UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :RA0421 Public health. Hygiene. Preventive Medicine
Main Author :Osamah Shihab Ahmed Albahrey
Additional Authors :Aos A. Z. Ansaef Al-Juboori
Bilal Bahaa Zaidan
Wang, Shir Li
Tan, Kian Lam
Lim, Chen Kim
Mohammed Talal
Title :Smart home-based IoT for real-time and secure remote health monitoring of triage and priority system using body sensors: multi-driven systematic review
Place of Production :Tanjong Malim
Publisher :Fakulti Seni, Komputeran dan Industri Kreatif
Year of Publication :2019
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
The Internet of Things (IoT) has been identified in various applications across different domains, such as in the healthcare sector. IoT has also been recognised for its revolution in reshaping modern healthcare with aspiring wide range prospects, including economical, technological and social. This study aims to establish IoT-based smart home security solutions for real-time health monitoring technologies in telemedicine architecture. A multilayer taxonomy is driven and conducted in this study. In the first layer, a comprehensive analysis on telemedicine, which focuses on the client and server sides, shows that other studies associated with IoT-based smart home applications have several limitations that remain unaddressed. Particularly, remote patient monitoring in healthcare applications presents various facilities and benefits by adopting IoT-based smart home technologies without compromising the security requirements and potentially large number of risks. An extensive search is conducted to identify articles that handle these issues, related applications are comprehensively reviewed and a coherent taxonomy for these articles is established. A total number of (n = 3064) are gathered between 2007 and 2017 for most reliable databases, such as ScienceDirect, Web of Science and Institute of Electrical and Electronic Engineer Xplore databases. Then, the articles based on IoT studies that are associated with telemedicine applications are filtered. Nine articles are selected and classified into two categories. The first category, which accounts for 22.22% (n = 2/9), includes surveys on telemedicine articles and their applications. The second category, which accounts for 77.78% (n = 7/9), includes articles on the client and server sides of telemedicine architecture. The collected studies reveal the essential requirement in constructing another taxonomy layer and review IoT-based smart home security studies. Therefore, IoT-based smart home security features are introduced and analysed in the second layer. The security of smart home design based on IoT applications is an aspect that represents a crucial matter for general occupants of smart homes, in which studies are required to provide a better solution with patient security, privacy protection and security of users’ entities from being stolen or compromised. Innovative technologies have dispersed limitations related to this matter. The existing gaps and trends in this area should be investigated to provide valuable visions for technical environments and researchers. Thus, 67 articles are obtained in the second layer of our taxonomy and are classified into six categories. In the first category, 25.37% (n = 17/67) of the articles focus on architecture design. In the second category, 17.91% (n = 12/67) includes security analysis articles that investigate the research status in the security area of IoT-based smart home applications. In the third category, 10.44% (n = 7/ 67) includes articles about security schemes. In the fourth category, 17.91% (n = 12/67) comprises security examination. In the fifth category, 13.43% (n = 9/67) analyses security protocols. In the final category, 14.92% (n = 10/67) analyses the security framework. Then, the identified basic characteristics of this emerging field are presented and provided in the following aspects. Open challenges experienced on the development of IoT-based smart home security are addressed to be adopted fully in telemedicine applications. Then, the requirements are provided to increase researcher’s interest in this study area. On this basis, a number of recommendations for different parties are described to provide insights on the next steps that should be considered to enhance the security of smart homes based on IoT. A map matching for both taxonomies is developed in this study to determine the novel risks and benefits of IoT-based smart home security for real-time remote health monitoring within client and server sides in telemedicine applications  

References

1. Zanella, A., Bui, N., Castellani, A., Vangelista, L., and Zorzi, M., Internet of Things for Smart Cities. IEEE Internet Things J. 1(1): 22–32, 2014.

2. Tian, C., Chen, X., Guo, D., Sun, J., and Liu, L., Analysis and design of security in Internet of things. 2015 8th Int., 2015.

3. Zhang, X. M., and Zhang, N., An open, secure and flexible platform based on internet of things and cloud computing for ambient aiding living and telemedicine. In: 2011 International Conference on Computer and Management, CAMAN 2011, pp. 1–4, 2011.

4. Stowe, S., and Harding, S., Telecare, telehealth and telemedicine. European Geriatric Medicine 1(3. No longer published by Elsevier):193–197, 2010.

5. Thota, C., Sundarasekar, R., Manogaran, G., Varatharajan, R., and Priyan, M. K., Centralized fog computing security platform for IoT and cloud in healthcare system. In: The Convergence of Big Data and, IGI Global, pp. 141–154, 2017.

6. Rajan, S. P., Review and investigations on future research directions of mobile based telecare system for cardiac surveillance. Rev. Mex. Trastor. Aliment. 13(4):454–460, 2015.

7. Negra, R., Jemili, I., and Belghith, A., Wireless Body Area Networks : Applications and technologies. Procedia - Procedia Comput. Sci. 83:1274–1281, 2016.

8. Martin, S., Kelly, G., Kernohan, W. G., McCreight, B., and Nugent, C., Smart home technologies for health and social care support. Cochrane Database of Systematic Reviews, 2008.

9. Jacobsson, A., Boldt, M., and Carlsson, B., A risk analysis of a smart home automation system. Elsevier 56:719–733, 2016.

10. Aggidis, A. G. A., Newman, J. D., and Aggidis, G. A., Investigating pipeline and state of the art blood glucose biosensors to formulate next steps. Biosens. Bioelectron. 74:243–262, 2015.

11. Woznowski, P., Kaleshi, D., Oikonomou, G., and Craddock, I., Classification and suitability of sensing technologies for activity recognition. Comput. Commun. 89–90:34–50, 2016.

12. Albahri, A. S., Zaidan, A. A., Albahri, O. S., Zaidan, B. B., and Alsalem, M. A., Real-Time Fault-Tolerant mHealth System: Comprehensive Review of Healthcare Services, Opens Issues, Challenges and Methodological Aspects. J. Med. Syst. 42(8): 137, 2018.

13. Albahri, O. S., Zaidan, A. A., Zaidan, B. B., Hashim, M., Albahri, A. S., and Alsalem, M. A., Real-Time Remote Health-Monitoring Systems in a Medical Centre: A Review of the Provision of Healthcare Services-Based Body Sensor Information, Open Challenges and Methodological Aspects. J. Med. Syst. 42(9): 164, 2018.

14. Rahmani, A. M. et al., Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Futur. Gener. Comput. Syst. 78(2):641–658, 2018.

15. Albahri, O. S. et al., Systematic Review of Real-time Remote Health Monitoring System in Triage and Priority-Based Sensor Technology: Taxonomy, Open Challenges, Motivation and Recommendations. J. Med. Syst. 42(5):80, May 2018.

16. Sakr, S., and Elgammal, A., Towards a Comprehensive Data Analytics Framework for Smart Healthcare Services. Big Data Res. 4:44–58, 2016.

17. Hindia, M. N., Rahman, T. A., Ojukwu, H., Hanafi, E. B., and Fattouh, A., Enabling remote health-caring utilizing IoT concept over LTE-femtocell networks. PLoS One 11(5):e0155077, 2016.

18. Gómez, J., Oviedo, B., and Zhuma, E., Patient Monitoring System Based on Internet of Things. Procedia Comput. Sci. 83:90–97, 2016.

19. Hussain, A., Wenbi, R., Da Silva, A. L., Nadher, M., and Mudhish, M., Health and emergency-care platform for the elderly and disabled people in the Smart City. J. Syst. Softw. 110:253–263, 2015.

20. Kumar, N., Kaur, K., Jindal, A., and Rodrigues, J. J. P. C., Providing healthcare services on-the-fly using multi-player cooperation game theory in Internet of Vehicles (IoV) environment. Digit. Commun. Networks 1(3):191–203, 2015.

21. Zanjal, S. V., and Talmale, G. R., Medicine Reminder and Monitoring System for Secure Health Using IOT. Phys. Procedia 78:471–476, 2016.

22. Kalid, N. et al., Based on Real Time Remote Health Monitoring Systems: A New Approach for Prioritization ‘Large Scales Data’ Patients with Chronic Heart Diseases Using Body Sensors and Communication Technology. J. Med. Syst. 42(4):69, 2018.

23. Courtney, K. L., Demiris, G., Rantz, M., and Skubic, M., Needing smart home technologies: The perspective of older adults in continuing care retirement communities. Radcliffe Medical Press, 2008.

24. Alaa, M., Zaidan, A. A., Zaidan, B. B., Talal, M., and Kiah, M. L. M., A review of smart home applications based on Internet of Things. J. Netw. Comput. Appl. 97. Academic Press:48–65, 2017.

25. Zaidan, A. A. et al., A survey on communication components for IoT-based technologies in smart homes. Telecommun. Syst. 69(1):1–25, 2018.

26. Zaidan, A. A. and Zaidan, B. B., A review on intelligent process for smart home applications based on IoT: coherent taxonomy, motivation, open challenges, and recommendations. Artificial Intelligence Review, Springer Netherlands, pp. 1–25, 2018.

27. Gaikwad, P. P., Gabhane, J. P., and Golait, S. S., 3-level secure Kerberos authentication for smart home systems using IoT. In: Proc. 2015 1st Int. Conf. Next Gener. Comput. Technol. NGCT 2015, pp. 262–268, 2016.

28. Alohali, B., Merabti, M., and Kifayat, K., A secure scheme for a smart house based on Cloud of Things (CoT). 2014 6th Comput. Sci. Electron. Eng. Conf. CEEC 2014 - Conf. Proc., pp. 115–120, 2014.

29. Le Vinh, T., Bouzefrane, S., Farinone, J., Attar, A., and Kennedy, B. P., Middleware to Integrate Mobile Devices, Sensors and Cloud Computing. Procedia Comput. Sci. 52:234–243, 2015.

30. Kirkham, T., Armstrong, D., Djemame, K., and Jiang, M., Risk driven Smart Home resource management using cloud services. Futur. Gener. Comput. Syst. 38: 2013.

31. Tao, M., Zuo, J., Liu, Z., Castiglione, A., and Palmieri, F., Multilayer cloud architectural model and ontology-based security service framework for IoT-based smart homes. Futur. Gener. Comput. Syst. 78:1040–1051, 2018.

32. Chifor, B. C., Bica, I., Patriciu, V. V., and Pop, F., A security authorization scheme for smart home Internet of Things devices. Futur. Gener. Comput. Syst. 86:740–749, 2018.

33. Moosavi, S. R. et al., SEA: A secure and efficient authentication and authorization architecture for IoT-based healthcare using smart gateways. Procedia Computer Science 52(1):452–459, 2015.

34. Yuan, X. and Peng, S., A research on secure smart home based on the Internet of Things. In: 2012 IEEE International Conference on Information Science and Technology, pp. 737–740, 2012.

35. You-Guo, L., and Ming-Fu, J., The reinforcement of communication security of the internet of things in the field of intelligent home through the use of middleware. In: Proceedings - 2011 4th International Symposium on Knowledge Acquisition and Modeling, KAM 2011, pp. 254–257, 2011.

36. Witkovski, A., Santin, V., Abreu, J. M., Management, and undefined 2015. An IdM and key-based authentication method for providing single sign-on in IoT, 2015. researchgate.net.

37. Rajiv, P., Raj, R., and Chandra, M., Email based remote access and surveillance system for smart home infrastructure. Perspect. Sci. 8: 459–461, 2016.

38. Santoso, F. K. and Vun, N. C. H., Securing IoT for smart home system. Proc. Int. Symp. Consum. Electron. ISCE, 2015, 2015.

39. D. Yunge, P. Kindt, M. B.-… (HPCC), 2015 IEEE 7th, and U. Hybrid apps: Apps for the internet of things, 2015. ieeexplore.ieee.org.

40. Jiang, T., Yang, M., and Zhang, Y., Research and implementation of M2M smart home and security system. Secur. Commun. Networks 8(16):2704–2711, 2015.

41. Lin, H., and Bergmann, N. W., IoT privacy and security challenges for smart home environments. Information. 7(3), 2016.

42. S. Tanwar, P. Patel, K. Patel, … S. T.-C., and undefined, An advanced Internet of Thing based security alert system for smart home, 2017. Ieeexplore.Ieee.Org.

43. A. A.-P. C. Science and undefined, Cyber security challenges within the connected home ecosystem futures. Elsevier, 2015.

44. Li, F., Wan, Z., Xiong, X., and Tan, J., Research on sensorgateway-terminal security mechanism of smart home based on IOT. Internet of Things, 2012.

45. Furfaro, A., Argento, L., Parise, A., and Piccolo, A., Using virtual environments for the assessment of cyberseturity issues in IoT scenarios. Simul. Model. Pract. Theory 73:43–54, 2017.

46. M. S.-I. S. I. M. & I. Forensics and undefined, Smart home definition and security threats, 2015. Ieeexplore.Ieee.Org.

47. Lee, C., Zappaterra, L., Choi, K., and Choi, H., Securing smart home : Technologies, security challenges , and security requirements. In: Workshop on Security and Privacy in Machine-toMachine Communications (M2MSec’14), pp. 67–72, 2014.

48. Matharu, G. S., Upadhyay, P., and Chaudhary, L., The Internet of Things: Challenges & security issues. In: 2014 International Conference on Emerging Technologies (ICET), pp. 54–59, 2014.

49. Jacobsson, A. and Davidsson, P., Towards a model of privacy and security for smart homes. IEEE World Forum Internet Things, WF-IoT 2015 - Proc., pp. 727–732, 2016.

50. Suryani, V., Sulistyo, S., and Widyawan, A survey on trust in internet of things. In: 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 1–6, 2016.

51. Sain, M, Kang, Y. J., and Lee, H. J., Survey on security in Internet of Things: State of the art and challenges. In: 2017 19th International Conference on Advanced Communication Technology (ICACT), pp. 699–704, 2017.

52. Bastos, D., Shackleton, M., and El-Moussa, F., Internet of things: A survey of technologies and security risks in smart home and city environments. In: Living in the Internet of Things: Cybersecurity of the IoT - 2018, pp. 7–30, 2018.

53. Han, J. H., Jeon, Y., and Kim, J., Security considerations for secure and trustworthy smart home system in the IoT environment. Int. Conf. ICT Converg. 2015 Innov. Towar. IoT, 5G, Smart Media Era, ICTC 2015, pp. 1116–1118, 2015.

54. Peng, Z., Kato, T., Takahashi, H., and Kinoshita, T., Intelligent home security system using agent-based IoT devices. ieeexplore. ieee.org, pp. 313–314, 2015.

55. Datta, S. K., Towards securing discovery services in Internet of Things. In: 2016 IEEE International Conference on Consumer Electronics, ICCE 2016, pp. 506–507, 2016.

56. Kim, Y. P., Yoo, S., and Yoo, C., DAoT: Dynamic and energyaware authentication for smart home appliances in Internet of Things. 2015 IEEE Int. Conf. Consum. Electron. ICCE 2015, pp. 196–197, 2015.

57. Ren, W., Ren, Y., Wu, M. E., and Lee, C. J., A Robust and Flexible Access Control Scheme for Cloud-IoT Paradigm with Application to Remote Mobile Medical Monitoring. In: Proceedings - 2015 3rd International Conference on Robot, Vision and Signal Processing, RVSP 2015, pp. 130–133, 2016.

58. Shivraj, V. L., Rajan, M. A., Singh, M., and Balamuralidhar, P., One time password authentication scheme based on elliptic curves for Internet of Things (IoT). In: 2015 5th National Symposium on Information Technology: Towards New Smart World (NSITNSW), pp. 1–6, 2015.

59. Yang, L., Seasholtz, C., Luo, B., and Li, F., Hide your hackable smart home from remote attacks: The multipath onion IoT Gateways, pp. 575–594, 2018.

60. Sanchez, I., et al., Privacy leakages in Smart Home wireless technologies. Proc. - Int. Carnahan Conf. Secur. Technol. 2014, 2014.

61. Min, B. and Varadharajan, V., Design and Evaluation of Feature Distributed Malware Attacks against the Internet of Things (IoT). In: Proceedings of the IEEE International Conference on Engineering of Complex Computer Systems, ICECCS, vol. 2016, pp. 80–89, 2016.

62. Jacobsson, A., Boldt, M., and Carlsson, B., On the Risk Exposure of Smart Home Automation Systems. 2014 Int. Conf. Futur. Internet Things Cloud, pp. 183–190, 2014.

63. Wurm, J., Hoang, K., Arias, O., Sadeghi, A. R., and Jin, Y., Security analysis on consumer and industrial IoT devices. Proc. Asia South Pacific Des. Autom. Conf. ASP-DAC, vol. 25–28, pp. 519–524, 2016.

64. Rahman, R. A. and Shah, B., Security analysis of IoT protocols: A focus in CoAP. In: 2016 3rd MEC International Conference on Big Data and Smart City, ICBDSC 2016, pp. 172–178, 2016.

65. Bao, H., Chong, A. Y. L., Ooi, K. B., and Lin, B., Are Chinese consumers ready to adopt mobile smart home? An empirical analysis. Int. J. Mob. Commun. 12(5):496, 2014.

66. Ling, Z., Luo, J., Xu, Y., Gao, C., Wu, K., and Fu, X., Security Vulnerabilities of Internet of Things: A Case Study of the Smart Plug System. IEEE Internet Things J. 4(6):1899–1909, 2017.

67. Liu, J., Zhang, C., and Fang, Y., EPIC: A Differential Privacy Framework to Defend Smart Homes Against Internet Traffic Analysis. IEEE Internet Things J. 5(2):1206–1217, 2018.

68. Ukil, A., Bandyopadhyay, S., and Pal, A., Privacy for IoT: Involuntary privacy enablement for smart energy systems. IEEE International Conference on Communications 2015:536–541, 2015.

69. Sivaraman, V., Gharakheili, H. H., Vishwanath, A., Boreli, R., and Mehani, O., Network-level security and privacy control for smarthome IoT devices. In: 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications, WiMob 2015, pp. 163–167, 2015.

70. Greensmith, J., Securing the Internet of Things with Responsive Artificial Immune Systems. Proc. 2015 Genet. Evol. Comput. Conf. - GECCO ‘15, pp. 113–120, 2015.

71. S. Errapotu, J. Wang, Y. Gong, … J. C.-I. I. of, and U, SAFE: Secure Appliance Scheduling for Flexible and Efficient Energy Consumption for Smart Home IoT, 2018. ieeexplore.ieee.org.

72. Vinayaga Sundaram, B., Ramnath, M., Prasanth, M., and Varsha Sundaram, J., Encryption and hash based security in Internet of Things. In: 2015 3rd International Conference on Signal Processing, Communication and Networking, ICSCN 2015, pp.1–6, 2015.

73. Huth, C., Zibuschka, J., Duplys, P., and Güneysu, T., Securing systems on the Internet of Things via physical properties of devices and communications. In: 9th Annual IEEE International Systems Conference, SysCon 2015 - Proceedings, pp. 8–13, 2015.

74. Huth, C., Duplys, P., and Guneysu, T., Secure software update and IP protection for untrusted devices in the Internet of Things via physically unclonable functions. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops, PerCom Workshops 2016, 2016.

75. Bergmann, O., Gerdes, S., Schäfer, S., Junge, F., and Bormann C., Secure bootstrapping of nodes in a CoAP network. In: 2012 IEEE Wireless Communications and Networking Conference Workshops, WCNCW 2012, pp. 220–225, 2012.

76. Elkhodr, M., Shahrestani, S., and Cheung, H., A Smart Home Application Based on the Internet of Things Management Platform. In: 2015 IEEE International Conference on Data Science and Data Intensive Systems, pp. 491–496, 2015.

77. Fisher, R. and Hancke, G. P., DTLS for lightweight secure data streaming in the internet of things. In: Proceedings - 2014 9th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2014, pp. 585–590, 2014.

78. Amin, R., Kumar, N., Biswas, G. P., Iqbal, R., and Chang, V., A light weight authentication protocol for IoT-enabled devices in distributed Cloud Computing environment. Futur. Gener. Comput. Syst. Int. J. Escience 78:1005–1019, 2018.

79. Song, T., Li, R., Mei, B., Yu, J., Xing, X., and Cheng, X., A Privacy Preserving Communication Protocol for IoT Applications in Smart Homes. In: 2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI), pp. 519–524, 2016.

80. Adiono, T., Marthensa, R., Muttaqin, R., Fuada, S., Harimurti, S., and Adijarto, W., Design of database and secure communication protocols for Internet-of-things-based smart home system. IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2017, pp.1273–1278, 2017.

81. Y. Chao, M. Jianfeng, D. X.-J. of Communications, and undefined, A New Evaluation Model for Security Protocols. Citeseer, 2011.

82. Getz, K. A., Wenger, J., Campo, R. A., Seguine, E. S., and Kaitin, K. I., Assessing the impact of protocol design changes on clinical trial performance. Am. J. Ther. 15(5):450–457, 2008.

83. Nadeem, A. and Javed, M. Y., A performance comparison of data encryption algorithms. In: 2005 International Conference on Information and Communication Technologies, pp. 84–89, 2005.

84. Beckers, K., Pattern and Security Requirements. 2015.

85. Michael, K., The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice. Comput. Secur. 31(4):634–635, 2012.

86. Boritz, J. E., IS practitioners’ views on core concepts of information integrity. Int. J. Account. Inf. Syst. 6(4):260–279, 2005.

87. Loukas, G., and Öke, G., Protection against denial of service attacks: A survey. Comput. J. 53(7):1020–1037, 2010.

88. Suryadevara, J., Sunil, B., and Kumar, N., Secured multimedia authentication system for wireless sensor network data related to Internet of Things. In: 2013 Seventh International Conference on Sensing Technology (ICST), pp. 109–115, 2013.

89. Xie, X., Deng, D., and Deng, X., Design of embedded gateway software framework for heterogeneous networks interconnection. Proc. 2011 Int. Conf. Electron. Optoelectron., vol. 2, no. ICEOE, pp. V2–306-V2–309, 2011.

90. Peretti, G., Lakkundi, V., and Zorzi, M., BlinkToSCoAP: An endto-end security framework for the Internet of Things. 2015 7th Int. Conf. Commun. Syst. Networks, COMSNETS 2015 - Proc., pp. 1–6, 2015.

91. R. Neisse, G. Steri, I. Fovino, G. B.-C. & Security, and undefined, SecKit: a model-based security toolkit for the internet of things. Elsevier, 2015.

92. Yoshigoe, K., Dai, W., Abramson, M., and Jacobs, A., Overcoming invasion of privacy in smart home environment with synthetic packet injection. In: Proceedings of 2015 TRON Symposium, TRONSHOW 2015, 2016.

93. Cebrat, G., Secure web based home automation: Application layer based security using embedded programmable logic controller. In: 2014 2nd International Conference on Information and Communication Technology, ICoICT 2014, pp. 302–307, 2014.

94. Pacheco, J. and Hariri, S., IoT security framework for smart cyber infrastructures. In: Proceedings - IEEE 1st International Workshops on Foundations and Applications of Self-Systems, FAS-W 2016, pp. 242–247, 2016.

95. Baruah, B., and Dhal, S., A two-factor authentication scheme against FDM attack in IFTTT based Smart Home System. Comput. Secur. 77:21–35, 2018.

96. Dorri, A., Kanhere, S. S., Jurdak, R., and Gauravaram, P., Blockchain for IoT security and privacy: The case study of a smart home. In: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 618–623, 2017.

97. Ge, M., Hong, J. B., Guttmann, W., and Kim, D. S., A framework for automating security analysis of the internet of things. J. Netw. Comput. Appl. 83:12–27, 2017.

98. Kalyanasundaramf, B., and Schnitgerf, G., THE PROBABILISTIC COMMUNICATION COMPLEXITY OF SET INTERSECTION*. SIAM J. Disc. MATH 5(4):545–557, 1992.

99. Ahmed, M. A. et al., A Review on Systems-Based Sensory Gloves for Sign Language Recognition State of the Art between 2007 and 2017. Sensors 18(7):2208, 2018.

100. Zaidan, A. A., et al., A review on smartphone skin cancer diagnosis apps in evaluation and benchmarking: coherent taxonomy, open issues and recommendation pathway solution. Health technol. (Berl)., 2018.

101. Alsalem, M. A. et al., Systematic Review of an Automated Multiclass Detection and Classification System for Acute Leukaemia in Terms of Evaluation and Benchmarking, Open Challenges, Issues and Methodological Aspects. J. Med. Syst 42(11):204, 2018.

102. Alsalem, M. A. et al., A review of the automated detection and classification of acute leukaemia: Coherent taxonomy, datasets, validation and performance measurements, motivation, open challenges and recommendations. Comput. Methods Prog. Biomed. 158:93–112, 2018.

103. Zughoul, O., et al., Comprehensive Insights into the Criteria of Student Performance in Various Educational Domains. IEEE Access, 2018.

104. Mohsin, A. H. et al., Real-Time Remote Health Monitoring Systems Using Body Sensor Information and Finger Vein Biometric Verification: A Multi-Layer Systematic Review. J. Med. Syst. 42(12):238, 2018.

105. Mohsin, A. H., et al., Real-time Medical Systems based on Human Biometric Steganography: A Systematic Review. J. Med. Syst. 42(12), 2018.

106. Yas, Q. M. et al., A systematic review on smartphone skin cancer apps: coherent taxonomy, motivations, open challenges and recommendations, and new research direction. Journal of Circuits, Systems and Computers 27(05):1830003, 2018.

107. Hamada, M. et al., A Systematic Review for Human EEG Brain Signals Based Emotion Classification, Feature Extraction, Brain Condition, Group Comparison. J. Med. Syst. 42(9):162, 2018.

108. Tareq, Z., et al., A review of disability EEG based wheelchair control system: Coherent taxonomy, open challenges and recommendations. Computer methods and programs in biomedicine, 2018.

109. Zaidan, B. B. et al., Impact of data privacy and confidentiality on developing telemedicine applications: A review participates opinion and expert concerns. Int. J. Pharmacol. 7(3):382–387, 2011.

110. Mat Kiah, M. L. et al., Design and Develop a Video Conferencing Framework for Real-Time Telemedicine Applications Using Secure Group-Based Communication Architecture. J. Med. Syst. 38(10):133, 2014.

111. Kalid, N. et al., Based Real Time Remote Health Monitoring Systems: A Review on Patients Prioritization and Related ‘Big Data’ Using Body Sensors information and Communication Technology. J. Med. Syst. 42(2):30, 2018.

112. Salman, O. H. et al., Novel Methodology for Triage and Prioritizing Using ‘Big Data’ Patients with Chronic Heart Diseases Through Telemedicine Environmental. Int. J. Inf. Technol. Decis. Mak. 16(05):1211–1245, 2017.

113. Hussain, M., et al., Conceptual framework for the security of mobile health applications on Android platform. Telematics and Informatics, 2018.

114. Hussain, M. et al., A security framework for mHealth apps on Android platform. Comput. Secur. 75:191–217, 2018.

115. Alanazi, H. O. et al., Secure topology for electronic medical record transmissions. Int. J. Pharmacol. 6(6):954–958, 2010.

116. Alanazi, H. O. et al., Securing electronic medical records transmissions over unsecured communications: An overview for better medical governance. Journal of Medicinal Plants Research 4(19): 2059–2074, 2010.

117. Nabi, M. S. A. et al., Suitability of using SOAP protocol to secure electronic medical record databases transmission. Int. J. Pharmacol. 6(6):959–964, 2010.

118. Mat Kiah, M. L. et al., An enhanced security solution for electronic medical records based on AES hybrid technique with SOAP/XML and SHA-1. J. Med. Syst. 37(5):9971, 2013.

119. Alanazi, H. O. et al., Meeting the security requirements of electronic medical records in the ERA of high-speed computing. J. Med. Syst. 39(1):165, 2015.

120. Iqbal, S., et al., Real-time-based E-health systems: design and implementation of a lightweight key management protocol for securing sensitive information of patients. Health Technol. (Berl)., 2018.

121. Enaizan, O., et al., Electronic Medical Record Systems: Decision Support Examination Framework for Individual, Security and Privacy Concerns Using Multi-Perspective Analysis. J. Health Technol. pp 1–28, 2018.

122. Zaidan, A. A. et al., Multi-criteria analysis for OS-EMR software selection problem: A comparative study. Decis. Support. Syst. 78: 15–27, 2015.

123. Kiah, M. L. M. et al., Open source EMR software: Profiling, insights and hands-on analysis. Comput. Methods Prog. Biomed. 117(2):360–382, 2014.

124. Zaidan, A. A. et al., Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. J. Biomed. Inform. 53:390–404, 2015.

125. Zaidan, B. et al., Enhancement of the amount of hidden data and the quality of image. Kuala Lumpur: Faculty of Computer Science and Information Technology, University of Malaya.

126. Zaidan, A. A. et al., Novel approach for high secure data hidden in MPEG video using public key infrastructure. Int. J. Comput. Netw. Secur. 1(1):1985–1553, 2009.

127. Naji, A. W. et al., Challenges of hidden data in the unused area two within executable files. J. Comput. Sci. 5(11):890, 2009.

128. Hameed, S. A. et al., Novel Simulation Framework of ThreeDimensional Skull Bio-Metric Measurement. Int. J. Comput. Sci. Eng. 1(3):269–274, 2009.

129. Naji, A. W. et al., New approach of hidden data in the portable executable file without change the size of carrier file using distortion techniques. Proceeding of World Academy of Science Engineering and Technology (WASET) 56:493–497, 2009.

130. Majeed, A. et al., Novel approach for high secure and high rate data hidden in the image using image texture analysis. International Journal of Engineering and Technology 1(2):63–69, 2009.

131. Zaidan, A. A., et al., Implementation stage for high securing cover-file of hidden data using computation between cryptography and steganography. International Association of Computer Science and Information Technology (IACSIT), indexing by Nielsen, Thomson ISI (ISTP), IACSIT Database, British Library and EI Compendex, 20, 2009.

132. Naji, A. W. et al., New approach of hidden data in the portable executable file without change the size of carrier file using statistical technique. International Journal of Computer Science and Network Security (IJCSNS) 9(7):218–224, 2009.

133. Zaidan, B. B. et al., New Comprehensive Study to Assess Comparatively the QKD, XKMS, KDM in the PKI encryption algorithms. Int. J. Comput. Sci. Eng. 1(3):263–268, 2009.

134. Naji, A. W. et al., (2009). "Stego-Analysis Chain, Session One" Investigations on Steganography Weakness vs Stego-Analysis System for Multimedia File. In: Computer Science and Information Technology-Spring Conference. IACSITSC'09. International Association of (pp. 405–409). IEEE, 2009.

135. Khalifa, O. O. et al., Novel approach of hidden data in the (unused area 2 within EXE file) using computation between cryptography and steganography. International Journal of Computer Science and Network Security (IJCSNS) 9(5):294–300, 2010.

136. Zaidan, A. A. et al., High securing cover-file of hidden data using statistical technique and AES encryption algorithm. World Academy of Science Engineering and Technology (WASET) 54:468–479, 2009.

137. Zaidan, B. B., et al., An empirical study for impact of the increment the size of hidden data on the image texture. ICFCC09, 2009.

138. Eltahir, M. E. et al., High rate video streaming steganography. In: Information Management and Engineering, 2009. ICIME'09. International Conference on (pp. 550–553). IEEE, 2009.

139. Zaidan, A. A., et al., Approved undetectable-antivirus steganography for multimedia information in PE-file. In: International Conference on IACSIT Spring Conference (IACSIT-SC09), Advanced Management Science (AMS), Listed in IEEE Xplore and be indexed by both EI (Compendex) and ISI Thomson (ISTP), Session (Vol. 9, pp. 425–429), 2009.

140. Naji, A. W., et al., "Stego-Analysis Chain, Session Two" Novel Approach of Stego-Analysis System for Image File. In: Computer Science and Information Technology-Spring Conference, 2009. IACSITSC'09. International Association of (pp. 410–413). IEEE, 2009.

141. Taqa, A. et al., New framework for high secure data hidden in the MPEG using AES encryption algorithm. International Journal of Computer and Electrical Engineering (IJCEE) 1(5):566–571, 2009.

142. Zaidan, B. B. et al., Stego-image vs stego-analysis system. International Journal of Computer and Electrical Engineering 1(5):572, 2009.

143. Zaidan, A. A. et al., New technique of hidden data in pe-file with in unused area one. International Journal of Computer and Electrical Engineering (IJCEE) 1(5):669–678, 2009.

144. Jalab, H., et al., Frame selected approach for hiding data within MPEG video using bit plane complexity segmentation. arXiv preprint arXiv:0912.3986, 2009.

145. Ahmed, M. A. et al., A novel embedding method to increase capacity and robustness of low-bit encoding audio steganography technique using noise gate software logic algorithm. J. Appl. Sci. 10(1):59–64, 2010.

146. Al-Frajat, A. K. et al., Hiding data in video file: An overview. Journal of Applied Sciences (Faisalabad) 10(15):1644–1649, 2010.

147. Zaidan, A. A. et al., Novel approach for high (secure and rate) data hidden within triplex space for executable file. Sci. Res. Essays 5(15):1965–1977, 2010.

148. Alam, G. M. et al., Using the features of mosaic image and AES cryptosystem to implement an extremely high rate and high secure data hidden: Analytical study. Sci. Res. Essays 5(21):3254–3260, 2010.

149. Hameed, S. A. et al., An accurate method to obtain bio-metric measurements for three dimensional skull. J. Appl. Sci. 10(2): 145–150, 2010.

150. Naji, A. W. et al., Novel approach for cover file of hidden data in the unused area two within EXE file using distortion techniques and advance encryption standard. Proceeding of World Academy of Science Engineering and Technology (WASET) 56(5):498– 502, 2010.

151. Naji, A. W., et al., Novel framework for hidden data in the image page within executable file using computation between advanced encryption standard and distortion techniques. arXiv preprint arXiv:0908.0216, 2009.

152. Zaidan, B. B. et al., On the differences between hiding information and cryptography techniques: An overview. Journal of Applied Sciences(Faisalabad) 10(15):1650–1655, 2010.

153. Hmood, A. K. et al., An overview on hiding information technique in images. Journal of Applied Sciences(Faisalabad) 10(18):2094–2100, 2010.

154. Hamdan, A. et al., New frame work of hidden data with in non multimedia file. Int. J. Comput. Netw. Secur. 2(1):46–54, 2010.

155. Jalab, H. A. et al., New design for information hiding with in steganography using distortion techniques. International Journal of Engineering and Technology 2(1):72, 2010.

156. Abomhara, M. A. S., Enhancing selective encryption for H. 264/ AVC using advanced encryption standard (Doctoral dissertation, University of Malaya), 2011.

157. Zaidan, A. A., et al., Securing cover-file without limitation of hidden data size using computation between cryptography and steganography. In: Proceedings of the World Congress on Engineering (Vol. 1, pp. 1–7), 2009.

158. Zaidan, B. et al., Quality of Image vs. Quantity of Data Hidden in the Image. IPCV 6:343–350, 2009.

159. Othman, F., et al., An extensive empirical study for the impact of increasing data hidden on the images texture. In: Future Computer and Communication, 2009. ICFCC 2009. International Conference on (pp. 477–481). IEEE, 2009.

160. Islam, R., et al., New system for secure cover file of hidden data in the image page within executable file using statistical steganography techniques. arXiv preprint arXiv:1002.2416, 2010.

161. Elnajjar, M., et al., Optimization digital image watermarking technique for patent protection. arXiv preprint arXiv:1002.4049, 2010.

162. Alanazi, H., et al., Intrusion detection system: overview. arXiv preprint arXiv:1002.4047, 2010.

163. Zaidan, B. B. et al., Towards corrosion detection system. International Journal of Computer Science Issues (IJCSI) 7(3): 46, 2010.

164. Zaidan, A. A. et al., A New System for Hiding Data within (Unused Area Two+ Image Page) of Portable Executable File Using Statistical Technique and Advance Encryption Standared. International Journal of Computer Theory and Engineering 2(2):218, 2010.

165. Alanazi, H., et al., New Classification Methods for Hiding Information into Two Parts: Multimedia Files and Non Multimedia Files. arXiv preprint arXiv:1003.4084, 2010.

166. Alanazi, H., et al., New comparative study between DES, 3DES and AES within nine factors. arXiv preprint arXiv:1003.4085, 2010.

167. Al-Ani, Z. K., et al., Overview: Main fundamentals for steganography. arXiv preprint arXiv:1003.4086, 2010.

168. Hmood, A. K. et al., On the capacity and security of steganography approaches: An overview. Journal of Applied Sciences (Faisalabad) 10(16):1825–1833, 2010.

169. Abomhara, M. et al., Suitability of Using Symmetric Key to Secure Multimedia Data: An Overview. Journal of Applied Sciences (Faisalabad) 10(15):1656–1661, 2010.

170. Hmood, A. K. et al., On the accuracy of hiding information metrics: Counterfeit protection for education and important certificates. International Journal of Physical Sciences 5(7):1054– 1062, 2010.

171. Yahya, A. N., et al., A new system for hidden data within header space for EXE-File using object oriented technique. In: Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE  International Conference on (Vol. 7, pp. 9–13). IEEE, 2010.

172. Zaidan, A. A. et al., Investigate the capability of applying hidden data in text file: An overview. Journal of Applied Sciences (Faisalabad) 10(17):1916–1922, 2010.

173. Zaidan, B. B. et al., StegoMos: A secure novel approach of high rate data hidden using mosaic image and ANN-BMP cryptosystem. International Journal of Physical Sciences 5(11):1796–1806, 2010.

174. Zaidan, A. A. et al., Novel multi-cover steganography using remote sensing image and general recursion neural cryptosystem. International Journal of Physical Sciences 5(11):1776–1786, 2010.

175. Raad, M. et al., Impact of spam advertisement through e-mail: A study to assess the influence of the anti-spam on the e-mail marketing. Afr. J. Bus. Manag. 4(11):2362–2367, 2010.

176. Salem, Y. et al., A review on multimedia communications cryptography. Res. J. Inf. Technol. 3:146–152, 2011.

177. Mat Kiah, M. L. et al., A review of audio based steganography and digital watermarking. International Journal of Physical Sciences 6(16):3837–3850, 2011.

178. Watari, M. A. et al., Securing m-Government Transmission Based on Symmetric and Asymmetric Algorithms: A review. Asian Journal of Scientific Ressearch 8:80–94, 2013.

179. Hussain, M. et al., The rise of keyloggers on smartphones: A survey and insight into motion-based tap inference attacks. Pervasive and Mobile Computing 25:1–25, 2016.

180. Zaidan, A. A. et al., Spam influence on business and economy: Theoretical and experimental studies for textual anti-spam filtering using mature document processing and naive Bayesian classifier. Afr. J. Bus. Manag. 5(2):596–607, 2011.

181. Zaidan, A. A. et al., Commercialization Strategy and Implementation Plans for the Proposed Vitual Anti-Spam System based on Feasibility Study. Asian Journal of Scientific Research 8(3):403–412, 2015.

182. Medani, A. et al., Review of mobile short message service security issues and techniques towards the solution. Sci. Res. Essays 6(6): 1147–1165, 2011.

183. Al-Bakri, S. H. et al., Securing peer-to-peer mobile communications using public key cryptography: New security strategy. International Journal of Physical Sciences 6(4):930–938, 2011.

184. Naji, A. W. et al., Security improvement of credit card online purchasing system. Sci. Res. Essays 6(16):3357–3370, 2011.

185. Abomhara, M. et al., An experiment of scalable video security solution using H. 264/AVC and advanced encryption standard (AES): Selective cryptography. International Journal of the Physical Sciences 6(16):4053–4063, 2011.

186. Nabi, M. S., et al., Suitability of adopting S/MIME and OpenPGP email messages protocol to secure electronic medical records. In: Future Generation Communication Technology (FGCT), 2013 Second International Conference on (pp. 93–97). IEEE, 2013.

187. Zaidan, B. B. et al., A new digital watermarking evaluation and benchmarking methodology using an external group of evaluators and multi-criteria analysis based on ‘large-scale data’. Softw. - Pract. Exp. 47(10):1365–1392, 2017

188. Zaidan, B. B., and Zaidan, A. A., Software and Hardware FPGABased Digital Watermarking and Steganography Approaches: Toward New Methodology for Evaluation and Benchmarking Using Multi-Criteria Decision-Making Techniques. J. Circuits, Syst. Comput. 26(07):1750116, 2017.

189. Zaidan, B. B. et al., A New Approach based on MultiDimensional Evaluation and Benchmarking for Data Hiding Techniques. Int. J. Inf. Technol. Decis. Mak.:1–42, 2017.

190. Zaidan, B. B., and Zaidan, A. A., Comparative study on the evaluation and benchmarking information hiding approaches based multi-measurement analysis using TOPSIS method with different normalisation, separation and context techniques. Meas. J. Int. Meas. Confed. 117:277–294, 2018.

191. Ali, A. H. et al., High capacity, transparent and secure audio steganography model based on fractal coding and chaotic map in temporal domain. Multimed. Tools Appl. 77(23):31487–31516, 2018.

192. Abdul-Talib, Y. Y., et al., Optimizing security and flexibility by designing a high security system for e-government servers. ICOCI09, Univ. Utara Malaysia, pp. 355–358, 2009.

193. Zaidan, B. B. et al., A security framework for nationwide health information exchange based on telehealth strategy. J. Med. Syst. 39(5):51, 2015.

194. Kiah, M. L. M. et al., MIRASS: medical informatics research activity support system using information mashup network. J. Med. Syst. 38(4):37, 2014.

195. Zaidan, A. A. et al., Challenges, Alternatives, and Paths to Sustainability: Better Public Health Promotion Using Social Networking Pages as Key Tools. J. Med. Syst. 39(2):7, 2015.

196. Abdulnabi, M. et al., A distributed framework for health information exchange using smartphone technologies. J. Biomed. Inform. 69:230–250, 2017.

197. Nidhal, S. et al., Computerized algorithm for fetal heart rate baseline and baseline variability estimation based on distance between signal average and alpha value. Int. J. Pharmacol. 7(2):228–237, 2011.

198. Hussain, M. et al., The landscape of research on smartphone medical apps: Coherent taxonomy, motivations, open challenges and recommendations. Comput. Methods Prog. Biomed. 122(3):393– 408, 2015.

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)