Inc, Curr Opin Colloid, (2), 

264–270.

 

He, H., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (1995). Direct Observation of Transfer of 

Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity. Physical 

Review Letters, 75(5), 826–829.

 

Herrera-Gomez, A. (2011). A double Lorentzian shape for asymmetric photoelectron

peaks, 1–8.

 

 

Horst, A. van der, & Forde, N. R. (2010). Power spectral analysis for optical trap

stiffness calibration from high-speed camera position detection with limited bandwidth. Optics 

Express, 18(8), 7670–7677.

 

Huisstede, J., van der Werf, K., Bennink, M., & Subramaniam, V. (2005). Force detection in optical 

tweezers using backscattered light. Optics Express, 13(4), 1113–1123.

 

James, J. F. (2001). A Student’s Guide to Fourier Transforms. Design (Third Edit).

Cambridge University Press.

 

Jullien, T., Roulleau, P., Roche, B., Cavanna, A., Jin, Y., & Glattli, D. C. (2014).

Quantum tomography of an electron. Nature, 514(7524), 603–7.

 

Jurado, A., & Kiggins, J. (2010). Polystyrene Bead Size Behavior in Optical Trapping. Spring.

 

Keen, S., Leach, J., Gibson, G., & Padgett, M. J. (2007). Comparison of a high-speed camera and a 

quadrant detector for measuring displacements in optical tweezers. Journal of Optics A: Pure and 

Applied Optics, 9, S264–S266.

 

Kotsifaki, D. G., Makropoulou, M., & Serafetinides, A. A. (2013). Efficient and low cost multiple 

optical trap, based on interference. Optik, 124(7), 617–621.

 

MacDonald,  M. P., Spalding, G.  C.,  & Dholakia, K.  (2003).  Letters  To Nature.

Nature, 426(November), 421–424.

 

Maier, B. (2005). Using laser tweezers to measure twitching motility in Neisseria.

Current Opinion in Microbiology, 8(3), 344–349.

 

Mas, J., Farré, A., Cuadros, J., Juvells, I., & Carnicer, A. (2011). Understanding optical trapping 

phenomena: A simulation for undergraduates. IEEE Transactions on Education, 54(1), 133–140.

 

Meng, J., Liu, C., Zheng, J., Lin, R., & Song, L. (2014). Comparative study of methods to calibrate 

the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers. 

Journal of Biomedical Opics, 3, 36003.

 

MIT Department of Physics. (2014). Optical trapping. Retrieved September 10, 2016, from 

http://web.mit.edu/8.13/www/JLExperiments/JLExp51.pdf

 

Motoyama, E. M., Yu, G., Vishik, I. M., Vajk, O. P., Mang, P. K., & Greven, M. (2007). Spin 

correlations in the electron-doped. Nature, 445(January), 11–14.

 

Muhammad Yunus, H., Shahrul Kadri, A., Wan Nor Suhaila, W. A., & Yusof, M. (2016). Spatial 

Distribution of an Optically Trapped Bead in Water. Buletin

Optik 2016, 2016(2), 29–36.

 

National Instruments. (2015). Understanding FFTs and Windowing. (White Papers),

(No. 4844), 1–11. Retrieved from http://www.ni.com/white-paper/4844/en/

 

Nemet, B. a, & Cronin-Golomb, M. (2003). Measuring microscopic viscosity with optical tweezers as a 

confocal probe. Applied Optics, 42(10), 1820–32.

 

Neuman, K. C., & Block, S. M. (2004). Optical trapping. The Review of Scientific Instruments, 

75(9), 2787–809.

 

Ng, T. W., Tan, H. Y., & Foo, S. L. (2007). Small Gaussian laser beam diameter measurement using a 

quadrant photodiode. Optics and Laser Technology, 39(5), 1098–1100.

 

Norregaard, K., Jauffred, L., Berg-Sørensen, K., & Oddershede, L. B. (2014). Optical manipulation 

of single molecules in the living cell. Physical Chemistry Chemical Physics : PCCP, 16(25), 

12614–24.

 

Nørrelykke, S. F., & Flyvbjerg, H. (2010). Power spectrum analysis with least-squares fitting: 

Amplitude bias and its elimination, with application to optical tweezers and atomic force 

microscope cantilevers. Review of Scientific Instruments, 81(7).

 

Osterman, N. (2010). TweezPal - Optical tweezers analysis and calibration software.

Computer Physics Communications, 181(11), 1911–1916.

 

Pan, Y. (2012). Optical Trapping Force on a Plasmonic Substrate. KTH Information and Communication 

Technology.

 

Peyre, J. J., & Principi, G. (1972). Linear combination of lorentzian and gaussian profiles to fit 

resonance spectra. Nuclear Instruments and Methods, 101(3), 605–606.

 

Pilát, Z., Ježek, J., Šerý, M., Trtílek, M., Nedbal, L., & Zemánek, P. (2013). Optical trapping of 

microalgae at 735-1064 nm: Photodamage assessment. Journal of Photochemistry and Photobiology B: 

Biology, 121, 27–31.

 

Polysciences, I. (2013). Polybead ® Polystyrene Microspheres [Technical Data Sheet 238]. Retrieved 

June 3, 2017, from http://www.polysciences.com/skin/frontend/default/polysciences/pdf/TDS 238.pdf

 

Radenovic, A. (2007). Optical Trapping. Advanced Bioengineering Methods Laboratory Optical 

Trapping, 1–25.

 

Ribeiro, M. (2004). Gaussian probability density functions: Properties and error characterization. 

Institute for Systems and Robotics, Technical Report, (February), 1–30. Retrieved from

http://hans.fugal.net/comps/papers/ribeiro_2004.pdf

 

 

Rice, A., & Fischer, R. (2010). Calibration of Optical Tweezers. Retrieved January 2,

2016,  from  http://hank.uoregon.edu/experiments/Optical-Tweezers/Calibration of Optical 

Tweezers.pdf

 

Shaevitz, J. W. (2006). A Practical Guide to Optical Trapping. Retrieved May 23, 2017, from 

http://genomics.princeton.edu/shaevitzlab/OT_Practicle_Guide.pdf

 

Shindel, M. M., Swan, J. W., & Furst, E. M. (2013). Calibration of an optical tweezer 

microrheometer by sequential impulse response. Rheologica Acta, 52(5), 455– 465.

 

Soler, J. M. (2008). Force calibration of a plurality of optical traps by video- based methods. 

University of Barcelona. Retrieved from Master Science Thesis

 

Stancik, A. L., & Brauns, E. B. (2008). A simple asymmetric lineshape for fitting infrared 

absorption spectra. Vibrational Spectroscopy, 47(1), 66–69.

 

Stevenson, D. J., Gunn-Moore, F., & Dholakia, K. (2015). Light forces the pace: optical 

manipulation for biophotonics. Journal of Biomedical Optics, 15(4), 41503.

 

Svoboda, K., & Block, S. M. (1994). Biological applications of optical forces. Annu Rev Biophys 

Biomol Struct, (23), 247–85.

 

Toli´c-Nørrelykke, I., Berg-Sørensen, K., & Flyvbjerg, H. (2004). MatLab program for precision 

calibration of optical tweezers. Computer Physics Communications, 159(3), 225–240.

 

Tolic-Norrelykke, S. F., Schaffer, E., Howard, J., Pavone, F. S., Julicher, F., & Flyvbjerg, H. 

(2006). Calibration of optical tweezers with positional detection in the back focal plane. Review 

of Scientific Instruments, 77(10), 1–11.

 

Weisstein, E. (n.d.). Full Width at Half Maximum. Retrieved June 14, 2016, from 

http://mathworld.wolfram.com/FullWidthatHalfMaximum.html

 

Westmoquette, M. S. (2007). Super star clusters, their environment, and the formation of galactic 

winds. ProQuest Dissertations And Theses; Thesis (Ph.D.)--University of London. University of 

London. Retrieved from http://adsabs.harvard.edu/abs/2007PhDT.......226W

 

Woerdemann, M., Alpmann, C., Esseling, M., & Denz, C. (2013). Advanced optical trapping by complex 

beam shaping. Laser & Photonics Reviews, 7(6), 839–854. http://doi.org/10.1002/lpor.201200058

 

Xia, K., & Zhang, J.-Q. (2015). Tuning optical spectrum between Fano and Lorentzian line shapes 

with phase control. Optics Communications, 354, 128–

131.

 

 

 

 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.