UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
In this study, the effectiveness of lala clam (Orbicularia orbiculata) shell, a fishery waste, as an adsorbent for removal of Cd(II), Cu(II) and Pb(II) ions from contaminated water was evaluated by characterization and adsorption studies. The characterization study was performed using Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray (EDX) Spectroscopy and Fourier Transform Infrared (FTIR) Spectroscopy techniques. The effects of solution pH (pH 1.0 to 6.0), adsorbent dosage (0.125 to 0.750 g) and initial adsorbate concentration (10 to 200 mg/L) on adsorption capacity of lala clam shell were studied. The capability of lala clam shell to remove metal ions from aqueous solution was assessed in both single- and mix-metal systems. The adsorption equilibrium data were fitted to Freundlich and Langmuir isotherm models. At an optimum solution pH of 6.0 and initial metal ion concentration of 200 mg/L, the maximum adsorption capacity (Qmax) values of Cd(II), Cu(II) and Pb(II) ions were determined as 66.66, 64.94 and 100.00 mg/g, respectively. The removal performance of lala clam shell (63.80 to 93.79%) for metal ions from battery manufacturing wastewater was comparable to that of three commercial activated carbons derived from olive tree wood (73.01 to 94.83%), coconut shell (68.10 to 95.17%) and bamboo (69.33 to 94.48%), which are commonly used for water treatment in Libya, Malaysia and Indonesia, respectively. The results obtained from this study suggest that lala clam shell exhibits a great potential to be used as an effective alternative to expensive adsorbents for water treatment |
References |
Agbozu, I. E., & Emoruwa, F. O. (2014). Batch adsorption of heavy metals (Cu, Pb, Fe, Cr and Cd) from aqueous solutions using coconut husk. African Journal of Environmental Science and Technology, 8, 239–246. Alharbi, M. M. L., Basheer, A. A., Khattab, R. A., & Ali, I. (2018). Health and environmental effects of persistent organic pollutants. Journal of Molecular Liquids, 263, 442–453. doi:10.1016/j.molliq.2018.05.029 Ali, M. H., Hussian, A. E. M., Abdel-Satar, A. M., Goher, M. E., Krzebietke, A. N., & El-Monem, A. M. A. (2016). The isotherm and kinetic studies of the biosorption of heavy metals by non-living cells of Chlorella vulgaris. Journal of Elementology, 21, 1263–1276. doi:10.5601/jelem.2016.21.1.1040 Anna, B., Kleopas, M., Constantine, S., Anestis, F., & Maria, B. (2015). Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: Study in mono-and multi-metal systems. Environmental Earth Sciences, 73(9), 5435–5444. doi:10.1007/s12665-014-3798-0 Aziz, E. K., Abdelmajid, R., Rachid, L. M., & Mohammadine, E. L. (2018). Adsorptive removal of anionic dye from aqueous solutions using powdered and calcined vegetables wastes as low-cost adsorbent. Arab Journal of Basic and Applied Sciences, 25(3), 93–102. doi:10.1080/25765299.2018.1517861 Babalola, J. O., Olayiwola, F. T., Olowoyo, J. O., Alabi, A. H., Unuabonah, E. I., Ofomaja, A. E., & Omorogie, M. O. (2017). Adsorption and desorption kinetics of toxic organic and inorganic ions using an indigenous biomass: Terminalia ivorensis seed waste. International Journal of Industrial Chemistry, 8(2), 207–220. doi:10.1007/s40090-016-0109-5 Bakka, A., Taleb, M. A., Saffaj, N., Laknifli, A., Mamouni, R., Benlhachemi, A., … Diane, Y. (2018). Patellidae shells waste as a biosorbent for the removal of aldrin pesticide from aqueous solutions. Journal of Engineering Science and Technology, 13(4), 925–942. Bandela, N. N., Babrekar, M. G., Jogdand, O. K., & Kaushik, G. (2016). Removal of copper from aqueous solution using local agricultural wastes as low-cost adsorbent. Journal of Materials and Environmental Science, 7, 1972–1978. Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73(1), 373–380. doi:10.1021/ja01145a126 Begum, S. A. S., Tharakeswar, Y., Kalyan, Y., & Naidu, G. R. (2015). Biosorption of Cd(II), Cr(VI) & Pb(II) from aqueous solution using Mirabilis jalapa as adsorbent. Journal of Encapsulation and Adsorption Sciences, 5, 93–110. doi:10.4236/jeas.2015.52007 Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319. doi:10.1021/ja01269a023 Caglar, B., Afsin, B., Tabak, A., & Eren, E. (2009). Characterization of the cation-exchanged bentonites by XRPD, ATR, DTA/TG analyses and BET measurement. Chemical Engineering Journal, 149(1-3), 242–248. doi:10.1016/j.cej.2008.10.028 Davarnejad, R., Moraveji, M. K., & Havaie, M. (2018). Integral technique for evaluation and optimization of Ni (II) ions adsorption onto regenerated cellulose using response surface methodology. Arabian Journal of Chemistry, 11(3), 370–379. doi:10.1016/j.arabjc.2015.05.022 de Paiva, T. M. N., Fraga, T. J. M., Sales, D. C. S., Carvalho, M. N., & Sobrinho, MAdM. (2018). Anomalocardia brasiliana shellfish shells as a novel and ecofriendly adsorbent of Nylosan Brilliant Blue acid dye. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 78(7), 1576–1586. Department of Environment Malaysia (DOE). (1974). Environmental Quality Act 1974 (Act 127). Elaigwu, S. E., Rocher, V., Kyriakou, G., & Greenway, G. M. (2014). Removal of Pb2þ and Cd2þ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis africana shell. Journal of Industrial and Engineering Chemistry, 20(5), 3467–3473. doi:10.1016/j.jiec.2013.12.036 Foo, K. Y., & Hameed, B. H. (2012). Potential of jackfruit peel as precursor for activated carbon prepared by microwave induced NaOH activation. Bioresource Technology, 112, 143–150. doi:10.1016/j.biortech.2012.01.178 Freundlich, H. M. F. (1906). Uber die adsorption in Lasungen. Journal of Physical Chemistry, 57, 385–470. Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore-and solid diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial & Engineering Chemistry Fundamentals, 5(2), 212–223. doi:10.1021/i160018a011 He, K., Chen, Y., Tang, Z., & Hu, Y. (2016). Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environmental Science and Pollution Research, 23(3), 2778–2788. doi:10.1007/s11356-015-5422-6 Hizal, J., Tutem, E., Guclu, K., Hugul, M., Ayhan, S., Apak, R., & Kilinckale, F. (2013). Heavy metal removal from water by red mud and coal fly ash: An integrated adsorptionsolidification/stabilization process. Desalination and Water Treatment, 51(37–39), 7181–7193. doi:10.1080/ 19443994.2013.771289 Jones, G. C., & Jackson, B. (1993). Infrared transmission spectra of carbonate minerals (pp. 28–36). London: Springer. Kausar, A., MacKinnon, G., Alharthi, A., Hargreaves, J., Bhatti, H. N., & Iqbal, M. (2018). A green approach for the removal of Sr(II) from aqueous media: Kinetics, isotherms and thermodynamic studies. Journal of Molecular Liquids, 257, 164–172. doi:10.1016/j.molliq.2018.02.101 Kong, W., Ren, J., Wang, S., & Chen, Q. (2014). Removal of heavy metals from aqueous solutions using acrylicmodified sugarcane bagasse-based adsorbents: Equilibrium and kinetic studies. BioResources, 9(2), 3184–3196. doi:10.15376/biores.9.2.3184-3196 Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38(11), 2221–2295. doi:10.1021/ ja02268a002 Li, G., Lei, Y., Ge, J., & Wu, S. (2017). The empirical relationship between mining industry development and environmental pollution in China. International Journal of Environmental Research and Public Health, 14(3), 254–264. doi:10.3390/ijerph14030254 Li, Y., Liu, J., Yuan, Q., Tang, H., Yu, F., & Lv, X. (2016). A green adsorbent derived from banana peel for highly effective removal of heavy metal ions from water. RSC Advances, 6(51), 45041–45048. doi:10.1039/C6RA07460J Lu, L., Jiang, X., Jia, L., Ai, T., & Wu, H. (2017). Kinetic and thermodynamic studies on adsorption of Cu2þ, Pb2þ, methylene blue and malachite green from aqueous solution using AMPS-modified hazelnut shell powder. Chemical Research in Chinese Universities, 33, 112–118. doi:10.1007/s40242-017-6243-6 Mohrig, J. R., Hammond, C. N., & Schatz, P. F. (2006). Techniques in organic chemistry (miniscale, standard taper microscale, and Williamson microscale) (2nd ed.,pp. 40–48). New York, NY: W.H. Freeman. Oladipo, A. A., & Gazi, M. (2015). Microwaves initiated synthesis of activated carbon-based composite hydrogel for simultaneous removal of copper(II) ions and direct red 80 dye: A multi-component adsorption system. Journal of the Taiwan Institute of Chemical Engineers, 47, 125–136. doi:10.1016/j.jtice.2014.09.027 Pacurariu, C., Pas¸ka, O., Ianos¸, R., & Muntean, S. G. (2016). Effective removal of methylene blue from aqueous solution using a new magnetic iron oxide nanosorbent prepared by combustion synthesis. Clean Technologies and Environmental Policy, 18(3), 705–715. doi:10.1007/s10098-015-1041-7 Praveen, R. S., & Vijayaraghavan, K. (2015). Optimization of Cu(II), Ni(II), Cd(II) and Pb(II) biosorption by red marine alga Kappaphycus alvarezii. Desalination and Water Treatment, 55(7), 1816–1824. doi:10.1080/19443994.2014.927334 Raikar, R. V., Correa, S., & Ghorpade, P. (2015). Removal oflead (II) from aqueous solution using natural and activated rice husk. International Research Journal of Engineering and Technology, 2, 1677–1686. Razi, M. A. M., Al-Gheethi, A., Al-Qaini, M., & Yousef, A. (2018). Efficiency of activated carbon from palm kernel shell for treatment of greywater. Arab Journal of Basic and Applied Sciences, 25(3), 102–110. doi:10.1080/25765299.2018.1514142 Rouquerol, F., Rouquerol, J., Sing, K. S. W., Llewellyn, P., & Maurin, G. (2014). Adsorption by powders and porous solids (principles, methodology and applications) (2nd ed.,pp. 40–50). London: Academic Press. Saravanan, R., Sacari, E., Gracia, F., Khan, M. M., Mosquera, E., & Gupta, V. K. (2016). Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids, 221,1029–1033. doi:10.1016/j.molliq.2016.06.074 Shin, W. S., & Kim, Y. K. (2014). Biosorption characteristics of heavy metals (Ni2þ, Zn2þ, Cd2þ, Pb2þ) from aqueous solution by Hizikia fusiformis. Environmental Earth Sciences, 71(9), 4107–4114. doi:10.1007/s12665-013-2799-8 Stock, A. K., Reuner, U., Gohll, K., & Beste, C. (2016). Effects of copper toxicity on response inhibition processes: A study in Wilson’s disease. Archives of Toxicology, 7, 1623–1630. doi:10.1007/s00204-015-1609-3 Sulayman, A. H., Ebrahim, S. E., & Mohammed-Ridha, M. J. (2013). Equilibrium, kinetic, and thermodynamic biosorption of Pb(II), Cr(III), and Cd(II) ions by dead anaerobic biomass from synthetic wastewater. Environmental Science and Pollution Research, 20, 175–187. doi:10.1007/ s11356-012-0854-8 Taufiq-Yap, Y. H., Lee, H. V., & Lau, P. L. (2012). Transesterification of Jatropha curcas oil to biodiesel by using short necked clam (Orbicularia orbiculata) shell derived catalyst. Energy Exploration & Exploitation, 30, 853–866. doi:10.1260/0144-5987.30.5.853 Tsai, W.-T. (2013). Microstructural characterization of calcite-based powder materials prepared by planetary ball milling. Materials, 6(8), 3361–3372. doi:10.3390/ma6083361 Wei, D., Zhang, H., Cai, L., Guo, J., Wang, Y., Ji, L., & Song, W. (2018). Calcined mussel shell powder (CMSP) via modification with surfactants: Application for antistatic oil-removal. Materials, 11(8), 1410. doi:10.3390/ ma11081410 Wu, X., Wang, D., Zhang, S., Cai, W., & Yin, Y. (2015). Investigation of adsorption behaviors of Cu(II), Pb(II), and Cd(II) from water onto the high molecular weight poly (arylene ether sulfone) with pendant carboxyl groups. Journal of Applied Polymer Science, 132(20), n/ a–11. doi:10.1002/app.41984 Zhou, R., Xu, Y., Shen, J., Han, L., Chen, X., Feng, X., & Kuang, X. (2016). Urinary KIM-1: A novel biomarker for evaluation of occupational exposure to lead. Scientific Reports, 6(1), 7. doi:10.1038/srep38930
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |