UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :Q Science (General)
Main Author :Azlan Kamari
Additional Authors :Is Fatimah
Della Fahrani
Tia Harmawantika
Imam Sahroni
Cecep Sa’bana Rahmatillah
Rico Nurillahi
Title :Functionalization of hydroxyapatite derived from cockle (Anadara granosa) shells into hydroxyapatite-nano TiO2 for photocatalytic degradation of methyl violet
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2019
Corporate Name :Universiti Pendidikan Sultan Idris

Abstract : Universiti Pendidikan Sultan Idris
Photocatalyst of hydroxyapatite–nano TiO2 (HAp-nTiO2) was prepared from phosphatation of calcined cockle (Anadara granosa) shells followed by dispersion of nano TiO2 powder into HAp precipitate and calcination at 400 °C for 2 h. The prepared material was characterized using X-ray diffraction, scanning electron microscope–energy dispersive X-ray spectrophotometry, gas sorption analysis, and UV-Vis diffuse reflectance spectrophotometry. The photocatalytic activity of the material was evaluated for methyl violet degradation over photocatalysis and photooxidation mechanism. The results showed that the homogeneous dispersion of TiO2 in the HAp-nTiO2 composite was achieved, as seen in the X-ray diffraction analysis, diffuse reflectance UV-Vis, and gas sorption analyses. The physicochemical and photocatalytic character of the composite exhibited the positive role of HAp as TiO2 support in enhancing the photocatalytic activity with a higher turnover number and reusability property than that of pure TiO2. It was also noted that the HAp-nTiO2 composite demonstrated rapid methyl violet degradation over photooxidation rather than by photocatalytic mechanism.

References

1. Deng Y, Zhao RZ. Advanced oxidation processes (AOPs) in wastewater treatment. Curr Pollut Rep. 2015;1:167–76.

2. Hassaan MA, Nemr AE. Health and environmental impacts of dyes: mini review. Am J Environ Sci Eng. 2017;1:64–7.

3. Yanto DHY, Tachibana S, Itoh K. Biodecolorization and biodegradation of textile dyes by the newly isolated saline-pH tolerant fungus Pestalotiopsis sp. J Environ Sci Technol. 2014;7:44–55.

4. Mohammadi A, Aliakbarzadeh Karimi A, Fallah MH. Adsorption and photocatalytic properties of surface-modified TiO2 nanoparticles for methyl orange removal from aqueous solutions. Prog Color Colorants Coat. 2016;9:249–60.

5. Shang X, Li B, Zhang T, Li C, Wang X. Photocatalytic degradation of methyl orange with commercial organic pigment sensitized TiO2. Procedia Environ Sci. 2013;18:478–85.

6. Pinho L, Mosquera MJ. Photocatalytic activity of TiO2-SiO2 nanocomposites applied to buildings: influence of particle size and loading. Appl Catal BEnviron. 2013;134:205–21.

7. Liu HF, Jia ZG, Ji SF, Zheng YY, Li M, Yang H. Synthesis of TiO2/SiO2@Fe3O4 magnetic microspheres and their properties of photocatalytic degradation dyestuff. Catal Today. 2011;175:293–8.

8. Liu C, Chen Z, Miao Z, Chen F, Gu C, Huang M, et al. Properties and preparation of porous carbon material supported with modified TiO2. Procedia Eng. 2012;27:557–63.

9. Charlena, Suparto IH, Putri DK. Synthesis of hydroxyapatite from rice fields snail shell (Bellamya javanica) through wet method and pore modification using chitosan. Procedia Chem. 2015;17:27–35.

10. Fatimah I, Ilahi RN, Pratami R. Low cost CaTiO3 perovskite synthesized from scallop (Anadara granosa) shell as antibacterial ceramic material. IOP Conf Ser-Mat Sci. 2018;299:012034.

11. Hadiyanto H, Lestari SP, Widayat W. Preparation and characterization of Anadara Granosa shells and CaCO3 as heterogeneous catalyst for biodiesel production. Bull Chem React Eng. 2016;11:21–6.

12. Nurhayati M, Linggawati A, Anita S, Amri TA. Preparation and characterization of calcium oxide heterogeneous catalyst derived from Anadara Granosa shell for biodiesel synthesis. KnE Eng. 2016;2016:1–8.

13. Jamarun N, Azharman Z, Zilfa SU. Effect of firing for synthesis of hydroxyapatite by precipitation method. Orient J Chem. 2016;32:2095–9

14. Kongsri S, Janpradit K, Buapa K, Techawongstien S, Chanthai S. Nanocrystalline hydroxyapatite from fish scale waste: preparation, characterization and application for selenium adsorption in aqueous solution. Chem Eng J. 2013;215:522–32.

15. Salma-Ancane K, Stipniece L, Locs J, Lakevics V, Irbe Z, Berzina-Cimdina L. The influence of biogenic and synthetic starting materials on the properties of porous hydroxyapatite bioceramics. Key Eng Mater. 2014;614:11–6.

16. Rujitanapanich S, Kumpapan P, Wanjanoi P. Synthesis of hydroxyapatite from oyster shell via precipitation. Enrgy Proced. 2014;56:112–7.

17. Anjaneyulu U, Pattanayak DK, Vijayalakshmi U. Snail shell derived natural hydroxyapatite: effects on NIH-3T3 cells for orthopedic applications. Mater Manuf Process. 2016;31:206–16.

18. Fatimah I, Aulia GR, Puspitasari W, Nurillahi R, Sopia L, Herianto R. Microwave-synthesized hydroxyapatite from paddy field snail (Pila ampullacea) shell for adsorption of bichromate ion. Sustain Environ Res. 2018;28:462–71.

19. Shariffuddin JH, Jones MI, Patterson DA. Greener photocatalysts: hydroxyapatite derived from waste mussel shells for the photocatalytic degradation of a model azo dye wastewater. Chem Eng Res Des. 2013;91:1693–704.

20. Giannakopoulou T, Todorova N, Romanos G, Vaimakis T, Dillert R, Bahnemann D, et al. Composite hydroxyapatite/TiO2 materials for photocatalytic oxidation of NOx. Mater Sci Eng B-Adv. 2012;177:1046–52.

21. Oktar FN. Hydroxyapatite-TiO2 composites. Mater Lett. 2006;60:2207–10.

22. Monmaturapoj N, Thepsuwan W, Mai-Ngam K, Ngernpimai S, Klinsukhon W, Prahsarn C. Preparation and properties of hydroxyapatite/titania composite for microbial filtration application. Adv Appl Ceram. 2014;113:267–74.

23. Sassoni E, D’Amen E, Roveri N, Scherer GW, Franzoni E. Photocatalytic hydroxyapatite-titania nanocomposites for preventive conservation of marble. IOP Conf Ser-Mat Sci. 2018;364:012073.

24. Buasri A, Chaiyut N, Loryuenyong V, Worawanitchaphong P, Trongyong S. Calcium oxide derived from waste shells of mussel, cockle, and scallop as the heterogeneous catalyst for biodiesel production. Sci World J. 2013;2013:460923.

25. Asimeng BO, Fianko JR, Kaufmann EE, Tiburu EK, Hayford CF, Anani PA, et al. Preparation and characterization of hydroxyapatite from Achatina achatina snail shells: effect of carbonate substitution and trace elements on defluoridation of water. J Asian Ceramic Soc. 2018;6:205–12.

26. Agbozu IE, Emoruwa FO. Batch adsorption of heavy metals (Cu, Pb, Fe, Cr and Cd) from aqueous solutions using coconut husk. Afr J Environ Sci Technol. 2014;8:239–46.

27. Tsuruoka A, Isobe T, Matsushita S, Wakamura M, Nakajima A. Comparison of photocatalytic activity and surface friction force variation on Ti-doped hydroxyapatite and anatase under UV illumination. J Photoch Photobio A. 2015;311:160–5.

28. Hu M, Yao ZH, Liu X, Ma LP, He Z, Wang XQ. Enhancement mechanism of hydroxyapatite for photocatalytic degradation of gaseous formaldehyde over TiO2/hydroxyapatite. J Taiwan Inst Chem E. 2018;85:91–7.

29. Reddy MP, Venugopal A, Subrahmanyam M. Hydroxyapatite photocatalytic degradation of calmagite (an azo dye) in aqueous suspension. Appl Catal BEnviron. 2007;69:164–70.

30. Salhi A, Aarfane A, Tahiri S, Khamliche L, Bensitel M, Bentiss F, et al. Study of the photocatalytic degradation of methylene blue dye using titaniumdoped hydroxyapatite. Mediterr J Chem. 2015;4:59–67.

31. Chen TW, Zheng YH, Lin JM, Chen GN. Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry. J Am Soc Mass Spectrom. 2008;19:997–1003.

32. Serpone N, Salinaro A, Emeline A, Ryabchuk V. Turnovers and photocatalysis: a mathematical description. J Photoch Photobio A. 2000;130:83–94.

33. Yang SJ, Xu YL, Huang YK, Zhou GH, Yang ZY, Yang Y, et al. Photocatalytic degradation of methyl violet with TiSiW12O40/TiO2. Int J Photoenergy. 2013; 2013:191340.

34. Liu W, Qian GM, Liu LL, Fan XY, Cai XY, Feng JY, et al. The growth mechanism of titania/hydroxyapatite and its application in the photodegradation of methyl orange dye under UV irradiation. Results Phys. 2018;11:112–7.

35. Ouinani EA, Boumanchar I, Zbair M, Chhiti Y, Sahibed-Dine A, Bentiss F, et al. The photocatalytic degradation of methylene bleu over TiO2 catalysts supported on hydroxyapatite. J Mater Environ Sci. 2017;8:1301–11.

36. Teixeira S, Martins PM, Lanceros-méndez S, Kühn K, Cuniberti G. Reusability of photocatalytic TiO2 and ZnO nanoparticles immobilized in poly(vinylidene difluoride)-co-trifluoroethylene. Appl Surf Sci. 2016;384:497–504.

37. Deus F, Continentino MA. Superconductor-normal metal quantum phase transition in dissipative and non-equilibrium systems. Philos Mag. 2013;93:3062–80.

38. Khezrianjoo S, Revanasiddappa HD. Langmuir-Hinshelwood kinetic expression for the photocatalytic degradation of metanil yellow aqueous solutions by ZnO catalyst. Chem Sci J. 2012;2012:CSJ85.

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)