UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This study aimed to determine the composition, source apportionment and health risk
assessment (HRA) of indoor particulate matter (PM2.5) in selected Malaysia training
institutes. PM2.5 samples were collected from lecture halls, laboratories and lecturer offices in
Institut Latihan Kementerian Kesihatan Malaysia Sungai Buloh (SB) and Institut Latihan Kementerian
Kesihatan Malaysia Sultan Azlan Shah (SAS). Sampling were conducted over a period of eight
hours sampling for five consecutive days with a total number of 30 samples. The samples were
collected on 47 mm micro fiber glass filter paper (0.2 µm pore size, Whatman) using low volume
air sampler (LVS) at 5 L min?¹ flow rate. The composition of PM2.5 for water-soluble
ionic species (WSIS) and trace metals were determined using ion chromatography (IC)
and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. Source
apportionment of PM2.5 was determined using the combination of Principal Component Analysis
and Multiple Linear Regression (PCA-MLR) receptor model. HRA was conducted to evaluate the
potential health hazard to adolescent and adult groups in the institutes. The result showed that
the mean of PM2.5 at SB (51.39 ± 29.95 µg m?³) was higher than SAS (45.83 ± 20.47 µg m?³). However,
most of WSIS and trace metals were found higher at SAS compared to SB. PCA-MLR results identified
four factors, where the main sources of PM2.5 in SB and SAS were biomass burning (48%) and
building material / crustal origin (81%), respectively. The adult group has higher hazard index
(HI) and incremental lifetime carcinogenic risk (ILCR) values than adolescent group for both
institutes. In conclusion, these two institutes have moderate level of air quality, but they
have the potential to develop adverse health effects. As an implication, this study has
provided a holistic view of indoor air quality, hence the effective control strategies need to be
implemented to enhance indoor air quality for the comfort of
all building occupants.
|
References |
Abdul-Wahab, S. A. (2006). Indoor and Outdoor Relationships of Atmospheric Particulates in Oman. Indoor and Built Environment, 15(3), 247–255. https://doi.org/10.1177/1420326X06066322
Alahmr, F. O. M., Othman, M., Abd Wahid, N. B., Halim, A. A. & Latif, M. T. (2012). Compositions of dust fall around semi-Urban Areas in Malaysia. Aerosol and Air Quality Research, 12(4), 629–642. https://doi.org/10.4209/aaqr.2012.02.0027
Alleman, L. Y., Lamaison, L., Perdrix, E., Robache, A. & Galloo, J. C. (2010). PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmospheric Research, 96(4), 612– 625. https://doi.org/10.1016/j.atmosres.2010.02.008
Almeida, S. M., Canha, N., Silva, A., Do Carmo Freitas, M., Pegas, P., Alves, C., Pio, C. A. (2011). Children exposure to atmospheric particles in indoor of Lisbon primary schools. Atmospheric Environment, 45(40), 7594–7599. https://doi.org/10.1016/j.atmosenv.2010.11.052
Alsmo, T. & Holmberg, S. (2007). Sick Buildings or Not: Indoor Air Quality and Health Problems in Schools. Indoor and Built Environment, 16(6), 548–555. https://doi.org/10.1177/1420326X07084414
Amato, F., Rivas, I., Viana, M., Moreno, T., Bouso, L., Reche, C. & Àlvarez-pedrerol, M. (2014). Science of the Total Environment Sources of indoor and outdoor PM2.5 concentrations in primary schools. Science of the Total Environment, The, 490, 757–765. https://doi.org/10.1016/j.scitotenv.2014.05.051
Amil, N., Latif, M. T., Khan, M. F. & Mohamad, M. (2016). Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment. Atmospheric Chemistry and Physics, 16(8), 5357–5381. https://doi.org /10.5194/acp-16-5357-2016
Anake, W. U., Ana, G. R. E. E. & Benson, N. U. (2016). Study of Surface Morphology, Elemental Composition and Sources of Airborne Fine Particulate Matter in Agbara Industrial Estate , Nigeria. Internacional Journal of Applied Environmental Sciences, 11(4), 881–890.
Andrews, R. E., Shah, K. M., Wilkinson, J. M. & Gartland, A. (2011). Effects of cobalt and chromium ions at clinically equivalent concentrations after metal-on-metal hip replacement on human osteoblasts and osteoclasts: Implications for skeletal health. Bone, 49(4), 717–723. https://doi.org/10.1016/j.bone.2011.06.007
Arlian, L. G., Neal, J. S. & Vyszenski-Moher, D. L. (1999). Reducing relative humidity to control the house dust mite Dermatophagoides farinae. The Journal of Allergy and Clinical Immunology, 104(4 Pt 1), 852–856.
Ashmore, M. R., & Dimitroulopoulou, C. (2009). Personal exposure of children to air pollution. Atmospheric Environment, 43(1), 128–141. https://doi.org/10.1016/j.atmosenv.2008.09.024
Atkinson, R. W., Fuller, G. W., Anderson, H. R., Harrison, R. M. & Armstrong, B. (2010). Urban Ambient Particle Metrics and Health. Epidemiology, 21(4), 501– 511. https://doi.org/10.1097/EDE.0b013e3181debc88
Baxi, S. N., Portnoy, J. M., Larenas-Linnemann, D., Phipatanakul, W., Barnes, C., Grimes, C.,Williams, B. (2016). Exposure and Health Effects of Fungi on Humans. Journal of Allergy and Clinical Immunology: In Practice, 4(3), 396–404. https://doi.org/10.1016/j.jaip.2016.01.008
Bell, M. L., Ebisu, K. & Belanger, K. (2007). Ambient air pollution and low birth weight in Connecticut and Massachusetts. Environmental Health Perspectives, 115(7), 1118–1125. https://doi.org/10.1289/ehp.9759
Borgini, A., Tittarelli, A., Ricci, C., Bertoldi, M., De Saeger, E. & Crosignani, P. (2011). Personal exposure to PM2.5 among high-school students in Milan and background measurements: The EuroLifeNet study. Atmospheric Environment, 45(25), 4147–4151. https://doi.org/10.1016/j.atmosenv.2011.05.026
Bornehag, C. G., Sundell, J., Bonini, S., Custovic, A., Malmberg, P., Skerfving, S., Verhoeff, A. (2004). Dampness in buildings as a risk factor for health effects, EUROEXPO: A multidisciplinary review of the literature (1998-2000) on dampness and mite exposure in buildings and health effects. Indoor Air, 14(4), 243–257. https://doi.org/10.1111/j.1600-0668.2004.00240.x
Bowers, R. M., McLetchie, S., Knight, R. & Fierer, N. (2011). Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. The ISME Journal, 5(4), 601–612. https://doi.org/10.1038/ismej.2010.167
Bowers, R. M., Sullivan, A. P., Costello, E. K., Collett, J. L., Knight, R. & Fierer, N. (2011). Sources of bacteria in outdoor air across cities in the midwestern United States. Applied and Environmental Microbiology, 77(18), 6350–6356. https://doi.org/10.1128/AEM.05498-11
Braniš, M., ?ezá?ová, P., & Domasová, M. (2005). The effect of outdoor air and indoor human activity on mass concentrations of PM10, PM2.5, and PM1 in a classroom. Environmental Research, 99(2), 143–149. https://doi.org/10.1016/j.envres.2004.12.001
Brown, J. S., Gordon, T., Price, O. & Asgharian, B. (2013). Thoracic and respirable particle definitions for human health risk assessment. Particle and Fibre Toxicology, 10(1), 12. https://doi.org/10.1186/1743-8977-10-12
Cabo Verde, S., Almeida, S. M., Matos, J., Guerreiro, D., Meneses, M., Faria, T.,Viegas, C. (2015). Microbiological assessment of indoor air quality at different hospital sites. Research in Microbiology, 166(7), 557–563. https://doi.org/10.1016/j.resmic.2015.03.004
Cadelis, G., Tourres, R., & Molinie, J. (2014). Short-term effects of the particulate pollutants contained in Saharan dust on the visits of children to the emergency department due to asthmatic conditions in Guadeloupe (French archipelago of the Caribbean). PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0091136
Cao, J., Yang, C., Li, J., Chen, R., Chen, B., Gu, D. & Kan, H. (2011). Association between long-term exposure to outdoor air pollution and mortality in China: A cohort study. Journal of Hazardous Materials, 186(2–3), 1594–1600. https://doi.org/10.1016/j.jhazmat.2010.12.036
Cao, S., Duan, X., Zhao, X., Ma, J., Dong, T., Huang, N., Wei, F. (2014). Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Science of the Total Environment, 472, 1001–1009. https://doi.org/10.1016/j.scitotenv.2013.11.124
Cavallari, J. M., Eisen, E. A., Fang, S. C., Schwartz, J., Hauser, R., Herrick, R. F., & Christiani, D. C. (2008). PM2.5 metal exposures and nocturnal heart rate variability: A panel study of boilermaker construction workers. Environmental Health: A Global Access Science Source, 7, 1–8. https://doi.org/10.1186/1476- 069X-7-36
Chang, C. H., Hsiao, Y. L. & Hwang, C. (2015). Evaluating spatial and temporal variations of aerosol optical depth and biomass burning over southeast asia based on satellite data products. Aerosol and Air Quality Research, 15(7), 2625–2640. https://doi.org/10.4209/aaqr.2015.10.0589
Chen, A. & Chang, V. W. (2012). Human health and thermal comfort of of fi ce workers in Singapore. Building and Environment, 58, 172–178. https://doi.org/10.1016/j.buildenv.2012.07.004
Chen, C. & Zhao, B. (2011). Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environment, 45(2), 275–288. https://doi.org/10.1016/j.atmosenv.2010.09.048
Chen, H.-W., Chuang, C.-Y. & Lin, H.-T. (2009). Indoor air distribution of nitrogen dioxide and ozone in urban hospitals. Bulletin of Environmental Contamination and Toxicology, 83(2), 147–150. https://doi.org/10.1007/s00128-009-9631-x
Chen, P., Bi, X., Zhang, J., Wu, J. & Feng, Y. (2015). Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin, China. Particuology, 20, 104–109. https://doi.org/10.1016/j.partic.2014.04.020
Chithra, V. S. & Nagendra, S. M. S. (2013). Chemical and morphological characteristics of indoor and outdoor particulate matter in an urban environment. Atmospheric Environment, 77, 579–587. https://doi.org/10.1016/j.atmosenv.2013.05.044
Chithra, V. S. & Shiva Nagendra, S. M. (2012). Indoor air quality investigations in a naturally ventilated school building located close to an urban roadway in Chennai, India. Building and Environment, 54, 159–167. https://doi.org/10.1016/j.buildenv.2012.01.016
Choo, C. P., Jalaludin, J. & Hashim, Z. (2014). School’s Indoor Air Quality and Respiratory Health Implications among Children. Aensi Journals, 8(14), 112–121
de Gennaro, G., Farella, G., Marzocca, A., Mazzone, A. & Tutino, M. (2013). Indoor and outdoor monitoring of volatile organic compounds in school buildings: Indicators based on health risk assessment to single out critical issues. International Journal of Environmental Research and Public Health, 10(12), 6273–6291. https://doi.org/10.3390/ijerph10126273
Deng, G., Li, Z., Wang, Z., Gao, J., Xu, Z., Li, J. & Wang, Z. (2015). Indoor/outdoor relationship of PM2.5 concentration in typical buildings with and without air cleaning in Beijing. Indoor and Built Environment, 26(1), 60–68. https://doi.org/10.1177/1420326X15604349
Deshmukh, D. K., Deb, M. K., Suzuki, Y. & Kouvarakis, G. N. (2013). Water-soluble ionic composition of PM2.5-10 and PM2.5 aerosols in the lower troposphere of an industrial city Raipur, the eastern central India. Air Quality, Atmosphere and Health, 6(1), 95–110. https://doi.org/10.1007/s11869-011-0149-0
Diapouli, E., Chaloulakou, A., Mihalopoulos, N. & Spyrellis, N. (2008). Indoor and outdoor PM mass and number concentrations at schools in the Athens area. In Environmental Monitoring and Assessment (Vol. 136, pp. 13–20). https://doi.org/10.1007/s10661-007-9724-0
Diociaiuti, M., Balduzzi, M., De Berardis, B., Cattani, G., Stacchini, G., Ziemacki, G., Paoletti, L. (2001). The Two PM2.5 (Fine) and PM2.5–10 (Coarse) Fractions: Evidence of Different Biological Activity. Environmental Research, 86(3), 254– 262. https://doi.org/10.1006/enrs.2001.4275
DOSH. (2010). Industry Code of Practice on Indoor Air Quality. Ministry of Human Resources Department of Occupational Safety and Health, 1–50.
Douglas W.Dockery, Sc.D; C.Arden Pope III, Ph.D; Xiping Xu, M.D, Ph.D, John D. Spenngler, Ph.D; James H.Ware, Ph.D; Martha E. Fay, M.P.H;Benjamin G. Ferris, Jr, M.D and Frank E. Speizer, M. . (1993). The New England Journal of Medicine Downloaded from nejm.org at Arizona Health Sciences Center and UMC on August 13, 2013. For personal use only. No other uses without permission. Copyright © 1993 Massachusetts Medical Society. All rights reserved. Massachusetts Medical Society, 329(24). https://doi.org/10.1145/1077246.1077257
Ekmekcioglu, D. & Keskin, S. S. (2007). Characterization of indoor air particulate matter in selected elementary schools in Istanbul, Turkey. Indoor and Built Environment, 16(2), 169–176. https://doi.org/10.1177/1420326X07076777
Esworthy, R. (2013). Air Quality?: EPA’ s 2013 Changes to the Particulate Matter (PM) Standard. congressional research service (Vol. 7–5700).
Flora, S. J. S., Mittal, M. & Mehta, A. (2008). Heay metal induced oxidative stress & its possible reversal by chelation therapy. Indian J MEd Res.
Fromme, H., Diemer, J., Dietrich, S., Cyrys, J., Heinrich, J., Lang, W., Twardella, D. (2008). Chemical and morphological properties of particulate matter (PM10, PM ) in school classrooms and outdoor air. Atmospheric Environment, 42(27), 6597–6605. https://doi.org/10.1016/j.atmosenv.2008.04.047
Fromme, H., Twardella, D., Dietrich, S., Heitmann, D., Schierl, R., Liebl, B. & Rüden, H. (2007). Particulate matter in the indoor air of classrooms-exploratory results from Munich and surrounding area. Atmospheric Environment, 41(4), 854–866. https://doi.org/10.1016/j.atmosenv.2006.08.053
Fromme, H. (2012). Particles in the Indoor Environment. In S. Kumar (Ed.), Air Quality – Monitoring and Modeling (pp. 117–144). Shanghai: InTech.
Galindo, N., Gil-Moltó, J., Varea, M., Chofre, C., & Yubero, E. (2013). Seasonal and interannual trends in PM levels and associated inorganic ions in southeastern Spain. Microchemical Journal, 110(3), 81–88. https://doi.org/10.1016/j.microc.2013.02.009
García-Aleix, J. R., Delgado-Saborit, J. M., Verdú-Martín, G., Amigó-Descarrega, J. M. & Esteve-Cano, V. (2014). Trends in arsenic levels in PM10 and PM2.5 aerosol fractions in an industrialized area. Environmental Science and Pollution Research, 21(1), 695–703. https://doi.org/10.1007/s11356-013-1950-0
García, J. H., Li, W. W., Cárdenas, N., Arimoto, R., Walton, J. & Trujillo, D. (2006). Determination of PM2.5 sources using time-resolved integrated source and receptor models. Chemosphere, 65(11), 2018–2027. https://doi.org/10.1016/j.chemosphere.2006.06.071
Gilli, G., Traversi, D., Rovere, R., Pignata, C. & Schilirò, T. (2007). Chemical characteristics and mutagenic activity of PM10 in Torino, a Northern Italian City. Science of the Total Environment, 385(1–3), 97–107. https://doi.org/10.1016/j.scitotenv.2007.07.006
Gioda, A., Fuentes-Mattei, E. & Jimenez-Velez, B. (2011). Evaluation of cytokine expression in BEAS cells exposed to fine particulate matter (PM2.5) from specialized indoor environments. International Journal of Environmental Health Research, 21(2), 106–119. https://doi.org/10.1080/09603123.2010.515668
González-Flecha, B. (2004). Oxidant mechanisms in response to ambient air particles. Molecular Aspects of Medicine, 25(1–2), 169–182. https://doi.org/10.1016/j.mam.2004.02.017
Gugamsetty, B., Wei, H., Liu, C. N., Awasthi, A., Tsai, C. J., Roam, G. D., Chen, C. F. (2012). Source Characterization and Apportionment of PM10, PM2.5 and PM0.1 by Using Positive Matrix Factorization. Aerosol and Air Quality Research, 12(4), 476–491. https://doi.org/10.4209/aaqr.2012.04.0084
Habil, M., Massey, D. D. & Taneja, A. (2013). Exposure of children studying in schools of India to PM levels and metal contamination: Sources and their identification. Air Quality, Atmosphere and Health, 6(3), 575–587. https://doi.org/10.1007/s11869-013-0201-3
Han, L., Zhou, W., Li, W., & Li, L. (2014). Impact of urbanization level on urban air quality: A case of fine particles (PM ) in Chinese cities. Environmental Pollution, 194, 163–170. https://doi.org/10.1016/j.envpol.2014.07.022
Han, N. M., M., Latif, M. T., Othman, M., Dominick, D., Mohamad, N., Juahir, H. & Tahir, N. M. (2014). Composition of selected heavy metals in road dust from Kuala Lumpur city centre. Environmental Earth Sciences, 72(3), 849–859. https://doi.org/10.1007/s12665-013-3008-5
Hasheminassab, S., Daher, N., Ostro, B. D., & Sioutas, C. (2014). Long-term source apportionment of ambient fine particulate matter (PM2.5) in the Los Angeles Basin: A focus on emissions reduction from vehicular sources. Environmental Pollution, 193(x), 54–64. https://doi.org/10.1016/j.envpol.2014.06.012
Hays, M. D., Fine, P. M., Geron, C. D., Kleeman, M. J. & Gullett, B. K. (2005). Open burning of agricultural biomass: Physical and chemical properties of particle- phase emissions. Atmospheric Environment, 39(36), 6747–6764. https://doi.org/10.1016/j.atmosenv.2005.07.072
Heal, M. R., Kumar, P. & Harrison, R. M. (2012). Particles, air quality, policy and health. Chemical Society Reviews, 41(19), 6606–6630. https://doi.org/10.1039/c2cs35076a
Hitzfeld, B., Friedrichs, K. H., Ring, J. & Behrendt, H. (1997). Airborne particulate matter modulates the production of reactive oxygen species in human polymorphonuclear granulocytes. Toxicology, 120(3), 185–195. https://doi.org/10.1016/S0300-483X(97)03664-0
Hospodsky, D., Qian, J., Nazaroff, W. W., Yamamoto, N., Bibby, K., Rismani-Yazdi, H. & Peccia, J. (2012). Human occupancy as a source of indoor airborne bacteria. PLoS ONE, 7(4). https://doi.org/10.1371/journal.pone.0034867
Hsu, Y. C., Lai, M. H., Wang, W. C., Chiang, H. L. & Shieh, Z. X. (2008). Characteristics of Water-Soluble Ionic Species in Fine (PM2.5) and Coarse Particulate Matter (PM10–2.5) in Kaohsiung, Southern Taiwan. Journal of the Air & Waste Management Association, 58(12), 1579–1589. https://doi.org/10.3155/1047-3289.58.12.1579
Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y., & Wu, J. (2012). Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmospheric Environment, 57, 146–152. https://doi.org/10.1016/j.atmosenv.2012.04.056
Huang, Wei, Cao, J., Tao, Y., Dai, L., Lu, S. E., Hou, B., Zhu, T. (2012). Seasonal variation of chemical species associated with short-term mortality effects of PM 2.5 in Xi’an, a central city in China. American Journal of Epidemiology, 175(6), 556–566. https://doi.org/10.1093/aje/kwr342
Huang, Wen, Duan, D., Zhang, Y., Cheng, H. & Ran, Y. (2014). Heavy metals in particulate and colloidal matter from atmospheric deposition of urban Guangzhou South China. Marine Pollution Bulletin https://doi.org/10.1016/j.marpolbul.2013.12.041
Huttunen, K., Rintala, H., Hirvonen, M. R., Vepsäläinen, A., Hyvärinen, A., Meklin, T., Nevalainen, A. (2008). Indoor air particles and bioaerosols before and after renovation of moisture-damaged buildings: The effect on biological activity and microbial flora. Environmental Research, 107(3), 291–298. https://doi.org/10.1016/j.envres.2008.02.008
Ismail, M., Mohd Sofian, N. Z., & Abdullah, A. M. (2010). Indoor Air Quality in Selected Samples of Environment Asia. EnvironmentAsia 3, special is, 103–108. https://doi.org/10.14456/ea.2010.48
J.L., P., M., K., W., D. F., J.A., M., G., F., & P.E., T. (2011). Ambient air pollution and apnea and bradycardia in high-risk infants on home monitors. Environmental Health Perspectives, 119(9), 1321–1327. https://doi.org/10.1289/ehp.1002739
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014- 0009
Kadiiska, M. B., Mason, R. P., Dreher, K. L., Costa, D. L., & Ghio, a J. (1997). In vivo evidence of free radical formation in the rat lung after exposure to an emission source air pollution particle. Chemical Research in Toxicology, 10(10), 1104– 1108. https://doi.org/10.1021/tx970049r
Kam, W., Liacos, J. W., Schauer, J. J., Delfino, R. J., & Sioutas, C. (2012). Size- segregated composition of particulate matter (PM) in major roadways and surface streets. Atmospheric Environment, 55, 90–97. https://doi.org/10.1016/j.atmosenv.2012.03.028
Kasier, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, XX(1), 141–151.
Keegan, G. M., Learmonth, I. D., & Case, C. P. (2008). A systematic comparison of the actual, potential, and theoretical health effects of cobalt and chromium exposures from industry and surgical implants. Critical Reviews in Toxicology. https://doi.org/10.1080/10408440701845534
Kembel, S. W., Jones, E., Kline, J., Northcutt, D., Stenson, J., Womack, A. M., … Green, J. L. (2012). Architectural design influences the diversity and structure of the built environment microbiome. The ISME Journal, 6(8), 1469–1479. https://doi.org/10.1038/ismej.2011.211
Khan, M. F., Latif, M. T., Saw, W. H., Amil, N., Nadzir, M. S. M., Sahani, M., Chung, J. X. (2016). Fine particulate matter in the tropical environment: Monsoonal effects, source apportionment, and health risk assessment. Atmospheric Chemistry and Physics, 16(2), 597–617. https://doi.org/10.5194/acp-16-597-2016
Khan, Md Firoz, Hirano, K., & Masunaga, S. (2012). Assessment of the sources of suspended particulate matter aerosol using US EPA PMF 3.0. Environmental Monitoring and Assessment, 184(2), 1063–1083. https://doi.org/10.1007/s10661- 011-2021-y
Khan, Md Firoz, Sulong, N. A., Latif, M. T., Nadzir, M. S. M., Amil, N., Hussain, D. F. M., … Mizohata, A. (2016). Comprehensive assessment of PM2.5 physicochemical properties during the Southeast Asia dry season (southwest monsoon). Journal of Geophysical Research, 121(24), 14589–14611. https://doi.org/10.1002/2016JD025894
Kim, K., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143. https://doi.org/10.1016/j.envint.2014.10.005
Kitto, M. E. (1993). Trace-element patterns in fuel oils and gasolines for use in source apportionment. Air and Waste, 43(10), 1381–1388. https://doi.org/10.1080/1073161X.1993.10467213
Kleeman, M. J., Ying, Q., & Kaduwela, A. (2005). Control strategies for the reduction of airborne particulate nitrate in California’s San Joaquin Valley. Atmospheric Environment, 39(29), 5325–5341. https://doi.org/10.1016/j.atmosenv.2005.05.044
Koçak, M., Mihalopoulos, N., & Kubilay, N. (2009). Origin and source regions of PM 10 in the Eastern Mediterranean atmosphere. Atmospheric Research, 92(4), 464– 474. https://doi.org/10.1016/j.atmosres.2009.01.005
Kong, S., Lu, B., Ji, Y., Zhao, X., Chen, L., Li, Z., Bai, Z. (2011). Levels, risk assessment and sources of PM10 fraction heavy metals in four types dust from a coal-based city. Microchemical Journal, 98(2), 280–290. https://doi.org/10.1016/j.microc.2011.02.012
Kulshrestha, A., Satsangi, P. G., Masih, J., & Taneja, A. (2009). Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Science of the Total Environment, 407(24), 6196–6204. https://doi.org/10.1016/j.scitotenv.2009.08.050
Latif, M. T., Yong, S. M., Saad, A., Mohamad, N., Baharudin, N. H., Mokhtar, M. Bin, & Tahir, N. M. (2014). Composition of heavy metals in indoor dust and their possible exposure: A case study of preschool children in Malaysia. Air Quality, Atmosphere and Health, 7(2), 181–193. https://doi.org/10.1007/s11869-013- 0224-9
Laumbach, R., Meng, Q., & Kipen, H. (2015). What can individuals do to reduce personal health risks from air pollution? Journal of Thoracic Disease, 7(1), 96– 107. https://doi.org/10.3978/j.issn.2072-1439.2014.12.21
Lazaridis, M., Aleksandropoulou, V., Hanssen, J. E., Dye, C., Eleftheriadis, K., & Katsivela, E. (2008). Inorganic and carbonaceous components in indoor/outdoor particulate matter in two residential houses in Oslo, Norway. Journal of the Air and Waste Management Association, 58(3), 346–356. https://doi.org/10.3155/1047-3289.58.3.346
Lee, B. K., & Hieu, N. T. (2011). Seasonal Variation and Sources of Heavy Metals in Atmospheric Aerosols in a esidential Area of Ulsan, Korea. Aerosol and Air Quality Research, 11(6), 679–688. https://doi.org/10.4209/aaqr.2010.10.0089
Lestari, P., & Mauliadi, Y. D. (2009). Source apportionment of particulate matter at urban mixed site in Indonesia using PMF. Atmospheric Environment, 43(10), 1760–1770. https://doi.org/10.1016/j.atmosenv.2008.12.044
Leung, M., & Chan, A. H. S. (2006). Control and management of hospital indoor air quality. Medical Science Monitor?: International Medical Journal of Experimental and Clinical Research, 12(3), SR17-R23.
Li, J., Pósfai, M., Hobbs, P. V., & Buseck, P. R. (2003). Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. Journal of Geophysical Research: Atmospheres, 108(D13), n/a-n/a. https://doi.org/10.1029/2002jd002310
Li, W., Shao, L., Wang, Z., Shen, R., Yang, S., & Tang, U. (2010). Size, composition, and mixing state of individual aerosol particles in a South China coastal city Weijun. Journal of Environmental Sciences, 22(4), 561–569
Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., Ezzati, M. (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380(9859), 2224–2260. https://doi.org/10.1016/S0140-6736(12)61766-8
Liu, Y., Gao, Y., Zhang, L., Wang, T., Wang, J., Jiao, F., Chen, C. (2009). Potential Health Impact on Mice after Nasal Instillation of Nano-Sized Copper Particles and Their Translocation in Mice. Journal of Nanoscience and Nanotechnology, 9(11), 6335–6343. https://doi.org/10.1166/jnn.2009.1320
Löndahl, J., Massling, A., Pagels, J., Swietlicki, E., Vaclavik, E., & Loft, S. (2007). Size-Resolved Respiratory-Tract Deposition of Fine and Ultrafine Hydrophobic and Hygroscopic Aerosol Particles During Rest and Exercise. Inhalation Toxicology, 19(2), 109–116. https://doi.org/10.1080/08958370601051677
Löndahl, J., Pagels, J., Swietlicki, E., Zhou, J., Ketzel, M., Massling, A., & Bohgard, M. (2006). A set-up for field studies of respiratory tract deposition of fine and ultrafine particles in humans. Journal of Aerosol Science, 37(9), 1152–1163. https://doi.org/10.1016/j.jaerosci.2005.11.004
M.B., A., A.B., J., A.M., A., M.B., I., M.N., H., R., A., Noor, H. (2000). Air quality in Malaysia: Impacts, management issues and future challenges. Respirology, 5(2), 183–196. https://doi.org/http://dx.doi.org/10.1046/j.1440-1843.2000.00248.x
Manousakas, M., Diapouli, E., Papaefthymiou, H., Migliori, A., Karydas, A. G., Padilla-Alvarez, R., Eleftheriadis, K. (2015). Source apportionment by PMF on elemental concentrations obtain3qed by PIXE analysis of PM10 samples collected at the vicinity of lignite power plants and mines in Megalopolis, Greece. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 349, 114–124. https://doi.org/10.1016/j.nimb.2015.02.037
Mansha, M., Ghauri, B., Rahman, S., & Amman, A. (2012). Characterization and source apportionment of ambient air particulate matter ( PM2.5) in Karachi. Science of the Total Environment, 425(July 2001), 176–183. https://doi.org/10.1016/j.scitotenv.2011.10.056
Mariani, R. L., & de Mello, W. Z. (2007). PM2.5-10, PM2.5 and associated water-soluble inorganic species at a coastal urban site in the metropolitan region of Rio de Janeiro. Atmospheric Environment, 41(13), 2887–2892. https://doi.org/10.1016/j.atmosenv.2006.12.009
Martin, R., Dowling, K., Pearce, D. C., Florentine, S., Mcknight, S., Stelcer, E., Bennett, J. W. (2016). Trace metal content in inhalable particulate matter deposits using a laboratory-based approach. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-016-9833-1
Masiol, M., Squizzato, S., Rampazzo, G., & Pavoni, B. (2014). Source apportionment of PM2.5 at multiple sites in Venice (Italy): Spatial variability and the role of weather. Atmospheric Environment, 98(2014), 78–88. https://doi.org/10.1016/j.atmosenv.2014.08.059
Massey, D. D., Kulshrestha, A., & Taneja, A. (2013). Particulate matter concentrations and their related metal toxicity in rural residential environment of semi-arid region of India. Atmospheric Environment, 67, 278–286.
Massey, D., Kulshrestha, A., Masih, J., & Taneja, A. (2012). Seasonal trends of PM10, PM5.0, PM2.5 & PM1.0 in indoor and outdoor environments of residential homes located in North-Central India. Building and Environment, 47(1), 223–231. https://doi.org/10.1016/j.buildenv.2011.07.018
Matson, U. (2005). Indoor and outdoor concentrations of ultrafine particles in some Scandinavian rural and urban areas. Science of the Total Environment, 343(1–3), 169–176. https://doi.org/10.1016/j.scitotenv.2004.10.002
Mazlan¹, S. M., Hamzah², A., Mahmud, M., Pengajian, ¹Pusat, Pembangunan, S., Persekitaran, D., Mazlan, S. M. (2015). Kualiti udara dalam bangunan di bangunan Sains Biologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia. Malaysian Journal of Society and Space 11, 1(1), 87–96.
Mazzei, F., D’Alessandro, A., Lucarelli, F., Nava, S., Prati, P., Valli, G., & Vecchi, R. (2008). Characterization of particulate matter sources in an urban environment. Science of the Total Environment, 401(1–3), 81–89. https://doi.org/10.1016/j.scitotenv.2008.03.008
Meadow, J. F., Altrichter, A. E., Kembel, S. W., Kline, J., Mhuireach, G., Moriyama, M., Bohannan, B. J. M. (2014). Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air, 24(1), 41–48. https://doi.org/10.1111/ina.12047
Miller, J. D., Sun, M., Gilyan, A., Roy, J., & Rand, T. G. (2010). Inflammation- associated gene transcription and expression in mouse lungs induced by low molecular weight compounds from fungi from the built environment. Chemico- Biological Interactions, 183(1), 113–124. https://doi.org/10.1016/j.cbi.2009.09.023
Mohai, P., Kweon, B. S., Lee, S., & Ard, K. (2011). Air pollution around schools is linked to poorer student health and academic performance. Health Affairs, 30(5), 852–862. https://doi.org/10.1377/hlthaff.2011.0077
Mohamad, N., Latif, M. T. & Khan, M. F. (2016). Source apportionment and health risk assessment of PM10 in a naturally ventilated school in a tropical environment. Ecotoxicology and Environmental Safety, 124, 351–362. https://doi.org/10.1016/j.ecoenv.2015.11.002
Mohd Talib Latif, Mohamed Rozali Othman, Chong Lee Kim, Siti Aminah Murayadi, & Khairul Nazri Ahmad Sahaimi. (2009). Composition of Household Dust in Semi-urban Areas in Malaysia. Indoor and Built Environment, 18(2), 155–161. https://doi.org/10.1177/1420326X09103014
Morawska, L., Afshari, A., Bae, G. N., Buonanno, G., Chao, C. Y. H., Hnninen, Wierzbicka, A. (2013). Indoor aerosols: From personal exposure to risk assessment. Indoor Air. https://doi.org/10.1111/ina.12044
Morawska, Lidia, & Zhang, J. (2002). Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere, 49(9), 1045–1058. https://doi.org/10.1016/S0045-6535(02)00241-2
Mudipalli, A. (2007). Lead hepatotoxicity & potential health effects. Indian Journal of Medical Research.
Murillo-Tovar, M. A., Saldarriaga-Noreña, H., Hernández-Mena, L., Campos-Ramos, A., Cárdenas-González, B., Ospina-Noreña, J. E., … Smith, W. (2015). Potential sources of trace metals and ionic species in PM2.5 in Guadalajara, Mexico: A case study during dry season. Atmosphere, 6(12), 1858–1870. https://doi.org/10.3390/atmos6121834
Mustaffa, N. I. H., Latif, M. T., Ali, M. M., & Khan, M. F. (2014). Source apportionment of surfactants in marine aerosols at different locations along the Malacca Straits. Environmental Science and Pollution Research, 21(10), 6590– 6602. https://doi.org/10.1007/s11356-014-2562-z
Nazaroff, W. W. (2004). Indoor particle dynamics. Indoor Air, Supplement, 14(SUPPL. 7), 175–183. https://doi.org/10.1111/j.1600-0668.2004.00286.x
Nevalainen, A., Täubel, M., & Hyvärinen, A. (2015). Indoor fungi: Companions and contaminants. Indoor Air, 25(2), 125–156. https://doi.org/10.1111/ina.12182
Nur Fadilah, & Juliana, J. (2012). Indoor Air Quality ( IAQ ) and Sick Buildings Syndrome ( SBS ) among Office Workers in New and Old Building in Universiti. Health and the Environment Journal, 3(2).
Ocskay, R., Salma, I., Wang, W., & Maenhaut, W. (2006). Characterization and diurnal variation of size-resolved inorganic water-soluble ions at a rural background site. Journalof Environmental Monitoring, 8(2), 300–306. https://doi.org/10.1039/b513915e
Olujimi, O., Steiner, O., & Goessler, W. (2015). Journal of African Earth Sciences Pollution indexing and health risk assessments of trace elements in indoor dusts from classrooms , living rooms and offices in Ogun State , Nigeria. Journal of African Earth Sciences, 101, 396–404. https://doi.org/10.1016/j.jafrearsci.2014.10.007
Othman, M., Latif, M. T., & Mohamed, A. F. (2016). The PM10 compositions, sources and health risks assessment in mechanically ventilated office buildings in an urban environment. Air Quality, Atmosphere and Health, 9(6), 597–612. https://doi.org/10.1007/s11869-015-0368-x
Pappas, G. P., Stover, B., Barnhart, S., Herbert, R. J., Henderson, W., & Koenig, J. (2000). The respiratory effects of volatile organic compounds. International Journal of Occupational and Environmental Health, 6(1), 1–8. https://doi.org/10.1179/oeh.2000.6.1.1
Paul, W. L., & Taylor, P. A. (2008). A comparison of occupant comfort and satisfaction between a green building and a conventional building. Building and Environment, 43(11), 1858–1870. https://doi.org/10.1016/j.buildenv.2007.11.006
Pegas, P. N., Nunes, T., Alves, C. A., Silva, J. R., Vieira, S. L. A., Caseiro, A., & Pio, C. A. (2012). Indoor and outdoor characterisation of organic and inorganic compounds in city centre and suburban elementary schools of Aveiro, Portugal. Atmospheric Environment, 55, 80–89. https://doi.org/10.1016/j.atmosenv.2012.03.059
Qin, Y., & Oduyemi, K. (2003). Chemical composition of atmospheric aerosol in Dundee, UK. Atmospheric Environment, 37(1), 93–104. https://doi.org/10.1016/S1352-2310(02)00658-1
Ramos, C. A., Wolterbeek, H. T., & Almeida, S. M. (2014). Exposure to indoor air pollutants during physical activity in fitness centers. Building and Environment, 82, 349–360. https://doi.org/10.1016/j.buildenv.2014.08.026
Raysoni, A. U., Stock, T. H., Sarnat, J. A., Montoya Sosa, T., Ebelt Sarnat, S., Holguin, F., Li, W. W. (2013). Characterization of traffic-related air pollutant metrics at four schools in El Paso, Texas, USA: Implications for exposure assessment and siting schools in urban areas. Atmospheric Environment, 80, 140–151. https://doi.org/10.1016/j.atmosenv.2013.07.056
Rintala, H., Pitkaranta, M., Toivola, M., Paulin, L., & Nevalainen, A. (2008). Diversity and seasonal dynamics of bacterial community in indoor environment. BMC Microbiology, 8(1), 56. https://doi.org/10.1186/1471-2180-8-56
Sahu, V., Elumalai, S. P., Gautam, S., Singh, N. K., & Singh, P. (2018). Characterization of indoor settled dust and investigation of indoor air quality in different micro-environments. International Journal of Environmental Health Research, 28(4), 419–431. https://doi.org/10.1080/09603123.2018.1481498
Saliba, N. A., Atallah, M., & Al-Kadamany, G. (2009). Levels and indoor-outdoor relationships of PM10 and soluble inorganic ions in Beirut, Lebanon. Atmospheric Research, 92(1), 131–137. https://doi.org/10.1016/j.atmosres.2008.09.010
Saraga, D., Pateraki, S., Papadopoulos, A., Vasilakos, C., & Maggos, T. (2011). Studying the indoor air quality in three non-residential environments of different use: A museum, a printery industry and an office. Building and Environment, 46(11), 2333–2341. https://doi.org/10.1016/j.buildenv.2011.05.013
Schoeters, G., Den Hond, E., Zuurbier, M., Naginiene, R., Van Den Hazel, P.,
Stilianakis, N., Koppe, J. G. (2006). Cadmium and children: Exposure and health effects. Acta Paediatrica, International Journal of Paediatrics, 95(SUPPL. 453), 50–54. https://doi.org/10.1080/08035320600886232
Seppänen, O., Fisk, W. J., & Lei, Q. H. (2006). Ventilation and performance in office work. Indoor Air, 16(1), 28–36. https://doi.org/10.1111/j.1600-0668.2005.00394.x
Seppänen, Olli. (2007). Ventilation strategies for good indoor air quality and energy efficiency. International Journal of Ventilation, 6(4), 297–306.
Shah, A. S. V, Langrish, J. P., Nair, H., McAllister, D. A., Hunter, A. L., Donaldson, K., Mills, N. L. (2013). Global association of air pollution and heart failure: A systematic review and meta-analysis. The Lancet, 382(9897), 1039–1048. https://doi.org/10.1016/S0140-6736(13)60898-3
Shridhar, V., Khillare, P. S., Agarwal, T., & Ray, S. (2010). Metallic species in ambient particulate matter at rural and urban location of Delhi. Journal of Hazardous Materials, 175(1–3), 600–607. https://doi.org/10.1016/j.jhazmat.2009.10.047
Sierra-Vargas, M. P., & Teran, L. M. (2012). Air pollution: Impact and prevention. Respirology, 17(7), 1031–1038. https://doi.org/10.1111/j.1440- 1843.2012.02213.x
Simon, M., & Butala, V. (2004). The influence of indoor environment in office buildings on their occupants: Expected-unexpected. Building and Environment, 39(3), 289–296. https://doi.org/10.1016/j.buildenv.2003.09.011
Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43(3), 246. https://doi.org/10.4103/0253-7613.81505
Sloan, C. D., Andrew, A. S., Gruber, J. F., Mwenda, K. M., Moore, J. H., Onega, T., Duell, E. J. (2012). Indoor and outdoor air pollution and lung cancer in New Hampshire and Vermont. Toxicological & Environmental Chemistry, 94(3), 605– 615. https://doi.org/10.1080/02772248.2012.659930
Srimuruganandam, B., & Shiva Nagendra, S. M. (2012). Application of positive matrix factorization in characterization of PM10 and PM2.5 emission sources at urban roadside. Chemosphere, 88(1), 120–130. https://doi.org/10.1016/j.chemosphere.2012.02.083
Srivastava, A., & Jain, V. K. (2007). A study to characterize the suspended particulate matter in an indoor environment in Delhi, India. Building and Environment, 42(5), 2046–2052. https://doi.org/10.1016/j.buildenv.2006.03.007
Steinemann, A., Wargocki, P., & Rismanchi, B. (2016). Ten questions concerning green buildings and indoor air qiality. Building and Environment, xxx, 1–6. https://doi.org/10.1016/j.buildenv.2016.11.010
Sternbeck, J., Sjödin, Å., & Andréasson, K. (2002). Metal emissions from road traffic and the influence of resuspension - Results from two tunnel studies. Atmospheric Environment, 36(30), 4735–4744. https://doi.org/10.1016/S1352-2310(02)00561- 7
Straus, D. C. (2009). Molds, mycotoxins, and sick building syndrome. Toxicology and Industrial Health, 25(9–10), 617–635. https://doi.org/10.1177/0748233709348287
Sulaiman, F. R., Bakri, N. I. F., Nazmi, N., & Latif, M. T. (2017). Assessment of heavy metals in indoor dust of a university in a tropical environment. Environmental Forensics, 18(1), 74–82. https://doi.org/10.1080/15275922.2016.1263903
Sun, J. L., Jing, X., Chang, W. J., Chen, Z. X., & Zeng, H. (2015). Cumulative health risk assessment of halogenated and parent polycyclic aromatic hydrocarbons associated with particulate matters in urban air. Ecotoxicology and Environmental Safety, 113, 31–37. https://doi.org/10.1016/j.ecoenv.2014.11.024
Tahir, N. M., Suratman, S., Fong, F. T., Hamzah, M. S., & Latif, M. T. (2013). Temporal distribution and chemical characterization of atmospheric particulate matter in the eastern coast of Peninsular Malaysia. Aerosol and Air Quality Research, 13(2), 584–595. https://doi.org/10.4209/aaqr.2012.08.0216
Täubel, M., Rintala, H., Pitkäranta, M., Paulin, L., Laitinen, S., Pekkanen, J., Nevalainen, A. (2009). The occupant as a source of house dust bacteria. Journal of Allergy and Clinical Immunology, 124(4). https://doi.org/10.1016/j.jaci.2009.07.045
Tauler, R., Paatero, P., Henry, R. C., Spiegelman, C., Park, E. S., Poirot, R. L., Hopke, P. K. (2008). Chapter Fiveteen Identification, Resolution and Apportionment of Contamination Sources. Developments in Integrated Environmental Assessment, 3, 269–284. https://doi.org/10.1016/S1574-101X(08)00615-7
Taylor S.R. (1964). Abundance of chemical elements in the continental crust?: a new table. Geochimica et Cosmochimica Acta, 28, 1273–1285.
Terzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K., & Samara, C. (2010). Chemical composition and mass closure of ambient PM10 at urban sites. Atmospheric Environment, 44(18), 2231–2239. https://doi.org/10.1016/j.atmosenv.2010.02.019
Thornburg, J., Ensor, D. S., Rodes, C. E., Lawless, P. A., Sparks, L. E., & Mosley, R. B. (2001). Penetration of Particles into Buildings and Associated Physical Factors. Part I: Model Development and Computer Simulations. Aerosol Science and Technology, 34(3), 284–296. https://doi.org/10.1080/02786820150217858
Thurston, G. D., Ito, K., & Lall, R. (2011). A source apportionment of U . S . fi ne particulate matter air pollution. Atmospheric Environment, 45(24), 3924–3936. https://doi.org/10.1016/j.atmosenv.2011.04.070
Thurston, G. D., & Spengler, J. D. (1985). A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environment (1967), 19(1), 9–25. https://doi.org/10.1016/0004- 6981(85)90132-5
Tsitouridou, R., Voutsa, D., & Kouimtzis, T. (2003). Ionic composition of PM10 in the area of Thessaloniki, Greece. Chemosphere, 52(5), 883–891. https://doi.org/10.1016/S0045-6535(03)00313-8
Valavanidis, A., Vlachogianni, T., Fiotakis, K., & Loridas, S. (2013). Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. International Journal of Environmental Research and Public Health, 10(9), 3886–3907. https://doi.org/10.3390/ijerph10093886
Voutsa, D., Samara, C., Manoli, E., Lazarou, D., & Tzoumaka, P. (2014). Ionic composition of PM2.5 at urban sites of northern Greece: Secondary inorganic aerosol formation. Environmental Science and Pollution Research, 21(7), 4995– 5006. https://doi.org/10.1007/s11356-013-2445-8
Wahid, N. B A, Latif, M. T., Suan, L. S., Dominick, D., Sahani, M., Jaafar, S. A., & Mohd Tahir, N. (2014). Source identification of particulate matter in a semi-urban area of Malaysia using multivariate techniques. Bulletin of Environmental Contamination and Toxicology, 92(3), 317–322. https://doi.org/10.1007/s00128- 014-1201-1
Wahid, N.B.A., Latif, M. T., & Suratman, S. (2013). Composition and source apportionment of surfactants in atmospheric aerosols of urban and semi-urban areas in Malaysia. Chemosphere, 91(11), 1508–1516. https://doi.org/10.1016/j.chemosphere.2012.12.029
Wahid, Nurul Bahiyah Abd, Latif, M. T., & Suratman, S. (2017). Composition and possible sources of anionic surfactants from urban and semi-urban street dust. Air Quality, Atmosphere and Health, 10(9), 1051–1057. https://doi.org/10.1007/s11869-017-0493-9
Wang, Q., Zhao, H. H., Chen, J. W., Gu, K. D., Zhang, Y. Z., Zhu, Y. X., Ye, L. X. (2009). Adverse health effects of lead exposure on children and exploration to internal lead indicator. Science of the Total Environment, 407(23), 5986–5992. https://doi.org/10.1016/j.scitotenv.2009.08.038
Wang, S. K., Chew, S. P., Jusoh, M. T., Khairunissa, A., Leong, K. Y., & Azid, A. A. (2017). WSN based indoor air quality monitoring in classrooms. American Institute of Physics, 020063(1808), 020063. https://doi.org/10.1063/1.4975296
Wang, Y. F., Chao, H. R., Wang, L. C., Chang-Chien, G. P., & Tsou, T. C. (2010). Characteristics of heavy metals emitted from a heavy oil-fueled power plant in Northern Taiwan. Aerosol and Air Quality Research, 10(2), 111–118. https://doi.org/10.4209/aaqr.2009.09.0056
Wang, Y., Zhuang, G., Tang, A., Yuan, H., Sun, Y., Chen, S., & Zheng, A. (2005). The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmospheric Environment, 39(21), 3771–3784. https://doi.org/10.1016/j.atmosenv.2005.03.013
Wei, X., Gao, B., Wang, P., Zhou, H., & Lu, J. (2015). Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicology and Environmental Safety, 112, 186–192. https://doi.org/10.1016/j.ecoenv.2014.11.005
Wolkoff, P., & Kjaergaard, S. . (2007). The dichotomy of relative humidity on indoor air quality. Environment International, 33(6), 850–857. https://doi.org/10.1016/j.envint.2007.04.004
Woloszyn, M., Kalamees, T., Abadie, M. O., Steeman, M., & Sasic Kalagasidis, A. (2009). The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings. Building and Environment, 44(3), 515–524. https://doi.org/10.1016/j.buildenv.2008.04.017
Xu, Z., Wu, Y., Shen, F., Chen, Q., Tan, M., & Yao, M. (2011). Bioaerosol science, technology, and engineering: Past, present, and future. Aerosol Science and Technology, 45(11), 1337–1349. https://doi.org/10.1080/02786826.2011.593591
Yang Razali, N. Y., Latif, M. T., Dominick, D., Mohamad, N., Sulaiman, F. R., & Srithawirat, T. (2015). Concentration of particulate matter, CO and CO2 in selected schools in Malaysia. Building and Environment, 87, 108–116. https://doi.org/10.1016/j.buildenv.2015.01.015
Young, S. H., Cox-Ganser, J. M., Shogren, E. S., Wolfarth, M. G., Li, S. Q., Antonini, J. M., … Park, J. H. (2011). Pulmonary inflammation induced by office dust and the relation to 1 3--glucan using different extraction techniques. Toxicological and Environmental Chemistry, 93(4), 806–823. https://doi.org/10.1080/02772248.2011.554229
Yu, L., Wang, G., Zhang, R., Zhang, L., Song, Y., Wu, B., Chu, J. (2013). Characterization and source apportionment of PM2.5 in an urban environment in Beijing. Aerosol and Air Quality Research, 13(2), 574–583. https://doi.org/10.4209/aaqr.2012.07.0192
Zannoni, D., Valotto, G., Visin, F., & Rampazzo, G. (2016). Sources and distribution of tracer elements in road dust?: The Venice mainland case of study. Journal of Geochemical Exploration, 166, 64–72. https://doi.org/10.1016/j.gexplo.2016.04.007
Zhang, L., Jin, X., Johnson, A. C., & Giesy, J. P. (2016). Hazard posed by metals and As in PM 2.5 in air of five megacities in the Beijing-Tianjin-Hebei region of China during APEC. Environmental Science and Pollution Research, 23(17), 17603– 17612. https://doi.org/10.1007/s11356-016-6863-2
Zheng, S., Pozzer, A., Cao, C. X., & Lelieveld, J. (2015). Long-term (2001-2012) concentrations of fine particulate matter (PM2.5) and the impact on human health in Beijing, China. Atmospheric Chemistry and Physics, 15(10), 5715–5725. https://doi.org/10.5194/acp-15-5715-2015
Zhong, J. N. M., Latif, M. T., Mohamad, N., Wahid, N. B. A., Dominick, D., & Juahir, H. (2014). Source Apportionment of Particulate Matter (PM10) and Indoor Dust in a University Building. Environmental Forensics, 15(1), 8–16. https://doi.org/10.1080/15275922.2013.872712
Zhu, C. S., Cao, J. J., Shen, Z. X., Liu, S. X., Zhang, T., Zhao, Z. Z., … Zhang, E. K. (2012). Indoor and outdoor chemical components of PM2.5 in the rural areas of Northwestern China. Aerosol and Air Quality Research, 12(6), 1157–1165. https://doi.org/10.4209/aaqr.2012.01.0003
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |