UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :QD Chemistry
Main Author :Intan Idura Mohamad Isa
Title :Composition, source apportionment and health risk assessment of indoor particulate matter (PM2.5) in selected Malaysia training institutes
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2020
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
This  study  aimed  to  determine  the  composition,  source  apportionment  and  health  risk  assessment  (HRA)  of  indoor  particulate  matter  (PM2.5)  in  selected  Malaysia  training  institutes. PM2.5 samples were collected from lecture halls, laboratories and lecturer offices in  Institut Latihan Kementerian Kesihatan Malaysia Sungai Buloh (SB) and Institut Latihan Kementerian   Kesihatan  Malaysia  Sultan  Azlan  Shah  (SAS).  Sampling  were  conducted over a period of eight  hours sampling for five consecutive days with a total number of 30 samples. The samples were  collected on 47 mm micro fiber glass filter paper (0.2 µm pore size,  Whatman)  using  low  volume   air  sampler  (LVS)  at  5  L  min?¹  flow  rate.  The composition  of  PM2.5   for  water-soluble   ionic  species  (WSIS)  and  trace  metals  were determined   using   ion   chromatography   (IC)    and   inductively   coupled   plasma-mass spectrometry  (ICP-MS),  respectively.  Source   apportionment  of  PM2.5   was  determined using the combination of Principal Component Analysis  and Multiple Linear Regression (PCA-MLR) receptor model. HRA was conducted to evaluate the  potential health hazard to adolescent and adult groups in the institutes. The result showed that  the mean of PM2.5 at SB (51.39 ± 29.95 µg m?³) was higher than SAS (45.83 ± 20.47 µg m?³). However,  most of WSIS and trace metals were found higher at SAS compared to SB. PCA-MLR results identified   four factors,  where the  main  sources  of  PM2.5  in SB and  SAS  were  biomass burning (48%) and  building material / crustal origin (81%), respectively. The adult group has higher hazard index  (HI) and incremental lifetime carcinogenic risk (ILCR) values than adolescent group for both  institutes. In conclusion, these two institutes have moderate level of  air  quality,  but  they   have  the  potential  to  develop  adverse  health  effects.  As  an implication, this study has  provided a holistic view of indoor air quality, hence the effective control strategies need to be  implemented to enhance indoor air quality for the comfort of all building occupants.  

References

Abdul-Wahab,  S.  A.  (2006).  Indoor  and  Outdoor  Relationships  of  Atmospheric Particulates   

in   Oman.   Indoor   and   Built   Environment,   15(3),   247–255. 

https://doi.org/10.1177/1420326X06066322

 

Alahmr, F. O. M., Othman, M., Abd Wahid, N. B., Halim, A. A. & Latif, M. T. (2012). Compositions of 

dust fall around semi-Urban Areas in Malaysia. Aerosol and Air Quality Research, 12(4), 629–642. 

https://doi.org/10.4209/aaqr.2012.02.0027

 

Alleman, L. Y., Lamaison, L., Perdrix, E., Robache, A. & Galloo, J. C. (2010). PM10 metal 

concentrations and source identification using positive matrix factorization and wind sectoring in 

a French industrial zone. Atmospheric Research, 96(4), 612– 625. 

https://doi.org/10.1016/j.atmosres.2010.02.008

 

Almeida, S. M., Canha, N., Silva, A., Do Carmo Freitas, M., Pegas, P., Alves, C., Pio,

C.  A.  (2011).  Children  exposure  to  atmospheric  particles  in  indoor  of  Lisbon primary     

 schools.       Atmospheric      Environment,      45(40),      7594–7599. 

https://doi.org/10.1016/j.atmosenv.2010.11.052

 

Alsmo, T. & Holmberg, S. (2007). Sick Buildings or Not: Indoor Air Quality and Health Problems   in 

  Schools.   Indoor   and   Built   Environment,   16(6),   548–555. 

https://doi.org/10.1177/1420326X07084414

 

Amato, F., Rivas, I., Viana, M., Moreno, T., Bouso, L., Reche, C. & Àlvarez-pedrerol,

M. (2014). Science of the Total Environment Sources of indoor and outdoor PM2.5 concentrations in 

primary schools. Science of the Total Environment, The, 490, 757–765. 

https://doi.org/10.1016/j.scitotenv.2014.05.051

 

Amil, N., Latif, M. T., Khan, M. F. & Mohamad, M. (2016). Seasonal variability of PM2.5 composition 

and sources in the Klang Valley urban-industrial environment. Atmospheric    Chemistry    and    

Physics,    16(8),    5357–5381.    https://doi.org

/10.5194/acp-16-5357-2016

 

Anake, W. U., Ana, G. R. E. E. & Benson, N. U. (2016). Study of Surface Morphology, Elemental 

Composition and Sources of Airborne Fine Particulate Matter in Agbara Industrial  Estate  ,  

Nigeria.  Internacional  Journal  of  Applied  Environmental Sciences, 11(4), 881–890.

 

Andrews, R. E., Shah, K. M., Wilkinson, J. M. & Gartland, A. (2011). Effects of cobalt and chromium 

ions at clinically equivalent concentrations after metal-on-metal hip replacement  on  human  

osteoblasts  and  osteoclasts:  Implications  for  skeletal health. Bone, 49(4), 717–723. 

https://doi.org/10.1016/j.bone.2011.06.007

 

Arlian, L. G., Neal, J. S. & Vyszenski-Moher, D. L. (1999). Reducing relative humidity to control 

the house dust mite Dermatophagoides farinae. The Journal of Allergy and Clinical Immunology, 104(4 

Pt 1), 852–856.

 

Ashmore, M. R., & Dimitroulopoulou, C. (2009). Personal exposure of children to air pollution.      

      Atmospheric            Environment,            43(1),            128–141.

https://doi.org/10.1016/j.atmosenv.2008.09.024

 

Atkinson, R. W., Fuller, G. W., Anderson, H. R., Harrison, R. M. & Armstrong, B. (2010). Urban 

Ambient Particle Metrics and Health. Epidemiology, 21(4), 501– 511. 

https://doi.org/10.1097/EDE.0b013e3181debc88

 

Baxi,  S.  N.,  Portnoy,  J.  M.,  Larenas-Linnemann,  D.,  Phipatanakul,  W.,  Barnes,  C., 

Grimes,  C.,Williams,  B.  (2016).  Exposure  and  Health  Effects  of  Fungi  on Humans. Journal 

of Allergy and Clinical Immunology: In Practice, 4(3), 396–404. 

https://doi.org/10.1016/j.jaip.2016.01.008

 

Bell,  M.  L.,  Ebisu,  K.  &  Belanger,  K.  (2007).  Ambient  air  pollution  and  low  birth 

weight  in  Connecticut  and  Massachusetts.  Environmental  Health  Perspectives, 115(7), 

1118–1125. https://doi.org/10.1289/ehp.9759

 

Borgini,  A.,  Tittarelli,  A.,  Ricci,  C.,  Bertoldi,  M.,  De  Saeger,  E.  &  Crosignani,  P. 

(2011).  Personal  exposure  to  PM2.5   among  high-school  students  in  Milan  and background  

measurements:  The  EuroLifeNet  study.  Atmospheric  Environment, 45(25), 4147–4151. 

https://doi.org/10.1016/j.atmosenv.2011.05.026

 

Bornehag, C. G., Sundell, J., Bonini, S., Custovic, A., Malmberg, P., Skerfving, S., Verhoeff,  A.  

(2004).  Dampness  in  buildings  as  a  risk  factor  for health  effects, EUROEXPO:   A   

multidisciplinary  review   of   the   literature   (1998-2000)   on dampness and mite exposure in 

buildings and health effects. Indoor Air, 14(4), 243–257. 

https://doi.org/10.1111/j.1600-0668.2004.00240.x

 

Bowers, R. M., McLetchie, S., Knight, R. & Fierer, N. (2011). Spatial variability in airborne 

bacterial communities across land-use types and their relationship to the bacterial communities of 

potential source environments. The ISME Journal, 5(4), 601–612. 

https://doi.org/10.1038/ismej.2010.167

 

Bowers, R. M., Sullivan, A. P., Costello, E. K., Collett, J. L., Knight, R. & Fierer, N. (2011). 

Sources of bacteria in outdoor air across cities in the midwestern United States.    Applied    and 

   Environmental    Microbiology,    77(18),    6350–6356. https://doi.org/10.1128/AEM.05498-11

 

Braniš, M., ?ezá?ová, P., & Domasová, M. (2005). The effect of outdoor air and indoor human 

activity on mass concentrations of PM10, PM2.5, and PM1  in a classroom. Environmental              

        Research,                      99(2),                      143–149. 

https://doi.org/10.1016/j.envres.2004.12.001

 

Brown, J. S., Gordon, T., Price, O. & Asgharian, B. (2013). Thoracic and respirable particle   

definitions   for   human   health   risk   assessment.   Particle   and   Fibre Toxicology, 10(1), 

12. https://doi.org/10.1186/1743-8977-10-12

 

Cabo  Verde,  S.,  Almeida,  S.  M.,  Matos,  J.,  Guerreiro,  D.,  Meneses,  M.,  Faria, 

T.,Viegas, C. (2015). Microbiological assessment of indoor air quality at different hospital       

sites.       Research       in       Microbiology,       166(7),       557–563. 

https://doi.org/10.1016/j.resmic.2015.03.004

 

Cadelis,  G.,  Tourres,  R.,  & Molinie,  J.  (2014).  Short-term  effects  of  the  particulate 

pollutants contained in Saharan dust on the visits of children to the emergency department due to 

asthmatic conditions in Guadeloupe (French archipelago of the

Caribbean). PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0091136

 

Cao, J., Yang, C., Li, J., Chen, R., Chen, B., Gu, D. & Kan, H. (2011). Association

between long-term exposure to outdoor air pollution and mortality in China: A

cohort study. Journal of Hazardous Materials, 186(2–3), 1594–1600.

https://doi.org/10.1016/j.jhazmat.2010.12.036

 

Cao, S., Duan, X., Zhao, X., Ma, J., Dong, T., Huang, N., Wei, F. (2014). Health risks

from the exposure of children to As, Se, Pb and other heavy metals near the largest

coking plant in China. Science of the Total Environment, 472, 1001–1009.

https://doi.org/10.1016/j.scitotenv.2013.11.124

 

Cavallari, J. M., Eisen, E. A., Fang, S. C., Schwartz, J., Hauser, R., Herrick, R. F., &

Christiani, D. C. (2008). PM2.5 metal exposures and nocturnal heart rate

variability: A panel study of boilermaker construction workers. Environmental

Health: A Global Access Science Source, 7, 1–8. https://doi.org/10.1186/1476-

069X-7-36

 

Chang, C. H., Hsiao, Y. L. & Hwang, C. (2015). Evaluating spatial and temporal

variations of aerosol optical depth and biomass burning over southeast asia based

on satellite data products. Aerosol and Air Quality Research, 15(7), 2625–2640.

https://doi.org/10.4209/aaqr.2015.10.0589

 

Chen, A. & Chang, V. W. (2012). Human health and thermal comfort of of fi ce workers

in Singapore. Building and Environment, 58, 172–178.

https://doi.org/10.1016/j.buildenv.2012.07.004

 

Chen, C. & Zhao, B. (2011). Review of relationship between indoor and outdoor

particles: I/O ratio, infiltration factor and penetration factor. Atmospheric

Environment, 45(2), 275–288. https://doi.org/10.1016/j.atmosenv.2010.09.048

 

Chen, H.-W., Chuang, C.-Y. & Lin, H.-T. (2009). Indoor air distribution of nitrogen

dioxide and ozone in urban hospitals. Bulletin of Environmental Contamination

and Toxicology, 83(2), 147–150. https://doi.org/10.1007/s00128-009-9631-x

 

Chen, P., Bi, X., Zhang, J., Wu, J. & Feng, Y. (2015). Assessment of heavy metal

pollution characteristics and human health risk of exposure to ambient PM2.5 in

Tianjin, China. Particuology, 20, 104–109.

https://doi.org/10.1016/j.partic.2014.04.020

 

Chithra, V. S. & Nagendra, S. M. S. (2013). Chemical and morphological

characteristics of indoor and outdoor particulate matter in an urban environment.

Atmospheric Environment, 77, 579–587.

https://doi.org/10.1016/j.atmosenv.2013.05.044

 

Chithra, V. S. & Shiva Nagendra, S. M. (2012). Indoor air quality investigations in a

naturally ventilated school building located close to an urban roadway in Chennai,

India. Building and Environment, 54, 159–167.

https://doi.org/10.1016/j.buildenv.2012.01.016

 

Choo, C. P., Jalaludin, J. & Hashim, Z. (2014). School’s Indoor Air Quality and

Respiratory Health Implications among Children. Aensi Journals, 8(14), 112–121

 

de Gennaro, G., Farella, G., Marzocca, A., Mazzone, A. & Tutino, M. (2013). Indoor and  outdoor  

monitoring  of  volatile  organic  compounds  in  school  buildings: Indicators   based   on   

health   risk   assessment   to   single   out   critical   issues. International  Journal  of  

Environmental  Research  and  Public  Health,  10(12), 6273–6291. 

https://doi.org/10.3390/ijerph10126273

 

Deng, G., Li, Z., Wang, Z., Gao, J., Xu, Z., Li, J. & Wang, Z. (2015). Indoor/outdoor relationship  

of  PM2.5   concentration  in  typical  buildings  with  and  without  air cleaning    in    

Beijing.    Indoor    and    Built    Environment,    26(1),    60–68. 

https://doi.org/10.1177/1420326X15604349

 

Deshmukh, D. K., Deb, M. K., Suzuki, Y. & Kouvarakis, G. N. (2013). Water-soluble ionic composition 

of PM2.5-10  and PM2.5  aerosols in the lower troposphere of an industrial  city  Raipur,  the  

eastern  central  India.  Air  Quality,  Atmosphere  and Health, 6(1), 95–110. 

https://doi.org/10.1007/s11869-011-0149-0

 

Diapouli, E., Chaloulakou, A., Mihalopoulos, N. & Spyrellis, N. (2008). Indoor and outdoor PM mass 

and number concentrations at schools in the Athens area.  In Environmental     Monitoring     and   

  Assessment     (Vol.     136,     pp.     13–20). https://doi.org/10.1007/s10661-007-9724-0

 

Diociaiuti, M., Balduzzi, M., De Berardis, B., Cattani, G., Stacchini, G., Ziemacki, G., Paoletti,  

L.  (2001).  The  Two  PM2.5   (Fine)  and  PM2.5–10   (Coarse)  Fractions: Evidence of Different 

Biological Activity. Environmental Research, 86(3), 254– 262. 

https://doi.org/10.1006/enrs.2001.4275

 

DOSH. (2010). Industry Code of Practice on Indoor Air Quality. Ministry of Human Resources 

Department of Occupational Safety and Health, 1–50.

 

Douglas W.Dockery, Sc.D; C.Arden Pope III, Ph.D; Xiping Xu, M.D, Ph.D, John D. Spenngler, Ph.D; 

James H.Ware, Ph.D; Martha E. Fay, M.P.H;Benjamin G. Ferris, Jr, M.D and Frank E. Speizer, M. . 

(1993). The New England Journal of Medicine Downloaded  from  nejm.org  at  Arizona  Health  

Sciences  Center  and  UMC  on August  13,  2013.  For  personal  use  only.  No  other  uses  

without  permission. Copyright   ©   1993   Massachusetts   Medical   Society.   All   rights   

reserved. Massachusetts                       Medical                       Society,                

       329(24). https://doi.org/10.1145/1077246.1077257

 

Ekmekcioglu,  D.  &  Keskin,  S.  S.  (2007).  Characterization  of  indoor  air  particulate 

matter  in  selected  elementary  schools  in  Istanbul,  Turkey.  Indoor  and  Built Environment, 

16(2), 169–176. https://doi.org/10.1177/1420326X07076777

 

Esworthy, R. (2013). Air Quality?: EPA’ s 2013 Changes to the Particulate Matter (PM) Standard. 

congressional research service (Vol. 7–5700).

 

Flora, S. J. S., Mittal, M. & Mehta, A. (2008). Heay metal induced oxidative stress & its possible 

reversal by chelation therapy. Indian J MEd Res.

 

Fromme, H., Diemer, J., Dietrich, S., Cyrys, J., Heinrich, J., Lang, W., Twardella, D. (2008).  

Chemical  and  morphological  properties  of  particulate  matter  (PM10, PM   ) in school 

classrooms and outdoor air. Atmospheric Environment, 42(27),

6597–6605. https://doi.org/10.1016/j.atmosenv.2008.04.047

 

Fromme, H., Twardella, D., Dietrich, S., Heitmann, D., Schierl, R., Liebl, B. & Rüden,

H. (2007). Particulate matter in the indoor air of classrooms-exploratory results from Munich and 

surrounding area. Atmospheric Environment, 41(4), 854–866. 

https://doi.org/10.1016/j.atmosenv.2006.08.053

 

Fromme, H. (2012). Particles in the Indoor Environment. In S. Kumar (Ed.), Air Quality

– Monitoring and Modeling (pp. 117–144). Shanghai: InTech.

 

Galindo, N., Gil-Moltó, J., Varea, M., Chofre, C., & Yubero, E. (2013). Seasonal and interannual  

trends  in  PM  levels  and  associated  inorganic  ions  in  southeastern Spain.               

Microchemical               Journal,               110(3),               81–88. 

https://doi.org/10.1016/j.microc.2013.02.009

 

García-Aleix, J. R., Delgado-Saborit, J. M., Verdú-Martín, G., Amigó-Descarrega, J.

M. & Esteve-Cano, V. (2014). Trends in arsenic levels in PM10  and PM2.5 aerosol fractions in an 

industrialized area. Environmental Science and Pollution Research, 21(1), 695–703. 

https://doi.org/10.1007/s11356-013-1950-0

 

García, J. H., Li, W. W., Cárdenas, N., Arimoto, R., Walton, J. & Trujillo, D. (2006). 

Determination of PM2.5 sources using time-resolved integrated source and receptor models.           

          Chemosphere,                     65(11),                     2018–2027. 

https://doi.org/10.1016/j.chemosphere.2006.06.071

 

Gilli,  G.,  Traversi,  D.,  Rovere,  R.,  Pignata,  C.  &  Schilirò,  T.  (2007).  Chemical 

characteristics and mutagenic activity of PM10  in Torino, a Northern Italian City. Science         

of         the         Total         Environment,         385(1–3),         97–107. 

https://doi.org/10.1016/j.scitotenv.2007.07.006

 

Gioda,  A.,  Fuentes-Mattei,  E.  &  Jimenez-Velez,  B.  (2011).  Evaluation  of  cytokine 

expression  in  BEAS  cells  exposed  to  fine  particulate  matter  (PM2.5)  from specialized 

indoor environments. International Journal of Environmental Health Research, 21(2), 106–119. 

https://doi.org/10.1080/09603123.2010.515668

 

González-Flecha, B. (2004). Oxidant mechanisms in response to ambient air particles. Molecular      

     Aspects           of           Medicine,           25(1–2),           169–182. 

https://doi.org/10.1016/j.mam.2004.02.017

 

Gugamsetty, B., Wei, H., Liu, C. N., Awasthi, A., Tsai, C. J., Roam, G. D., Chen, C. F. (2012). 

Source Characterization and Apportionment of PM10, PM2.5  and PM0.1  by Using  Positive  Matrix  

Factorization.  Aerosol  and  Air  Quality  Research,  12(4), 476–491. 

https://doi.org/10.4209/aaqr.2012.04.0084

 

Habil, M., Massey, D. D. & Taneja, A. (2013). Exposure of children studying in schools of India to 

PM levels and metal contamination: Sources and their identification. Air         Quality,         

Atmosphere         and         Health,         6(3),         575–587. 

https://doi.org/10.1007/s11869-013-0201-3

 

Han, L., Zhou, W., Li, W., & Li, L. (2014). Impact of urbanization level on urban air quality: A 

case of fine particles (PM   ) in Chinese cities. Environmental Pollution,

194, 163–170. https://doi.org/10.1016/j.envpol.2014.07.022

 

Han, N. M., M., Latif, M. T., Othman, M., Dominick, D., Mohamad, N., Juahir, H. & Tahir,  N.  M.  

(2014).  Composition  of  selected  heavy  metals  in  road  dust  from Kuala  Lumpur  city  

centre.  Environmental  Earth  Sciences,  72(3),  849–859. 

https://doi.org/10.1007/s12665-013-3008-5

 

Hasheminassab, S., Daher, N., Ostro, B. D., & Sioutas, C. (2014). Long-term source apportionment of 

ambient fine particulate matter (PM2.5) in the Los Angeles Basin: A focus on emissions reduction 

from vehicular sources. Environmental Pollution, 193(x), 54–64. 

https://doi.org/10.1016/j.envpol.2014.06.012

 

Hays, M. D., Fine, P. M., Geron, C. D., Kleeman, M. J. & Gullett, B. K. (2005). Open burning  of  

agricultural  biomass:  Physical  and  chemical  properties  of  particle- phase      emissions.    

  Atmospheric      Environment,      39(36),      6747–6764. 

https://doi.org/10.1016/j.atmosenv.2005.07.072

 

Heal, M. R., Kumar, P. & Harrison, R. M. (2012). Particles, air quality,  policy and health.        

  Chemical          Society          Reviews,          41(19),          6606–6630. 

https://doi.org/10.1039/c2cs35076a

 

Hitzfeld, B., Friedrichs, K. H., Ring, J. & Behrendt, H. (1997). Airborne particulate matter   

modulates   the   production   of   reactive   oxygen   species   in   human polymorphonuclear      

  granulocytes.        Toxicology,        120(3),        185–195. 

https://doi.org/10.1016/S0300-483X(97)03664-0

 

Hospodsky, D., Qian, J., Nazaroff, W. W., Yamamoto, N., Bibby, K., Rismani-Yazdi,

H. & Peccia, J. (2012). Human occupancy as a source of indoor airborne bacteria.

PLoS ONE, 7(4). https://doi.org/10.1371/journal.pone.0034867

 

Hsu,  Y.  C.,  Lai,  M.  H.,  Wang,  W.  C.,  Chiang,  H.  L.  &  Shieh,  Z.  X.  (2008).

Characteristics  of  Water-Soluble  Ionic  Species  in  Fine  (PM2.5)  and  Coarse Particulate 

Matter (PM10–2.5) in Kaohsiung, Southern Taiwan. Journal of the Air &         Waste         

Management         Association,         58(12),         1579–1589. 

https://doi.org/10.3155/1047-3289.58.12.1579

 

Hu,  X.,  Zhang,  Y.,  Ding,  Z.,  Wang,  T.,  Lian,  H.,  Sun,  Y.,  &  Wu,  J.  (2012). 

Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in 

TSP and PM2.5  in Nanjing, China. Atmospheric Environment, 57, 146–152. 

https://doi.org/10.1016/j.atmosenv.2012.04.056

 

Huang, Wei, Cao, J., Tao, Y., Dai, L., Lu, S. E., Hou, B., Zhu, T. (2012). Seasonal variation of 

chemical species associated with short-term mortality effects of PM

2.5  in Xi’an, a central city in China. American Journal of Epidemiology, 175(6), 556–566. 

https://doi.org/10.1093/aje/kwr342

 

Huang,  Wen,  Duan,  D.,  Zhang,  Y.,  Cheng,  H.  &  Ran,  Y.  (2014).  Heavy  metals  in 

particulate and colloidal matter from atmospheric deposition of urban Guangzhou South               

   China.                  Marine                  Pollution                  Bulletin 

https://doi.org/10.1016/j.marpolbul.2013.12.041

 

Huttunen, K., Rintala, H., Hirvonen, M. R., Vepsäläinen, A., Hyvärinen, A., Meklin, T., Nevalainen, 

A. (2008). Indoor air particles and bioaerosols before and after renovation of moisture-damaged 

buildings: The effect on biological activity and microbial        flora.        Environmental       

 Research,        107(3),        291–298.

https://doi.org/10.1016/j.envres.2008.02.008

 

Ismail,  M.,  Mohd  Sofian,  N.  Z.,  &  Abdullah,  A.  M.  (2010).  Indoor  Air  Quality  in 

Selected Samples of Environment Asia. EnvironmentAsia 3, special is, 103–108. 

https://doi.org/10.14456/ea.2010.48

 

J.L., P., M., K., W., D. F., J.A., M., G., F., & P.E., T. (2011). Ambient air pollution and apnea  

and  bradycardia  in  high-risk  infants  on  home  monitors.  Environmental Health Perspectives, 

119(9), 1321–1327. https://doi.org/10.1289/ehp.1002739

 

Jaishankar,  M.,  Tseten,  T.,  Anbalagan,  N.,  Mathew,  B.  B.,  &  Beeregowda,  K.  N. (2014).   

Toxicity,   mechanism   and   health   effects   of   some   heavy   metals. Interdisciplinary  

Toxicology,  7(2),  60–72.  https://doi.org/10.2478/intox-2014-

0009

 

Kadiiska, M. B., Mason, R. P., Dreher, K. L., Costa, D. L., & Ghio,  a J. (1997). In vivo evidence 

of free radical formation in the rat lung after exposure to an emission source  air  pollution  

particle.  Chemical  Research  in  Toxicology,  10(10),  1104– 1108. 

https://doi.org/10.1021/tx970049r

 

Kam,  W.,  Liacos,  J.  W.,  Schauer,  J.  J.,  Delfino,  R.  J.,  &  Sioutas,  C.  (2012).  Size- 

segregated composition of particulate matter (PM) in major roadways and surface streets.            

   Atmospheric               Environment,               55,               90–97. 

https://doi.org/10.1016/j.atmosenv.2012.03.028

 

Kasier,  H.  F.  (1960).  The  application  of  electronic  computers  to  factor  analysis.

Educational and Psychological Measurement, XX(1), 141–151.

 

Keegan, G. M., Learmonth, I. D., & Case, C. P. (2008). A systematic comparison of the  actual,  

potential,  and  theoretical  health  effects  of  cobalt  and  chromium exposures from industry 

and surgical implants. Critical Reviews in Toxicology. https://doi.org/10.1080/10408440701845534

 

Kembel, S. W., Jones, E., Kline, J., Northcutt, D., Stenson, J., Womack, A. M., … Green, J. L. 

(2012). Architectural design influences the diversity and structure of the   built   environment   

microbiome.   The   ISME   Journal,   6(8),   1469–1479. https://doi.org/10.1038/ismej.2011.211

 

Khan, M. F., Latif, M. T., Saw, W. H., Amil, N., Nadzir, M. S. M., Sahani, M., Chung,

J.  X.  (2016).  Fine  particulate  matter  in  the  tropical  environment:  Monsoonal effects, 

source apportionment, and health risk assessment. Atmospheric Chemistry and Physics, 16(2), 

597–617. https://doi.org/10.5194/acp-16-597-2016

 

Khan, Md Firoz, Hirano, K., & Masunaga, S. (2012). Assessment of the sources of suspended  

particulate  matter  aerosol  using  US  EPA  PMF  3.0.  Environmental Monitoring and Assessment, 

184(2), 1063–1083. https://doi.org/10.1007/s10661- 011-2021-y

 

Khan, Md Firoz, Sulong, N. A., Latif, M. T., Nadzir, M. S. M., Amil, N., Hussain, D.

F.   M.,   …   Mizohata,   A.   (2016).   Comprehensive   assessment   of   PM2.5 physicochemical  

properties  during  the  Southeast  Asia  dry  season  (southwest monsoon).    Journal    of    

Geophysical    Research,    121(24),    14589–14611.

https://doi.org/10.1002/2016JD025894

 

Kim,  K.,  Kabir,  E.,  &  Kabir,  S.  (2015).  A  review  on  the  human  health  impact  of 

airborne    particulate    matter.    Environment    International,    74,    136–143. 

https://doi.org/10.1016/j.envint.2014.10.005

 

Kitto, M. E. (1993). Trace-element patterns in fuel oils and gasolines for use in source 

apportionment.           Air           and           Waste,           43(10),           1381–1388. 

https://doi.org/10.1080/1073161X.1993.10467213

 

Kleeman, M. J., Ying, Q., & Kaduwela, A. (2005). Control strategies for the reduction of  airborne  

particulate  nitrate  in  California’s  San  Joaquin  Valley.  Atmospheric Environment,             

                          39(29),                                       5325–5341. 

https://doi.org/10.1016/j.atmosenv.2005.05.044

 

Koçak, M., Mihalopoulos, N., & Kubilay, N. (2009). Origin and source regions of PM 10 in the 

Eastern Mediterranean atmosphere. Atmospheric Research, 92(4), 464– 474. 

https://doi.org/10.1016/j.atmosres.2009.01.005

 

Kong,  S.,  Lu,  B.,  Ji,  Y.,  Zhao,  X.,  Chen,  L.,  Li,  Z.,  Bai,  Z.  (2011).  Levels,  risk 

assessment and sources of PM10 fraction heavy metals in four types dust from a coal-based         

city.         Microchemical         Journal,         98(2),         280–290. 

https://doi.org/10.1016/j.microc.2011.02.012

 

Kulshrestha, A., Satsangi, P. G., Masih, J., & Taneja, A. (2009). Metal concentration of PM2.5 and 

PM10 particles and seasonal variations in urban and rural environment of   Agra,   India.   Science 

  of   the   Total   Environment,   407(24),   6196–6204. 

https://doi.org/10.1016/j.scitotenv.2009.08.050

 

Latif, M. T., Yong, S. M., Saad, A., Mohamad, N., Baharudin, N. H., Mokhtar, M. Bin, &  Tahir,  N.  

M.  (2014).  Composition  of  heavy  metals  in  indoor  dust  and  their possible exposure: A case 

study of preschool children in Malaysia. Air Quality, Atmosphere   and   Health,   7(2),   181–193. 

  https://doi.org/10.1007/s11869-013-

0224-9

 

Laumbach,  R.,  Meng,  Q.,  &  Kipen,  H.  (2015).  What  can  individuals  do  to  reduce personal 

health risks from air pollution? Journal of Thoracic Disease, 7(1), 96– 107. 

https://doi.org/10.3978/j.issn.2072-1439.2014.12.21

 

Lazaridis,  M.,  Aleksandropoulou,  V.,  Hanssen,  J.  E.,  Dye,  C.,  Eleftheriadis,  K.,  & 

Katsivela, E. (2008). Inorganic and carbonaceous components in indoor/outdoor particulate matter in 

two residential houses in Oslo, Norway. Journal of the Air and          Waste          Management   

       Association,          58(3),          346–356. https://doi.org/10.3155/1047-3289.58.3.346

 

Lee, B. K., & Hieu, N. T. (2011). Seasonal Variation and Sources of Heavy Metals in Atmospheric  

Aerosols  in  a  esidential  Area  of  Ulsan,  Korea.  Aerosol  and  Air Quality Research, 11(6), 

679–688. https://doi.org/10.4209/aaqr.2010.10.0089

 

Lestari, P., & Mauliadi, Y. D. (2009). Source apportionment of particulate matter at urban  mixed  

site  in  Indonesia  using  PMF.  Atmospheric  Environment,  43(10), 1760–1770. 

https://doi.org/10.1016/j.atmosenv.2008.12.044

 

Leung, M., & Chan, A. H. S. (2006). Control and management of hospital indoor air quality. Medical 

Science Monitor?: International Medical Journal of Experimental

and Clinical Research, 12(3), SR17-R23.

 

Li, J., Pósfai, M., Hobbs, P. V., & Buseck, P. R. (2003). Individual aerosol particles from biomass 

burning in southern Africa: 2, Compositions and aging of inorganic particles.  Journal  of  

Geophysical  Research:  Atmospheres,  108(D13),  n/a-n/a. https://doi.org/10.1029/2002jd002310

 

Li, W., Shao, L., Wang, Z., Shen, R., Yang, S., & Tang, U. (2010). Size, composition, and  mixing  

state  of  individual  aerosol  particles  in  a  South  China  coastal  city Weijun. Journal of 

Environmental Sciences, 22(4), 561–569

 

Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., Ezzati,

M.  (2012).  A  comparative  risk  assessment  of  burden  of  disease  and  injury attributable to 

67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the 

Global  Burden of  Disease  Study 2010.  The  Lancet, 380(9859), 2224–2260. 

https://doi.org/10.1016/S0140-6736(12)61766-8

 

Liu, Y., Gao, Y., Zhang, L., Wang, T., Wang, J., Jiao, F., Chen, C. (2009). Potential Health Impact 

on Mice after Nasal Instillation of Nano-Sized Copper Particles and Their Translocation in Mice. 

Journal of Nanoscience and Nanotechnology, 9(11), 6335–6343. https://doi.org/10.1166/jnn.2009.1320

 

Löndahl, J., Massling, A., Pagels, J., Swietlicki, E., Vaclavik, E., & Loft, S. (2007). 

Size-Resolved Respiratory-Tract Deposition of Fine and Ultrafine Hydrophobic and   Hygroscopic   

Aerosol   Particles   During   Rest   and   Exercise.   Inhalation Toxicology, 19(2), 109–116. 

https://doi.org/10.1080/08958370601051677

 

Löndahl, J., Pagels, J., Swietlicki, E., Zhou, J., Ketzel, M., Massling, A., & Bohgard,

M. (2006). A set-up for field studies of respiratory tract deposition of fine and ultrafine  

particles  in  humans.  Journal  of  Aerosol  Science,  37(9),  1152–1163. 

https://doi.org/10.1016/j.jaerosci.2005.11.004

 

M.B., A., A.B., J., A.M., A., M.B., I., M.N., H., R., A., Noor, H. (2000). Air quality in

Malaysia: Impacts, management issues and future challenges. Respirology, 5(2), 183–196. 

https://doi.org/http://dx.doi.org/10.1046/j.1440-1843.2000.00248.x

 

Manousakas,  M.,  Diapouli,  E.,  Papaefthymiou,  H.,  Migliori,  A.,  Karydas,  A.  G., 

Padilla-Alvarez, R., Eleftheriadis, K. (2015). Source apportionment by PMF on elemental 

concentrations obtain3qed by PIXE analysis of PM10 samples collected at the vicinity of lignite 

power plants and mines in Megalopolis, Greece. Nuclear Instruments and Methods in Physics Research, 

Section B: Beam Interactions with Materials and Atoms, 349, 114–124. 

https://doi.org/10.1016/j.nimb.2015.02.037

 

Mansha,  M.,  Ghauri,  B.,  Rahman,  S.,  &  Amman,  A.  (2012).  Characterization  and source 

apportionment of ambient air particulate matter ( PM2.5) in Karachi. Science of         the         

Total         Environment,         425(July         2001),         176–183. 

https://doi.org/10.1016/j.scitotenv.2011.10.056

 

Mariani, R. L., & de Mello, W. Z. (2007). PM2.5-10, PM2.5 and associated water-soluble inorganic  

species  at  a  coastal  urban  site  in  the  metropolitan  region  of  Rio  de Janeiro.           

Atmospheric           Environment,           41(13),           2887–2892.

https://doi.org/10.1016/j.atmosenv.2006.12.009

 

Martin,  R.,  Dowling,  K.,  Pearce,  D.  C.,  Florentine,  S.,  Mcknight,  S.,  Stelcer,  E., 

Bennett, J. W. (2016). Trace metal content in inhalable particulate matter deposits using  a  

laboratory-based  approach.  Environmental  Geochemistry  and  Health. 

https://doi.org/10.1007/s10653-016-9833-1

 

Masiol, M., Squizzato, S., Rampazzo, G., & Pavoni, B. (2014). Source apportionment of  PM2.5   at  

multiple  sites  in  Venice  (Italy):  Spatial  variability  and  the  role  of weather.            

Atmospheric            Environment,            98(2014),            78–88. 

https://doi.org/10.1016/j.atmosenv.2014.08.059

 

Massey, D. D., Kulshrestha, A., & Taneja, A. (2013). Particulate matter concentrations and their 

related metal toxicity in rural residential environment of semi-arid region of India. Atmospheric 

Environment, 67, 278–286.

 

Massey, D., Kulshrestha, A., Masih, J., & Taneja, A. (2012). Seasonal trends of PM10, PM5.0, PM2.5 

& PM1.0 in indoor and outdoor environments of residential homes located  in  North-Central  India.  

Building  and  Environment,  47(1),  223–231. https://doi.org/10.1016/j.buildenv.2011.07.018

 

Matson, U. (2005). Indoor and outdoor concentrations of ultrafine particles in some Scandinavian 

rural and urban areas. Science of the Total Environment, 343(1–3), 169–176. 

https://doi.org/10.1016/j.scitotenv.2004.10.002

 

Mazlan¹,  S.  M.,  Hamzah²,  A.,  Mahmud,  M.,  Pengajian,  ¹Pusat,  Pembangunan,  S., 

Persekitaran, D., Mazlan, S. M. (2015). Kualiti udara dalam bangunan di bangunan Sains  Biologi,  

Fakulti  Sains  dan  Teknologi,  Universiti  Kebangsaan  Malaysia. Malaysian Journal of Society and 

Space 11, 1(1), 87–96.

 

Mazzei, F., D’Alessandro, A., Lucarelli, F., Nava, S., Prati, P., Valli, G., & Vecchi, R. (2008). 

Characterization of particulate matter sources in an urban environment. Science         of         

the         Total         Environment,         401(1–3),         81–89. 

https://doi.org/10.1016/j.scitotenv.2008.03.008

 

Meadow, J. F., Altrichter, A. E., Kembel, S. W., Kline, J., Mhuireach, G., Moriyama, M.,  Bohannan, 

 B.  J.  M.  (2014).  Indoor  airborne  bacterial  communities  are influenced by ventilation, 

occupancy, and outdoor air source. Indoor Air, 24(1), 41–48. https://doi.org/10.1111/ina.12047

 

Miller,  J.  D.,  Sun,  M.,  Gilyan,  A.,  Roy,  J.,  &  Rand,  T.  G.  (2010).  Inflammation- 

associated  gene  transcription  and  expression  in  mouse  lungs  induced  by  low molecular 

weight compounds from fungi from the built environment. Chemico- Biological                      

Interactions,                      183(1),                      113–124. 

https://doi.org/10.1016/j.cbi.2009.09.023

 

Mohai, P., Kweon, B. S., Lee, S., & Ard, K. (2011). Air pollution around schools is linked to 

poorer student health and academic performance. Health Affairs, 30(5), 852–862. 

https://doi.org/10.1377/hlthaff.2011.0077

 

Mohamad, N., Latif, M. T. & Khan, M. F. (2016). Source apportionment and health risk assessment of 

PM10 in a naturally ventilated school in a tropical environment. Ecotoxicology         and         

Environmental         Safety,         124,         351–362.

https://doi.org/10.1016/j.ecoenv.2015.11.002

 

Mohd Talib Latif, Mohamed Rozali Othman, Chong Lee Kim, Siti Aminah Murayadi, &  Khairul  Nazri  

Ahmad  Sahaimi.  (2009).  Composition  of  Household  Dust  in Semi-urban Areas in Malaysia. Indoor 

and Built Environment, 18(2), 155–161. https://doi.org/10.1177/1420326X09103014

 

Morawska,  L.,  Afshari,  A.,  Bae,  G.  N.,  Buonanno,  G.,  Chao,  C.  Y.  H.,  Hnninen, 

Wierzbicka,   A.   (2013).   Indoor   aerosols:   From   personal   exposure   to   risk 

assessment. Indoor Air. https://doi.org/10.1111/ina.12044

 

Morawska,  Lidia,  &  Zhang,  J.  (2002).  Combustion  sources  of  particles.  1.  Health 

relevance     and     source     signatures.     Chemosphere,     49(9),     1045–1058. 

https://doi.org/10.1016/S0045-6535(02)00241-2

 

Mudipalli, A. (2007). Lead hepatotoxicity & potential health effects. Indian Journal of Medical 

Research.

 

Murillo-Tovar, M. A., Saldarriaga-Noreña, H., Hernández-Mena, L., Campos-Ramos, A., 

Cárdenas-González, B., Ospina-Noreña, J. E., … Smith, W. (2015). Potential sources of trace metals 

and ionic species in PM2.5 in Guadalajara, Mexico: A case study        during        dry        

season.        Atmosphere,        6(12),        1858–1870. https://doi.org/10.3390/atmos6121834

 

Mustaffa,  N.  I.  H.,  Latif,  M.  T.,  Ali,  M.  M.,  &  Khan,  M.  F.  (2014).  Source 

apportionment of surfactants in marine aerosols at different locations along the Malacca Straits. 

Environmental Science and Pollution Research, 21(10), 6590– 6602. 

https://doi.org/10.1007/s11356-014-2562-z

 

Nazaroff, W. W. (2004). Indoor particle dynamics. Indoor Air, Supplement, 14(SUPPL.

7), 175–183. https://doi.org/10.1111/j.1600-0668.2004.00286.x

 

Nevalainen, A., Täubel, M., & Hyvärinen, A. (2015). Indoor fungi: Companions and contaminants. 

Indoor Air, 25(2), 125–156. https://doi.org/10.1111/ina.12182

 

Nur  Fadilah,  &  Juliana,  J.  (2012).  Indoor  Air  Quality  (  IAQ  )  and  Sick  Buildings 

Syndrome ( SBS ) among Office Workers in New and Old Building in Universiti. Health and the 

Environment Journal, 3(2).

 

Ocskay, R., Salma, I., Wang, W., & Maenhaut, W. (2006). Characterization and diurnal variation of 

size-resolved inorganic water-soluble ions at a rural background site. Journalof            

Environmental            Monitoring,            8(2),            300–306. 

https://doi.org/10.1039/b513915e

 

Olujimi,  O.,  Steiner,  O.,  &  Goessler,  W.  (2015).  Journal  of  African  Earth  Sciences 

Pollution indexing and health risk assessments of trace elements in indoor dusts from classrooms , 

living rooms and offices in Ogun State , Nigeria.  Journal of African                  Earth        

          Sciences,                  101,                  396–404. 

https://doi.org/10.1016/j.jafrearsci.2014.10.007

 

Othman, M., Latif, M. T., & Mohamed, A. F. (2016). The PM10  compositions, sources and health risks 

assessment in mechanically ventilated office buildings in an urban environment.    Air    Quality,  

  Atmosphere    and    Health,    9(6),     597–612.

https://doi.org/10.1007/s11869-015-0368-x

 

Pappas, G. P., Stover, B., Barnhart, S., Herbert, R. J., Henderson, W., & Koenig, J. (2000).  The  

respiratory  effects  of  volatile  organic  compounds.  International Journal     of     

Occupational     and     Environmental     Health,     6(1),     1–8. 

https://doi.org/10.1179/oeh.2000.6.1.1

 

Paul, W. L., & Taylor, P. A. (2008). A comparison of occupant comfort and satisfaction between a 

green building and a conventional building. Building and Environment, 43(11), 1858–1870. 

https://doi.org/10.1016/j.buildenv.2007.11.006

 

Pegas, P. N., Nunes, T., Alves, C. A., Silva, J. R., Vieira, S. L. A., Caseiro, A., & Pio,

C.  A.  (2012).  Indoor  and  outdoor  characterisation  of  organic  and  inorganic compounds in 

city centre and suburban elementary schools of Aveiro, Portugal. Atmospheric                        

Environment,                        55,                        80–89. 

https://doi.org/10.1016/j.atmosenv.2012.03.059

 

Qin,  Y.,  &  Oduyemi,  K.  (2003).  Chemical  composition  of  atmospheric  aerosol  in Dundee,    

     UK.         Atmospheric         Environment,         37(1),         93–104. 

https://doi.org/10.1016/S1352-2310(02)00658-1

 

Ramos, C. A., Wolterbeek, H. T., & Almeida, S. M. (2014). Exposure to indoor air pollutants during 

physical activity in fitness centers. Building and Environment, 82, 349–360. 

https://doi.org/10.1016/j.buildenv.2014.08.026

 

Raysoni, A. U., Stock, T. H., Sarnat, J. A., Montoya Sosa, T., Ebelt Sarnat, S., Holguin, F., Li, 

W. W. (2013). Characterization of traffic-related air pollutant metrics at four schools in El Paso, 

Texas, USA: Implications for exposure assessment and siting   schools   in   urban   areas.   

Atmospheric   Environment,   80,   140–151. https://doi.org/10.1016/j.atmosenv.2013.07.056

 

Rintala, H., Pitkaranta, M., Toivola, M., Paulin, L., & Nevalainen, A. (2008). Diversity and  

seasonal  dynamics  of  bacterial  community  in  indoor  environment.  BMC Microbiology, 8(1), 56. 

https://doi.org/10.1186/1471-2180-8-56

 

Sahu,   V.,   Elumalai,   S.   P.,   Gautam,   S.,   Singh,   N.   K.,   &   Singh,   P.   (2018). 

Characterization of indoor settled dust and investigation of indoor air quality in different  

micro-environments.  International  Journal  of  Environmental  Health Research, 28(4), 419–431. 

https://doi.org/10.1080/09603123.2018.1481498

 

Saliba,  N.  A.,  Atallah,  M.,  &  Al-Kadamany,  G.  (2009).  Levels  and  indoor-outdoor 

relationships of PM10 and soluble inorganic ions in Beirut, Lebanon. Atmospheric Research, 92(1), 

131–137. https://doi.org/10.1016/j.atmosres.2008.09.010

 

Saraga,  D.,  Pateraki,  S.,  Papadopoulos,  A.,  Vasilakos,  C.,  &  Maggos,  T.  (2011). Studying 

the indoor air quality in three non-residential environments of different use:  A  museum,  a  

printery  industry  and  an  office.  Building  and  Environment, 46(11), 2333–2341. 

https://doi.org/10.1016/j.buildenv.2011.05.013

 

Schoeters,  G.,  Den  Hond,  E.,  Zuurbier,  M.,  Naginiene,  R.,  Van  Den  Hazel,  P., 

 

Stilianakis, N., Koppe, J. G. (2006). Cadmium and children: Exposure and health effects. Acta 

Paediatrica, International Journal of Paediatrics, 95(SUPPL. 453), 50–54. 

https://doi.org/10.1080/08035320600886232

 

Seppänen, O., Fisk, W. J., & Lei, Q. H. (2006). Ventilation and performance in office work.       

Indoor       Air,       16(1),       28–36.       https://doi.org/10.1111/j.1600-0668.2005.00394.x

 

Seppänen, Olli. (2007). Ventilation strategies for good indoor air quality and energy efficiency. 

International Journal of Ventilation, 6(4), 297–306.

 

Shah, A. S. V, Langrish, J. P., Nair, H., McAllister, D. A., Hunter, A. L., Donaldson, K., Mills, 

N. L. (2013). Global association of air pollution and heart failure: A systematic   review   and   

meta-analysis.   The   Lancet,   382(9897),   1039–1048. 

https://doi.org/10.1016/S0140-6736(13)60898-3

 

Shridhar, V., Khillare, P. S., Agarwal, T., & Ray, S. (2010). Metallic species in ambient 

particulate  matter  at  rural  and  urban  location  of  Delhi.  Journal  of  Hazardous Materials, 

175(1–3), 600–607. https://doi.org/10.1016/j.jhazmat.2009.10.047

 

Sierra-Vargas, M. P., & Teran,  L. M. (2012). Air pollution: Impact and  prevention. Respirology,   

        17(7),           1031–1038.           https://doi.org/10.1111/j.1440- 1843.2012.02213.x

 

Simon,  M.,  &  Butala,  V.  (2004).  The  influence  of  indoor  environment  in  office buildings 

on their occupants: Expected-unexpected. Building and Environment, 39(3), 289–296. 

https://doi.org/10.1016/j.buildenv.2003.09.011

 

Singh,  R.,  Gautam,  N.,  Mishra,  A.,  &  Gupta,  R.  (2011).  Heavy  metals  and  living 

systems:    An    overview.    Indian    Journal    of    Pharmacology,    43(3),    246. 

https://doi.org/10.4103/0253-7613.81505

 

Sloan, C. D., Andrew, A. S., Gruber, J. F., Mwenda, K. M., Moore, J. H., Onega, T., Duell,  E.  J.  

(2012).  Indoor  and  outdoor  air  pollution  and  lung  cancer  in  New Hampshire and Vermont. 

Toxicological & Environmental Chemistry, 94(3), 605– 615. 

https://doi.org/10.1080/02772248.2012.659930

 

Srimuruganandam, B., & Shiva Nagendra, S. M. (2012). Application of positive matrix factorization  

in  characterization  of  PM10   and  PM2.5   emission  sources  at  urban roadside.                

       Chemosphere,                       88(1),                       120–130. 

https://doi.org/10.1016/j.chemosphere.2012.02.083

 

Srivastava, A., & Jain, V. K. (2007). A study to characterize the suspended particulate matter in 

an indoor environment in Delhi, India. Building and Environment, 42(5), 2046–2052. 

https://doi.org/10.1016/j.buildenv.2006.03.007

 

Steinemann,  A.,  Wargocki,  P.,  &  Rismanchi,  B.  (2016).  Ten  questions  concerning green  

buildings  and  indoor  air  qiality.  Building  and  Environment,  xxx,  1–6. 

https://doi.org/10.1016/j.buildenv.2016.11.010

 

Sternbeck, J., Sjödin, Å., & Andréasson, K. (2002). Metal emissions from road traffic and the 

influence of resuspension - Results from two tunnel studies. Atmospheric Environment, 36(30), 

4735–4744. https://doi.org/10.1016/S1352-2310(02)00561-

7

 

Straus, D. C. (2009). Molds, mycotoxins, and sick building syndrome. Toxicology and Industrial      

                  Health,                        25(9–10),                        617–635. 

https://doi.org/10.1177/0748233709348287

 

Sulaiman, F. R., Bakri, N. I. F., Nazmi, N., & Latif, M. T. (2017). Assessment of heavy

metals  in  indoor  dust of  a  university in  a  tropical  environment.  Environmental

Forensics, 18(1), 74–82. https://doi.org/10.1080/15275922.2016.1263903

 

Sun, J. L., Jing, X., Chang, W. J., Chen, Z. X., & Zeng, H. (2015). Cumulative health risk  

assessment  of  halogenated  and  parent  polycyclic  aromatic  hydrocarbons associated with 

particulate matters in urban air. Ecotoxicology and Environmental Safety, 113, 31–37. 

https://doi.org/10.1016/j.ecoenv.2014.11.024

 

Tahir,  N.  M.,  Suratman,  S.,  Fong,  F.  T.,  Hamzah,  M.  S.,  &  Latif,  M.  T.  (2013). 

Temporal  distribution  and  chemical  characterization  of  atmospheric  particulate matter  in  

the  eastern  coast  of  Peninsular  Malaysia.  Aerosol  and  Air  Quality Research, 13(2), 

584–595. https://doi.org/10.4209/aaqr.2012.08.0216

 

Täubel,  M.,  Rintala,  H.,  Pitkäranta,  M.,  Paulin,  L.,  Laitinen,  S.,  Pekkanen,  J., 

Nevalainen, A. (2009). The occupant as a source of house dust bacteria. Journal of             

Allergy             and             Clinical             Immunology,             124(4). 

https://doi.org/10.1016/j.jaci.2009.07.045

 

Tauler, R., Paatero, P., Henry, R. C., Spiegelman, C., Park, E. S., Poirot, R. L., Hopke,

P. K. (2008). Chapter Fiveteen Identification, Resolution and Apportionment of Contamination 

Sources. Developments in Integrated Environmental Assessment, 3, 269–284. 

https://doi.org/10.1016/S1574-101X(08)00615-7

 

Taylor S.R. (1964). Abundance of chemical elements in the continental crust?: a new table. 

Geochimica et Cosmochimica Acta, 28, 1273–1285.

 

Terzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K., & Samara,

C. (2010). Chemical composition and mass closure of ambient PM10 at urban sites. Atmospheric        

           Environment,                   44(18),                   2231–2239. 

https://doi.org/10.1016/j.atmosenv.2010.02.019

 

Thornburg, J., Ensor, D. S., Rodes, C. E., Lawless, P. A., Sparks, L. E., & Mosley, R.

B. (2001). Penetration of Particles into Buildings and Associated Physical Factors. Part  I:  Model 

 Development  and  Computer  Simulations.  Aerosol  Science  and Technology, 34(3), 284–296. 

https://doi.org/10.1080/02786820150217858

 

Thurston, G. D., Ito, K., & Lall, R. (2011). A source apportionment of U . S . fi ne particulate  

matter  air  pollution.  Atmospheric  Environment,  45(24),  3924–3936. 

https://doi.org/10.1016/j.atmosenv.2011.04.070

 

Thurston,  G.  D.,  &  Spengler,  J.  D.  (1985).  A  quantitative  assessment  of  source 

contributions  to  inhalable  particulate  matter  pollution  in  metropolitan  Boston. Atmospheric 

 Environment  (1967),  19(1),  9–25.  https://doi.org/10.1016/0004-

6981(85)90132-5

 

Tsitouridou, R., Voutsa, D., & Kouimtzis, T. (2003). Ionic composition of PM10  in the area       

of       Thessaloniki,       Greece.       Chemosphere,       52(5),       883–891. 

https://doi.org/10.1016/S0045-6535(03)00313-8

 

Valavanidis,  A.,  Vlachogianni,  T.,  Fiotakis,  K.,  &  Loridas,  S.  (2013).  Pulmonary 

oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone 

as major causes of lung carcinogenesis through reactive oxygen species mechanisms. International 

Journal of Environmental Research and Public

Health, 10(9), 3886–3907. https://doi.org/10.3390/ijerph10093886

 

Voutsa,  D.,  Samara,  C.,  Manoli,  E.,  Lazarou,  D.,  &  Tzoumaka,  P.  (2014).  Ionic 

composition  of  PM2.5   at  urban  sites  of  northern  Greece:  Secondary  inorganic aerosol 

formation. Environmental Science and Pollution Research, 21(7), 4995– 5006. 

https://doi.org/10.1007/s11356-013-2445-8

 

Wahid, N. B A, Latif, M. T., Suan, L. S., Dominick, D., Sahani, M., Jaafar, S. A., & Mohd Tahir, N. 

(2014). Source identification of particulate matter in a semi-urban area   of   Malaysia   using   

multivariate   techniques.   Bulletin   of   Environmental Contamination and Toxicology, 92(3), 

317–322. https://doi.org/10.1007/s00128-

014-1201-1

 

Wahid,  N.B.A.,  Latif,  M.  T.,  &  Suratman,  S.  (2013).  Composition  and  source apportionment 

 of  surfactants  in  atmospheric  aerosols  of  urban  and  semi-urban areas          in          

Malaysia.          Chemosphere,          91(11),          1508–1516. 

https://doi.org/10.1016/j.chemosphere.2012.12.029

 

Wahid, Nurul Bahiyah  Abd,  Latif, M. T., & Suratman, S. (2017). Composition and possible sources 

of anionic surfactants from urban and semi-urban street dust. Air Quality,          Atmosphere      

    and          Health,          10(9),          1051–1057. 

https://doi.org/10.1007/s11869-017-0493-9

 

Wang, Q., Zhao, H. H., Chen, J. W., Gu, K. D., Zhang, Y. Z., Zhu, Y. X., Ye, L. X.

(2009). Adverse health  effects of lead exposure on children  and exploration to internal lead 

indicator.  Science of the  Total Environment, 407(23), 5986–5992. 

https://doi.org/10.1016/j.scitotenv.2009.08.038

 

Wang, S. K., Chew, S. P., Jusoh, M. T., Khairunissa, A., Leong, K. Y., & Azid, A. A. (2017).  WSN  

based  indoor  air  quality  monitoring  in  classrooms.  American Institute of Physics, 

020063(1808), 020063. https://doi.org/10.1063/1.4975296

 

Wang, Y. F., Chao, H. R., Wang, L. C., Chang-Chien, G. P., & Tsou, T. C. (2010). Characteristics of 

heavy metals emitted from a heavy oil-fueled power plant in Northern   Taiwan.   Aerosol   and   

Air   Quality   Research,   10(2),   111–118. https://doi.org/10.4209/aaqr.2009.09.0056

 

Wang, Y., Zhuang, G., Tang, A., Yuan, H., Sun, Y., Chen, S., & Zheng, A. (2005). The ion   

chemistry   and   the   source   of   PM2.5    aerosol   in   Beijing.   Atmospheric Environment,   

                                    39(21),                                       3771–3784. 

https://doi.org/10.1016/j.atmosenv.2005.03.013

 

Wei, X., Gao, B., Wang, P., Zhou, H., & Lu, J. (2015). Pollution characteristics and health risk 

assessment of heavy metals in street dusts from different functional areas in Beijing, China. 

Ecotoxicology and Environmental Safety, 112, 186–192. https://doi.org/10.1016/j.ecoenv.2014.11.005

 

Wolkoff, P., & Kjaergaard, S. . (2007). The dichotomy of relative humidity on indoor air         

quality.         Environment         International,         33(6),         850–857. 

https://doi.org/10.1016/j.envint.2007.04.004

 

Woloszyn, M., Kalamees, T., Abadie, M. O., Steeman, M., & Sasic Kalagasidis, A. (2009). The effect 

of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity 

of materials on indoor climate and energy efficiency    of    buildings.    Building    and    

Environment,    44(3),    515–524.

https://doi.org/10.1016/j.buildenv.2008.04.017

 

Xu, Z., Wu, Y., Shen, F., Chen, Q., Tan, M., & Yao, M. (2011). Bioaerosol science, technology,  and 

 engineering:  Past,  present,  and  future.  Aerosol  Science  and Technology, 45(11), 1337–1349. 

https://doi.org/10.1080/02786826.2011.593591

 

Yang Razali, N. Y.,  Latif, M. T., Dominick,  D.,  Mohamad, N.,  Sulaiman, F. R.,  & Srithawirat, 

T. (2015). Concentration of particulate matter, CO and CO2 in selected schools     in      

Malaysia.     Building     and     Environment,     87,     108–116. 

https://doi.org/10.1016/j.buildenv.2015.01.015

 

Young, S. H., Cox-Ganser, J. M., Shogren, E. S., Wolfarth, M. G., Li, S. Q., Antonini,

J. M., … Park, J. H. (2011). Pulmonary inflammation induced by office dust and the relation to 1 

3--glucan using different extraction techniques. Toxicological and Environmental                    

  Chemistry,                      93(4),                      806–823. 

https://doi.org/10.1080/02772248.2011.554229

 

Yu,  L.,  Wang,  G.,  Zhang,  R.,  Zhang,  L.,  Song,  Y.,  Wu,  B.,  Chu,  J.  (2013). 

Characterization and source apportionment of PM2.5  in an urban environment in Beijing.      

Aerosol      and      Air      Quality      Research,      13(2),      574–583. 

https://doi.org/10.4209/aaqr.2012.07.0192

 

Zannoni, D., Valotto, G., Visin, F., & Rampazzo, G. (2016). Sources and distribution of tracer 

elements in road dust?: The Venice mainland case of study. Journal of Geochemical                   

     Exploration,                        166,                        64–72. 

https://doi.org/10.1016/j.gexplo.2016.04.007

 

Zhang, L., Jin, X., Johnson, A. C., & Giesy, J. P. (2016). Hazard posed by metals and As in PM 2.5 

in air of five megacities in the Beijing-Tianjin-Hebei region of China during  APEC.  Environmental 

 Science  and  Pollution  Research,  23(17),  17603– 17612. 

https://doi.org/10.1007/s11356-016-6863-2

 

Zheng,  S.,  Pozzer,  A.,  Cao,  C.  X.,  &  Lelieveld,  J.  (2015).  Long-term  (2001-2012) 

concentrations of fine particulate matter (PM2.5) and the impact on human health in  Beijing,  

China.  Atmospheric  Chemistry  and  Physics,  15(10),  5715–5725. 

https://doi.org/10.5194/acp-15-5715-2015

 

Zhong, J. N. M., Latif, M. T., Mohamad, N., Wahid, N. B. A., Dominick, D., & Juahir,

H. (2014). Source Apportionment of Particulate Matter (PM10) and Indoor Dust in a      University   

   Building.      Environmental      Forensics,      15(1),      8–16. 

https://doi.org/10.1080/15275922.2013.872712

 

Zhu, C. S., Cao, J. J., Shen, Z. X., Liu, S. X., Zhang, T., Zhao, Z. Z., … Zhang, E. K. (2012). 

Indoor and outdoor chemical components of PM2.5  in the rural areas of Northwestern  China.  

Aerosol  and  Air  Quality  Research,  12(6),  1157–1165.

https://doi.org/10.4209/aaqr.2012.01.0003

 

 

 

 

 

 

 

 

 

 

 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.