UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :Q Science (General)
Main Author :Yuhanis Mhd Bakri
Additional Authors :Wong, Chee Fah
Fauziah Abdullah
Saripah Salbiah Syed Abdul Azziz
Mastura Ibrahim
Title :Interactions of flavone and steroid from A. subintegra as potential inhibitors for porcine pancreatic lipase
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2019
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
Background: Obesity is one serious health condition that contributes to various chronic diseases. The inhibition of pancreatic lipase is a promising treatment for obesity. Objective: The present study was designed to investigate anti-porcine pancreatic lipase effect of isolated compounds from Aquilaria subintegra and its mechanism. Method: Compounds were isolated with serial column chromatography and their structure were identified using spectroscopic methods. Isolated compounds were tested for anti-lipase potential activity using colorimetric assay. The prediction of energy binding between isolated compounds and enzyme was described using YASARA software. Results: Four compounds were successfully isolated from the bark of A. subintegra, namely, 5-hydroxy-7,4’-dimethoxyflavone, luteolin-7,3’,4’-trimethyl ether, 5,3’-dihydroxy-7,4’-dimethoxyflavone and β-sitosterol. The results indicated that all compounds displayed promising pancreatic lipase inhibitory activity ranging between of 6% to 53% inhibition. Compound 5-hydroxy-7,4’-dimethoxyflavone was a competitive inhibitor and decreases the enzyme catalysis. Meanwhile, βsitosterol was a non- competitive inhibitor since the latter was bind allosterically toward enzyme. Conclusion: This finding is significant for further investigation of bioactive compounds from A. subintegra on animal study

References

[1] Wu, X.; He, W.; Zhang, H.; Li, Y.; Liu, Z.; He, Z. Acteoside: a lipase inhibitor from the Chinese tea Ligustrum purpurascens kudingcha. Food Chem., 2014, 142, 306-310. [https://doi.org/10.1016/j.foodchem.2013.07.071]. [http://dx.doi.org/10.1016/j.foodchem.2013.07.071] [PMID:24001846]

[2] Kazmi, I.; Afzal, M.; Rahman, S.; Iqbal, M.; Imam, F.; Anwar, F. Antiobesity potential of ursolic acid stearoyl glucoside by inhibiting pancreatic lipase. Eur. J. Pharmacol., 2013, 709(1-3), 28-36. [https://doi.org/10.1016/j.ejphar.2013.02.032]. [http://dx.doi.org/10.1016/j.ejphar.2013.02.032] [PMID:23500199]

[3] Chidrawar, V.R.; Patel, K.N.; Sheth, N.R.; Shiromwar, S.S.; Trivedi, P. Antiobesity effect of Stellaria media against drug induced obesity in Swiss albino mice. Ayu, 2011, 32(4), 576-584. [https://doi.org/10.4103/0974- 8520.96137]. [http://dx.doi.org/10.4103/0974-8520.96137] [PMID: 22661858]

[4] Rains, T.M.; Agarwal, S.; Maki, K.C. Antiobesity effects of green tea catechins: a mechanistic review. J. Nutr. Biochem., 2011, 22(1), 1-7. [https://doi.org/10.1016/j.jnutbio.2010.06.006]. [http://dx.doi.org/10.1016/j.jnutbio.2010.06.006] [PMID:21115335]

[5] Ado, M.A.; Abas, F.; Mohammed, A.S.; Ghazali, H.M. Anti- and pro-lipase activity of selected medicinal, herbal and aquatic plants, and structure elucidation of an anti-lipase compound. Molecules, 2013, 18(12), 14651-14669. [https://doi.org/10.3390/molecules181214651]. [http://dx.doi.org/10.3390/molecules181214651] [PMID: 24287996]

[6] Yun, J.W. Possible anti-obesity therapeutics from nature--a review. Phytochemistry, 2010, 71(14-15), 1625-1641. [https://doi.org/10.1016/j.phytochem.2010.07.011].[http://dx.doi.org/10.1016/j.phytochem.2010.07.011] [PMID:20732701]

[7] Ahmed, B.; Ali Ashfaq, U.; Usman Mirza, M. Medicinal plant phytochemicals and their inhibitory activities against pancreatic lipase: molecular docking combined with molecular dynamics simulation approach. Nat. Prod. Res., 2018, 32(10), 1123-1129. [https://doi.org/10.1080/14786419.2017.1320786]. [http://dx.doi.org/10.1080/14786419.2017.1320786] [PMID: 28446025]

[8] Ibrahim, M.; Azziz, S.S.S.A.; Wong, C.F.; Din, W.N.I.W.M.; Mahamod, W.R.W.; Bakri, Y.M.; Ahmad, M.S.; Yahaya, R.; Ismail, N.H.; Salleh, W.M.N.H.W. Evaluation of Anti-Lipase Activity of Leaf and Bark Extracts from Aquilaria Subintegra and A. Malaccensis. Marmara Pharm. J., 2018, 22(1), 91-95. [http://dx.doi.org/10.12991/mpj.2018.46]

[9] Narita, Y.; Iwai, K.; Fukunaga, T.; Nakagiri, O. Inhibitory activity of chlorogenic acids in decaffeinated green coffee beans against porcine pancreas lipase and effect of a decaffeinated green coffee bean extract on an emulsion of olive oil. Biosci. Biotechnol. Biochem., 2012, 76(12), 2329-2331. [https://doi.org/10.1271/bbb.120518]. [http://dx.doi.org/10.1271/bbb.120518] [PMID: 23221697]

[10] Lim, S.M.; Goh, Y.M.; Kuan, W.B.; Loh, S.P. Effect of germinatedbrown rice extracts on pancreatic lipase, adipogenesis and lipolysis in 3T3-L1 adipocytes. Lipids Health Dis., 2014, 13(169), 169. [https://doi.org/10.1186/1476-511X-13-169]. [http://dx.doi.org/10.1186/1476-511X-13-169] [PMID: 25367070]

[11] Kang, Y-F.; Chien, S-L.; Wu, H-M.; Li, W-J.; Chen, C-T.; Li, HT.; Chen, H-L.; Chao, D.; Chen, S-J.; Huang, C-T. Secondary Metabolites from the Leaves of Aquilaria Sinensis. Chem. Nat. Compd., 2014, 50(6), 1110-1112. [https://doi.org/10.1007/s10600-014-1174-7]. [http://dx.doi.org/10.1007/s10600-014-1174-7]

[12] Hashim, Y.Z.H-Y.; Kerr, P.G.; Abbas, P.; Mohd Salleh, H. Aquilaria spp. (agarwood) as source of health beneficial compounds: A review of traditional use, phytochemistry and pharmacology. J. Ethnopharmacol., 2016, 189, 331-360. [https://doi.org/10.1016/j.jep.2016.06.055]. [http://dx.doi.org/10.1016/j.jep.2016.06.055] [PMID: 27343768]

[13] Jok, V.A.; Che Radzi, N.; Ku Hamid, K.H.A. Review: Pharmacological Properties of Aquilaria Spp. Adv. Mat. Res., 2015, 1113, 193-197. [https://doi.org/10.4028/www.scientific.net/AMR.1113.193].

[14] Ito, T.; Kakino, M.; Tazawa, S.; Watarai, T.; Oyama, M.; Maruyama, H.; Araki, Y.; Hara, H.; Iinuma, M. Quantification of polyphenols and pharmacological analysis of water and ethanol-based extracts of cultivated agarwood leaves. J. Nutr. Sci. Vitaminol. (Tokyo), 2012, 58(2), 136-142. [http://dx.doi.org/10.3177/jnsv.58.136] [PMID: 22790572]

[15] Ray, G.; Leelamanit, W.; Sithisarn, P.; Jiratchariyakul, W. Antioxidative Compounds from Aquilaria Crassna Leaf. Mahidol Univ. J. Pharm. Sci., 2014, 41(4), 54-58.

[16] Feng, J.; Yang, X.W.; Wang, R.F. Bio-assay guided isolation and identification of α-glucosidase inhibitors from the leaves of Aquilaria sinensis. Phytochemistry, 2011, 72(2-3), 242-247. [https://doi.org/10.1016/j.phytochem.2010.11.025]. [http://dx.doi.org/10.1016/j.phytochem.2010.11.025] [PMID:21215978]

[17] Sattayasai, J.; Bantadkit, J.; Aromdee, C.; Lattmann, E.; Airarat, W. Antipyretic, analgesic and anti-oxidative activities of Aquilaria crassna leaves extract in rodents. J. Ayurveda Integr. Med., 2012, 3(4), 175-179. [https://doi.org/10.4103/0975-9476.104427]. [http://dx.doi.org/10.4103/0975-9476.104427] [PMID: 23326086]

[18] Hermoso, J.; Pignol, D.; Kerfelec, B.; Crenon, I.; Chapus, C.; Fontecilla-Camps, J.C. Lipase activation by nonionic detergents. The crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. J. Biol. Chem., 1996, 271(30), 18007-18016. [http://doi.org/10.1074/jbc.271.30.18007]. [http://dx.doi.org/10.1074/jbc.271.30.18007] [PMID: 8663362]

[19] Bouchagra, S.; Benamia, F.; Djeghaba, Z. Docking studies of (-)-Epigallocatechin-3-gallate: A Potential Non-Competitive Pancreatic Lipase Inhibitor. Res. J. Pharm. Biol. Chem. Sci., 2016, 7(5), 2493-2505.

[20] Singh, S.; Kanwar, S. S. Antilipase activity guided fractionation of Vinca major. Journal of King Saud University - Science,, 2018, 30(4), 433–439. [http://dx.doi.org/10.1016/j.jksus.2017.03.005]

[21] Krieger, E.; Koraimann, G.; Vriend, G. Increasing the precision of comparative models with YASARA NOVA--a self-parameterizing force field. Proteins, 2002, 47(3), 393-402. [http://dx.doi.org/10.1002/prot.10104] [PMID: 11948792]

[22] Sai, V.; Chaturvedula, P.; Prakash, I. Isolation of Stigmasterol and β -Sitosterol from the Dichloromethane Extract of Rubus Suavissimus. Int. Curr. Pharm. J., 2012, 1(9), 239-242. [http://dx.doi.org/10.3329/icpj.v1i9.11613]

[23] Kumalo, H.M.; Bhakat, S.; Soliman, M.E.S. Theory and applications of covalent docking in drug discovery: merits and pitfalls. Molecules, 2015, 20(2), 1984-2000. [https://doi.org/10.3390/molecules20021984]. [http://dx.doi.org/10.3390/molecules20021984] [PMID: 25633330]

[24] Meng, X-Y.; Zhang, H-X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des, 2011, 7(2), 146-157. [http://dx.doi.org/10.2174/157340911795677602] [PMID:21534921]

[25] Martinez-Gonzalez, A.I.; Alvarez-Parrilla, E.; Díaz-Sánchez, Á.G.; de la Rosa, L.A.; Núñez-Gastélum, J.A.; Vazquez-Flores, A.A.; Gonzalez-Aguilar, G.A. In vitro Inhibition of Pancreatic Lipase by Polyphenols: A Kinetic, Fluorescence Spectroscopy and Molecular Docking Study. Food Technol. Biotechnol., 2017, 55(4), 519-530. [https://doi.org/10.17113/ftb.55.04.17.5138]. [http://dx.doi.org/10.17113/ftb.55.04.17.5138] [PMID: 29540986]

[26] Ahmed, B.; Ali Ashfaq, U.; Usman Mirza, M. Medicinal plant phytochemicals and their inhibitory activities against pancreatic lipase: molecular docking combined with molecular dynamics simulation approach. Nat. Prod. Res., 2018, 32(10), 1123-1129. [https: //doi.org/10.1080 /14786419.2017.1320786]. [http://dx.doi.org/10.1080/14786419.2017.1320786] [PMID:28446025]

[27] Veeramachaneni, G.K.; Raj, K.K.; Chalasani, L.M.; Annamraju, S.K.; Js, B.; Talluri, V.R. Shape based virtual screening and molecular docking towards designing novel pancreatic lipase inhibitors. Bioinformation, 2015, 11(12), 535-542. [https://doi.org/10.6026/97320630011535].[http://dx.doi.org/10.6026/97320630011535] [PMID: 26770027]

[28] Köhler, J.; Wünsch, B. The allosteric modulation of lipases and its possible biological relevance. Theor. Biol. Med. Model., 2007, 4,34. [https://doi.org/10.1186/1742-4682-4-34]. [http://dx.doi.org/10.1186/1742-4682-4-34] [PMID: 17825093]

[29] Zainal, S.; Musa, M.; Idris, J.; Ku Hamid, K.H. Effect of Substrate Concentration and Reaction Time of Aquilaria Subintegra Leaves Extract on Inhibition of Pancreatic Lipase. IOP Conf. Ser. Mater. Sci. Eng., 2018, 358, p. 1–6. [http://dx.doi.org/10.1088/1757-899X/358/1/012039]

[30] Sergent, T.; Vanderstraeten, J.; Winand, J.; Beguin, P.; Schneider, Y. Phenolic Compounds and Plant Extracts as Potential Natural Anti-Obesity Substances. Food Chem., 2012, 135, 68-73. [http://dx.doi.org/10.1016/j.foodchem.2012.04.074]

[31] Liu, Y.; Chen, H.; Yang, Y.; Zhang, Z.; Wei, J.; Meng, H.; Chen, W.; Feng, J.; Gan, B.; Chen, X.; Gao, Z.; Huang, J.; Chen, B.; Chen, H. Whole-tree agarwood-inducing technique: an efficient novel technique for producing high-quality agarwood in cultivated Aquilaria sinensis trees. Molecules, 2013, 18(3), 3086-3106. [https://doi.org/10.3390/molecules18033086]. [http://dx.doi.org/10.3390/molecules18033086] [PMID: 23470337]

[32] Bahrani, H.; Mohamad, J.; Paydar, M.J.; Rothan, H.A. Isolation and characterisation of acetylcholinesterase inhibitors from Aquilaria subintegra for the treatment of Alzheimer’s disease (AD). Curr. Alzheimer Res., 2014, 11(2), 206-214. [https://doi.org/10.2174/1567205011666140130151344]. [http://dx.doi.org/10.2174/1567205011666140130151344] [PMID:24479629]

[33] Mohammed, A.; Al-Numair, K.S.; Balakrishnan, A. Docking studies on the interaction of flavonoids with fat mass and obesity associated protein. Pak. J. Pharm. Sci., 2015, 28(5), 1647-1653. [PMID: 26408884]

[34] Zhang, B.; Deng, Z.; Ramdath, D.D.; Tang, Y.; Chen, P.X.; Liu,R.; Liu, Q.; Tsao, R. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem., 2015, 172, 862-872. [https://doi.org/10.1016/j.foodchem.2014.09.144]. [http://dx.doi.org/10.1016/j.foodchem.2014.09.144] [PMID: 25442631]

[35] Djeradi, H.; Rahmouni, A.; Cheriti, A. Antioxidant activity of flavonoids: a QSAR modeling using Fukui indices descriptors. J. Mol. Model., 2014, 20(10), 2476. [https://doi.org/10.1007/s00894-014-2476-1]. [http://dx.doi.org/10.1007/s00894-014-2476-1] [PMID: 25311723]

[36] Park, Y.; Lee, Y.U.; Kim, H.; Lee, Y.; Yoon, Y.A.; Moon, B.; Chong, Y.; Ahn, J.H.; Shim, Y.H.; Lim, Y. NMR Data of Flavone Derivatives and Their Anti-Oxidative Activities. Bull. Korean Chem. Soc., 2006, 27(10), 1537-1541. [https://doi.org/10.5012/bkcs.2006.27.10.1537]. [http://dx.doi.org/10.5012/bkcs.2006.27.10.1537]

[37] Mangoyi, R.; Midiwo, J.; Mukanganyama, S. Isolation and characterization of an antifungal compound 5-hydroxy-7,4′- dimethoxyflavone from Combretum zeyheri. BMC Complement. Altern. Med., 2015, 15, 405-416. [https://doi.org/10.1186/s12906-015-0934-7]. [http://dx.doi.org/10.1186/s12906-015-0934-7] [PMID: 26573005]

[38] Paniagua-Pérez, R.; Madrigal-Bujaidar, E.; Reyes-Cadena, S.; Molina-Jasso, D.; Gallaga, J.P.; Silva-Miranda, A.; Velazco, O.; Hernández, N.; Chamorro, G. Genotoxic and cytotoxic studies of beta-sitosterol and pteropodine in mouse. J. Biomed. Biotechnol., 2005, 2005(3), 242-247. [https://doi.org/10.1155/JBB.2005.242]. [http://dx.doi.org/10.1155/JBB.2005.242] [PMID: 16192682]

[39] Ong, S. L.; Mah, S. H.; Lai, H. Y. Isolated from Medicinal Herb and Inhibition Kinetics of Extracts from Eleusine Indica ( L .) Gaertner. J. Pharm., 2016, 1-9. [http://dx.doi.org/10.1155/2016/8764274]


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)