UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :QC Physics
Main Author :Nur Ain Syafiqah Sudin
Title :Reinforcement of plasticized poly (lactic acid) with titanium dioxide nanofiller
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
The study aimed to investigate the reinforcement of plasticized poly(lactic acid) (PLA) with titanium dioxide (TiO2) nanofiller. In this research, solvent casting and thermocompression methods are adopted to prepare PLA nanocomposites with different percentages of TiO2 at 0.5, 2.0, 3.5, 5.0, and 7.0 %?w/w that dispersed in PLA solution using a mechanical mixer and ultrasonication technique. The composites were characterized using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Results showed that tributyl citrate (TBC) plasticizer reduced the brittle failure and increased the flexibility of PLA whilst TiO2 nanofiller improved the crystallization of PLA composites as evidenced in DSC results at slow scanning rate. The presence of 3.5 %?w/w TiO2 in plasticized PLA increased the glass transition temperature (Tg) from 41.75 °C to 42.22 °C indicating restricted mobility of polymer chains. The storage modulus improved from 2.36 GPa to 2.85 GPa due to the good dispersion of TiO2 in the polymer matrix, as proven in SEM results. Thermal analysis proved that the crystallinity of PLA increased with the addition of TBC and TiO2 from 24.98 % to 36.57 % at optimum loading of 7.0 %·w/w and 3.5 %?w/w, respectively. However, agglomeration of nanoparticles was formed at higher filler loading (>3.5 %?w/w), which reduced its properties. TiO2 was distributed uniformly throughout the polymer matrix, acted as a reinforcement agent that improved the thermomechanical properties and thermal stability of the composites. In conclusion, the incorporation of plasticizer and nanofiller increased flexibility, improved thermomechanical properties, thermal behavior, and thermal stability of the PLA nanocomposites at optimum 7.0 %·w/w TBC and 3.5 %?w/w TiO2. The implication of the study is that modification of PLA in the acquirement of improved flexibility, toughness and strength has potential in the packaging industry due to PLA biodegradability and compostability.

References

Abdelwahab, M. A., Flynn, A., Chiou, B. S., Imam, S., Orts, W & Chiellini, E. (2012). Thermal,    

mechanical    and    morphological    characterization    of    plasticized PLA-PHB blends. Polymer 

Degradation and Stability, 97(9), 1822-1828.

 

Adeosun, S. O., Lawal, G. I., Balogun, S. A & Akpan, E. I. (2012). Review of green polymer 

nanocomposites. Journal of Minerals and Materials Characterization and Engineering, 11(04), 385.

 

Ahmed, J. & Varshney, S. K. (2011). Polylactides—chemistry, properties and green packaging 

technology: a review. International Journal of Food Properties, 14(1), 37-58.

 

Ahmed, J., Varshney, S. K., Auras, R & Hwang, S. W. (2010). Thermal and rheological properties     

of     L?polylactide/polyethylene     glycol/silicate     nanocomposites films. Journal of Food 

Science, 75(8), N97-N108.

 

Alberton,  J.,  Martelli,  S.  M.,  Fakhouri,  F.  M  &  Soldi,  V.  (2014).  Mechanical  and 

moisture  barrier  properties  of  titanium  dioxide  nanoparticles  and  halloysite nanotubes 

reinforced polylactic acid (PLA). In IOP Conference Series: Materials Science and Engineering (Vol. 

64, No. 1, p. 012010). IOP Publishing.

 

Ali, F. B., Awale, R. J., Fakhruldin, H & Anuar, H. (2016). Plasticizing poly (lactic acid) using 

epoxidized palm oil for environmental friendly packaging material. Malaysian Journal of Analytical 

Sciences, 20(5), 1153-1158.

 

Ali, F., Chang, Y. W., Kang, S. C & Yoon, J. Y. (2009). Thermal, mechanical and rheological    

properties    of    poly    (lactic    acid)/epoxidized    soybean    oil blends. Polymer Bulletin, 

62(1), 91-98.

 

Amass, W., Amass, A & Tighe, B. (1998). A review of biodegradable polymers: uses, current  

developments  in  the  synthesis  and  characterization  of  biodegradable polyesters,   blends   

of   biodegradable   polymers   and   recent   advances   in biodegradation studies. Polymer 

international, 47(2), 89-144.

 

Anderson  K.  S.,  Schreck  K.  M  &  Hillmyer  M.  A.  (2008).  Toughening  Polylactide, Polymer 

Revision. 48, 85-108.

 

Anuar, H., Razali, M. S., Saidin, H. A., Hisham, A. F. B., Apandi, S. N. E. Z. M & Ali,

F. (2016). Tensile properties of durian skin fibre reinforced plasticized polylactic acid   

biocomposites. International   Journal   of   Engineering   Materials   and Manufacture, 1(1), 

16-20.

 

Anuar, H., Izzati, A. N. F., Inani, S. S. N., E’zzati, M. S. N., Salimah, A. S. M., Ali, F., et al 

(2017). Impregnation of Cinnamon Essential Oil into Plasticised Polylactic Acid  Biocomposite  Film 

 for  Active  Food  Packaging. Journal  of  Packaging

Technology and Research, 1(3), 149-156.

 

Arjmandi, R., Hassan, A., Haafiz, M. M., Zakaria, Z & Inuwa, I. M. (2014).

Characterization of polylactic acid/microcrystalline cellulose/montmorillonite

hybrid composites. Malays J Anal Sci, 18, 642-650.

 

Armentano, I., Bitinis, N., Fortunati, E., Mattioli, S., Rescignano, N., Verdejo, R., et al

(2013). Multifunctional nanostructured PLA materials for packaging and tissue

engineering. Progress in Polymer Science, 38(10-11), 1720-1747.

 

Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., et al (2015).

Processing and characterization of plasticized PLA/PHB blends for

biodegradable multiphase systems. eXPRESS Polymer Letters, Vol 9(7), 583-596.

 

Arrieta, M.P., Samper, M.D., Aldas, M & López, J. (2017). On the use of PLA-PHB

Blends for Sustainable Food Packaging Applications. Materials, 10, 1008.

 

Arrieta, M. P., Fortunati, E., Dominici, F., López, J & Kenny, J. M. (2015).

Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal

blends. Carbohydrate polymers, 121, 265-275.

 

Arrieta, M. P., Castro-Lopez, M. D. M., Ray?n, E., Barral-Losada, L. F., L?pez-

Vilari?o, J. M., L?pez, J., et al (2014a). Plasticized poly (lactic acid)–poly

(hydroxybutyrate)(PLA–PHB) blends incorporated with catechin intended for

active food-packaging applications. Journal of agricultural and food

chemistry, 62(41), 10170-10180.

 

Arrieta, M. P., Fortunati, E., Dominici, F., Rayón, E., López, J & Kenny, J. M. (2014b).

Multifunctional PLA–PHB/cellulose nanocrystal films: Processing, structural

and thermal properties. Carbohydrate polymers, 107, 16-24.

 

Arrieta, M. P., Fortunati, E., Dominici, F., Rayón, E., López, J & Kenny, J. M. (2014c).

PLA-PHB/cellulose based films: Mechanical, barrier and disintegration

properties. Polymer Degradation and Stability, 107, 139-149.

 

Asadi, G. & Mousavi, S. M. (2006). Application of nanotechnology in food packaging.

In 13th World Congress of Food Science & Technology 2006 (pp. 739-739).

 

Athanasiou K. A., Niederauer G. G & Agrawal C. M. (1996). Sterilization, toxicity,

biocompatibility and clinical applications of polylactic acid/polyglycolic acid

copolymers. Biomaterials. 17, 93-102.

 

Auras, R., Harte, B & Selke, S. (2004). An overview of polylactides as packaging

materials. Macromolecular bioscience, 4(9), 835-864.

 

Avella, M., Buzarovska, A., Errico, M. E., Gentile, G & Grozdanov, A. (2009). Ecochallenges

of bio-based polymer composites. Materials, 2(3), 911-925.

 

Averous, L. & Le Digabel, F. (2006). Properties of biocomposites based on

lignocellulosic fillers. Carbohydrate polymers, 66(4), 480-493.

 

Averous, L. & Boquillon, N. (2004). Biocomposites based on plasticized starch:

thermal and mechanical behaviours. Carbohydrate polymers, 56(2), 111-122.

 

Averous, L., Fringant, C & Moro, L. (2001). Starch?based biodegradable materials

suitable for thermoforming packaging. Starch?Stärke, 53(8), 368-371.

 

Awale, R. J., Ali, F. B., Azmi, A. S., Puad, N. I. M., Anuar, H & Hassan, A. (2018).

Enhanced flexibility of biodegradable polylactic acid/starch blends using

epoxidized palm oil as plasticizer. Polymers, 10(9), 977.

 

Azizi Samir, M. A. S., Alloin, F & Dufresne, A. (2005). Review of recent research into

cellulosic whiskers, their properties and their application in nanocomposite

field. Biomacromolecules, 6(2), 612-626.

 

Baek, N., Kim, Y. T., Marcy, J. E., Duncan, S. E & O’Keefe, S. F. (2018). Physical

properties of nanocomposite polylactic acid films prepared with oleic acid

modified titanium dioxide. Food Packaging and Shelf Life, 17, 30-38.

 

Baiardo M., Frisoni G., Scandola M., Rimelen M., Lips D., Ruffieux K., et al (2003).

Thermal and mechanical properties of plasticized poly(L lactic acid). Journal of

Applied Polymer Science. 90(7), 1731-1738.

 

Bajpai, P. K., Singh, I & Madaan, J. (2014). Development and characterization of PLAbased

green composites: A review. Journal of Thermoplastic Composite

Materials, 27(1), 52-81.

 

Balakrishnan, H., Masoumi, I., Yussuf, A. A., Imran, M., Hassan, A & Wahit, M. U.

(2012). Ethylene copolymer toughened polylactic acid

nanocomposites. Polymer-Plastics Technology and Engineering, 51(1), 19-27.

 

Barrau, S., Vanmansart, C., Moreau, M., Addad. A., Stoclet, G., Lefebvre, J., et al

(2011). Crystallization behaviour of carbon nanotube-polylactide

nanocomposites. Macromolecules. 44(16), 6496-6502.

 

Behnajady, M. A., Eskandarloo, H., Modirshahla, N & Shokri, M. (2011). Investigation

of the effect of sol–gel synthesis variables on structural and photocatalytic

properties of TiO2 nanoparticles. Desalination, 278(1-3), 10-17.

 

Bodros, E., Pillin, I., Montrelay, N & Baley, C. (2007). Could biopolymers reinforced

by randomly scattered flax fibre be used in structural applications?. Composites

Science and Technology, 67(3-4), 462-470.

 

Bogaert, J. C. & Coszach, P. (2000). Poly (lactic acids): a potential solution to plastic

waste dilemma. Macromolecular symposia (Vol. 153, No. 1, pp. 287-303).

Weinheim: WILEY?VCH Verlag.

 

Bordes, P., Pollet, E & Avérous, L. (2009). Nano-biocomposites: biodegradable

polyester/nanoclay systems. Progress in Polymer Science, 34(2), 125-155.

 

Bouapao, L., Tsuji, H., Tashiro, K., Zhang, J & Hanesaka, M. (2009). Crystallization,

spherulite growth, and structure of blends of crystalline and amorphous poly

(lactide) s. Polymer, 50(16), 4007-4017.

 

Brody, A. L (2007). Case studies on nanotechnologies for food packaging. Food

technology, 07:102-107.

 

Buasri, A., Buranasing, G., Piemjaiswang, R., Yousatit, S & Loryuenyong, V. (2014).

Effect of titanium dioxide nanoparticles on mechanical and thermal properties of

poly (lactic acid) and poly (butylene succinate) blends. Advances in Science and

Technology (Vol. 96, pp. 33-38). Trans Tech Publications.

 

Burgos, N., Tolaguera, D., Fiori, S & Jiménez, A. (2014). Synthesis and

characterization of lactic acid oligomers: Evaluation of performance as poly

(lactic acid) plasticizers. Journal of Polymers and the Environment, 22(2), 227-

235.

 

Buzarovska, A (2013). PLA nanocomposites with functionalized TiO2 nanoparticles.

Polymer-Plastics Technology and Engineering, 52(3), 280-286.

 

Buzarovska, A. & Grozdanov, A. (2012). Biodegradable poly(L-lactic acid)/TiO2

nanocomposites: thermal properties and degradation. Journal of Applied Polymer

Science. 123:2187-2193.

 

Cagri, A., Ustunol, Z & Ryser, E. T. (2004). Antimicrobial edible films and

coatings. Journal of food protection, 67(4), 833-848.

 

Campoccia, D., Visai, L., Renò, F., Cangini, I., Rizzi, M., Poggi, A., et al (2015).

Bacterial adhesion to poly?(d, l) lactic acid blended with vitamin E: Toward

gentle anti?infective biomaterials. Journal of Biomedical Materials Research

Part A, 103(4), 1447-1458.

 

Cao, X., Dong, H & Li, C. M. (2007). New nanocomposite materials reinforced with

flax cellulose nanocrystals in waterborne

polyurethane. Biomacromolecules, 8(3), 899-904.

 

Cargnello, M., Gordon, T. R & Murray, C. B. (2014). Solution-phase synthesis of

titanium dioxide nanoparticles and nanocrystals. Chemical reviews, 114(19),

9319-9345.

 

Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X & Auras, R. (2016). Poly

(lactic acid)—Mass production, processing, industrial applications, and end of

life. Advanced drug delivery reviews, 107, 333-366.

 

Cha, D. S. & Chinnan, M. S. (2004). Biopolymer-based antimicrobial packaging: a

review. Critical reviews in food science and nutrition, 44(4), 223-237.

 

Chandra, R. & Rustgi, R. (1998). Biodegradable polymers. Progress in polymer

science, 23, 1273-1335.

 

Chang,  J.  H.,  An,  Y.  U.,  Cho,  D  &  Giannelis,  E.  P.  (2003).  Poly  (lactic  acid) 

nanocomposites:   comparison   of   their   properties   with   montmorillonite   and synthetic 

mica (II). Polymer, 44(13), 3715-3720.

 

Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., et al (2008). 

Applications  and  implications  of  nanotechnologies  for  the  food  sector. Food additives and 

contaminants, 25(3), 241-258.

 

Chen, C. C., Chueh, J. Y., Tseng, H., Huang, H. M & Lee, S. Y. (2003). Preparation and          

characterization          of          biodegradable          PLA          polymeric blends. 

Biomaterials, 24(7), 1167-1173.

 

Chen,   C.,   Lv,   G.,   Pan,   C.,   Song,   M.,   Wu,   C.,   Guo,   D.,   et   al   (2007).   

Poly (lacticacid)(PLA)     based     nanocomposites—a     novel     way     of     drug- releasing. 

Biomedical materials, 2(4), L1.

 

Chen,  L.  &  Dou,  Q.  (2019).  Influence  of  the  combination  of  nucleating  agent  and 

plasticizer on the non-isothermal crystallization kinetics and activation energies of poly (lactic 

acid). Journal of Thermal Analysis and Calorimetry, 1-22.

 

Chen, X. & Mao, S. S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, 

and applications. Chemical reviews, 107(7), 2891-2959.

 

Chen, Y., Yao, X., Gu, Q & Pan, Z. (2013). Non-isothermal crystallization kinetics of poly      

(lactic      acid)/graphene      nanocomposites. Journal      of      Polymer Engineering, 33(2), 

163-171.

 

Chieng,  B.,  Ibrahim,  N.,  Yunus,  W  &  Hussein,  M.  (2014a).  Poly  (lactic  acid)/poly 

(ethylene      glycol)      polymer      nanocomposites:      effects      of      graphene 

nanoplatelets. Polymers, 6(1), 93-104.

 

Chieng,  B.,  Ibrahim,  N.,  Then,  Y  &  Loo,  Y.  (2014b).  Epoxidized  vegetable  oils 

plasticized    poly    (lactic    acid)    biocomposites:    mechanical,    thermal    and 

morphology properties. Molecules, 19(10), 16024-16038.

 

Chow, W. S., Leu, Y. Y & Ishak, Z. M. (2014). Poly (lactic acid) nanocomposites with improved 

impact and thermal properties. Journal of Composite Materials, 48(2), 155-163.

 

Clarinval, A. M,  & Halleux, J. (2005). Classification of biodegradable polymers.  In Biodegradable 

 polymers   for  industrial  applications  (pp.  3-31).  Woodhead Publishing.

 

Cohn, D. & Salomon, A. H. (2005). Designing biodegradable multiblock PCL/PLA thermoplastic 

elastomers. Biomaterials, 26(15), 2297-2305.

 

Conte, A., Longano, D., Costa, C., Ditaranto, N., Ancona, A., Cioffi, N., et al (2013). A  novel  

preservation  technique  applied  to  fiordilatte  cheese. Innovative  food

science & emerging technologies, 19, 158-165.

 

Costa, R. G., Brichi, G. S., Ribeiro, C & Mattoso, L. H. (2016). Nanocomposite fibers

of poly (lactic acid)/titanium dioxide prepared by solution blow

spinning. Polymer Bulletin, 73(11), 2973-2985.

 

Costa, R. G., Ribeiro, C & Mattoso, L. H. (2013). Study of the effect of rutile/anatase

TiO2 nanoparticles synthesized by hydrothermal route in electrospun PVA/TiO2

nanocomposites. Journal of Applied Polymer Science, 127(6), 4463-4469.

 

Costa, R. G., Ribeiro, C & Mattoso, L. H. (2010). Morphological and photocatalytic

properties of PVA/TiO2 nanocomposite fibers produced by electrospinning.

Journal of nanoscience and nanotechnology, 10(8), 5144-5152.

 

Courgneau, C., Domenek, S., Guinault, A., Avérous, L & Ducruet, V. (2011). Analysis

of the structure-properties relationships of different multiphase systems based on

plasticized poly (lactic acid). Journal of Polymers and the Environment, 19(2),

362-371.

 

Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R & Kumar, A.

(2015). Nanotechnology in agro-food: from field to plate. Food Research

International, 69, 381-400.

 

De Azeredo, H. M (2009). Nanocomposites for food packaging applications. Food

research international, 42(9), 1240-1253.

 

Di Gioia, L., Cuq, B & Guilbert, S. (1999). Thermal properties of corn gluten meal and

its proteic components. International journal of biological

macromolecules, 24(4), 341-350.

 

Di Lorenzo, M. L (2005). Crystallization behavior of poly (L-lactic acid). European

Polymer Journal, 41(3), 569-575.

 

Di Maio, L., Scarfato, P., Milana, M. R., Feliciani, R., Denaro, M., Padula, G., et al

(2014). Bionanocomposite polylactic acid/organoclay films: Functional

properties and measurement of total and lactic acid specific migration. Packaging

Technology and Science, 27(7), 535-547.

 

Dil, E. J., Virgilio, N & Favis, B. D. (2016). The effect of the interfacial assembly of

nano-silica in poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends

on morphology, rheology and mechanical properties. European Polymer

Journal, 85, 635-646.

 

Dorgan, J. R., Lehermeier, H & Mang, M. (2000). Thermal and rheological properties

of commercial-grade poly (lactic acid). Journal of Polymers and the

Environment, 8(1), 1-9.

 

Doyle, M. E (2006). Nanotechnology: a brief literature review. Food Research Institute,

UW-Madison.

 

Duncan, T. V (2011). Applications of nanotechnology in food packaging and food

safety: barrier materials, antimicrobials and sensors. Journal of colloid and

interface science, 363(1), 1-24.

 

Ebadi-Dehaghani, H., Barikani, M., Khonakdar, H. A & Jafari, S. H. (2015).

Microstructure and non-isothermal crystallization behavior of PP/PLA/clay

hybrid nanocomposites. Journal of Thermal Analysis and Calorimetry, 121(3),

1321-1332.

 

Eguiburu, J. L., Iruin, J. J., Fernandez-Berridi, M. J & San Roman, J. (1998). Blends of

amorphous and crystalline polylactides with poly (methyl methacrylate) and poly

(methyl acrylate): a miscibility study. Polymer, 39(26), 6891-6897.

 

Famá, L., Gerschenson, L & Goyanes, S. (2009). Starch-vegetable fibre composites to

protect food products. Carbohydrate polymers, 75(2), 230-235.

 

Fan, C., Plaxco, K. W & Heeger, A. J. (2002). High-efficiency fluorescence quenching

of conjugated polymers by proteins. Journal of the American Chemical

Society, 124(20), 5642-5643.

 

Farah, S., Anderson, D. G & Langer, R. (2016). Physical and mechanical properties of

PLA, and their functions in widespread applications—A comprehensive

review. Advanced drug delivery reviews, 107, 367-392.

 

Fenollar, O., García, D., Sánchez, L., López, J & Balart, R. (2009). Optimization of the

curing conditions of PVC plastisols based on the use of an epoxidized fatty acid

ester plasticizer. European Polymer Journal, 45(9), 2674-2684.

 

Finkenstadt V. L., Liu C. K., Cooke P. H., Liu L. S & Willett J. L. (2008). Mechanical

Property Characterization of Plasticized Sugar Beet Pulp and Poly(Lactic Acid)

Green Composites Using Acoustic Emission and Confocal Microscopy. Journal

of Polymers and the Environment. 16(1), 19-26.

 

Flory, P. J (1953). Principles of polymer chemistry. Cornell University Press.

 

Fortunati, E., Armentano, I., Zhou, Q., Puglia, D., Terenzi, A., Berglund, L. A., et al

(2012). Microstructure and nonisothermal cold crystallization of PLA composites

based on silver nanoparticles and nanocrystalline cellulose. Polymer degradation

and stability, 97(10), 2027-2036.

 

Foruzanmehr, M., Vuillaume, P. Y., Elkoun, S & Robert, M. (2016). Physical and

mechanical properties of PLA composites reinforced by TiO2 grafted flax

fibers. Materials & Design, 106, 295-304.

 

Fujishima, A., Rao, T. N & Tryk, D. A. (2000). Titanium dioxide

photocatalysis. Journal of photochemistry and photobiology C: Photochemistry

reviews, 1(1), 1-21.

 

Garlotta, D. (2001). A literature review of poly (lactic acid). Journal of Polymers and

the Environment, 9(2), 63-84.

 

Ge H., Yang F., Hao Y., Wu G., Zhang H & Dong L. (2013). Thermal, mechanical, and

rheological properties of plasticized poly(L-lactic acid). Journal of Applied

Polymer Science. 127(4), 2832-2839.

 

Gil, N., Saska, M & Negulescu, I. (2006). Evaluation of the effects of biobased

plasticizers on the thermal and mechanical properties of poly (vinyl

chloride). Journal of applied polymer science, 102(2), 1366-1373.

 

Guan, J. & Hanna, M. A. (2006). Selected morphological and functional properties of

extruded acetylated starch–cellulose foams. Bioresource Technology, 97(14),

1716-1726.

 

Guigo, N., Vincent, L., Mija, A., Naegele, H & Sbirrazzuoli, N. (2009). Innovative

green nanocomposites based on silicate clays/lignin/natural fibres. Composites

Science and Technology, 69(11-12), 1979-1984.

 

Gumiero, M., Peressini, D., Pizzariello, A., Sensidoni, A., Iacumin, L., Comi, G., et al

(2013). Effect of TiO2 photocatalytic activity in a HDPE-based food packaging

on the structural and microbiological stability of a short-ripened cheese. Food

chemistry, 138(2-3), 1633-1640.

 

Gurunathan, T., Mohanty, S & Nayak, S. K. (2015). A review of the recent

developments in biocomposites based on natural fibres and their application

perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25.

 

Gutierrez?Villarreal, M. H. & Rodríguez?Velazquez, J. (2007). The effect of citrate

esters as plasticizers on the thermal and mechanical properties of poly (methyl

methacrylate). Journal of applied polymer science, 105(4), 2370-2375.

 

Han, Q., Wang, Y., Shao, C., Zheng, G., Li, Q & Shen, C. (2014). Nonisothermal

crystallization kinetics of biodegradable poly(lactic acid)/zinc

phenylphosphonate composites. Journal of Composite Matter. 48(22), 2737-

2746.

 

Harte, I., Birkinshaw, C., Jones, E., Kennedy, J & DeBarra, E. (2012). The effect of

citrate ester plasticizers on the thermal and mechanical properties of poly(DLlactide).

Journal of Applied Polymer Science. 1-7.

 

Hartmann, M. H (1998). High molecular weight polylactic acid polymers. Biopolymers

from renewable resources (pp. 367-411). Springer, Berlin, Heidelberg.

 

Henton, D. E., Gruber, P., Lunt, J & Randall, J. (2005). Polylactic acid

technology. Natural fibers, biopolymers, and biocomposites, 16, 527-577.

 

Huang, H. D., Ren, P. G., Xu, J. Z., Xu, L., Zhong, G. J., Hsiao, B. S., et al (2014).

Improved barrier properties of poly (lactic acid) with randomly dispersed

graphene oxide nanosheets. Journal of Membrane Science, 464, 110-118.

 

Huang, Z. M., Zhang, Y. Z., Kotaki, M & Ramakrishna, S. (2003). A review on polymer

nanofibers by electrospinning and their applications in

nanocomposites. Composites science and technology, 63(15), 2223-2253.

 

Heydari, A., Alemzadeh, I & Vossoughi, M. (2013). Functional properties of

biodegradable corn starch nanocomposites for food packaging

applications. Materials & Design, 50, 954-961.

 

Huski?, M. & ?igon, M. (2007). PMMA/MMT nanocomposites prepared by one-step

in situ intercalative solution polymerization. European Polymer Journal, 43(12),

4891-4897.

 

Immergut, E. H. & Mark, H. F. (1965). Principles of plasticization. Plasticization and

plasticizer processes, 48, 1-26.

 

Imre, B. & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable

polymer blends. European polymer journal, 49(6), 1215-1233.

 

Ingrao, C., Tricase, C., Cholewa-Wójcik, A., Kawecka, A., Rana, R & Siracusa, V.

(2015). Polylactic acid trays for fresh-food packaging: A Carbon Footprint

assessment. Science of the Total Environment, 537, 385-398.

 

Jacobsen, S. & Fritz, H. G. (1996). Filling of poly (lactic acid) with native

starch. Polymer Engineering & Science, 36(22), 2799-2804.

 

Jacobsen, S., Fritz, H. G., Degée, P., Dubois, P. H & Jérôme, R. (1999). Polylactide

(PLA)—a new way of production. Polymer Engineering & Science, 39(7), 1311-

1319.

 

Jacobsen, S. & Fritz, H. G. (1999). Plasticizing polylactide—the effect of different

plasticizers on the mechanical properties. Polymer Engineering & Science, 39(7),

1303-1310.

 

Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M & Desobry, S. (2010).

Poly-lactic acid: production, applications, nanocomposites, and release

studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-

571.

 

Jorda-Beneyto, M., Ortuño, N., Devis, A., Aucejo, S., Puerto, M., Gutiérrez-Praena, D.,

et al (2014). Use of nanoclay platelets in food packaging materials: technical and

cytotoxicity approach. Food Additives & Contaminants: Part A, 31(3), 354-363.

 

Kang, H., Li, Y., Gong, M., Guo, Y., Guo, Z., Fang, Q., et al (2018). An

environmentally sustainable plasticizer toughened polylactide. RSC advances,

8(21), 11643-11651.

 

Kelnar, I., Kratochvíl, J., Kaprálková, L., Zhigunov, A & Nevoralová, M. (2017).

Graphite nanoplatelets-modified PLA/PCL: Effect of blend ratio and nanofiller

localization on structure and properties. Journal of the mechanical behavior of

biomedical materials, 71, 271-278.

 

Kerry, J. P., O’grady, M. N & Hogan, S. A. (2006). Past, current and potential

utilisation of active and intelligent packaging systems for meat and muscle-based

products: A review. Meat science, 74(1), 113-130.

 

Khanam, P. N. & AlMaadeed, M. A. (2014). Improvement of ternary recycled polymer

blend reinforced with date palm fibre. Materials & Design, 60, 532-539.

 

Kim, H. S., Park, B. H., Choi, J. H & Yoon, J. S. (2008). Mechanical properties and

thermal stability of poly (L?lactide)/calcium carbonate composites. Journal of

applied polymer science, 109(5), 3087-3092.

 

Kobashi, K., Villmow, T., Andres, T & Pötschke, P. (2008). Liquid sensing of meltprocessed

poly (lactic acid)/multi-walled carbon nanotube composite

films. Sensors and Actuators B: Chemical, 134(2), 787-795.

 

Kratochvíl, J. & Kelnar, I. (2017). Non-isothermal kinetics of cold crystallization in

multicomponent PLA/thermoplastic polyurethane/nanofiller system. Journal of

Thermal Analysis and Calorimetry, 130(2), 1043-1052.

 

Kumar, R., Singh, T & Singh, H. (2015). Natural fibers polymeric composites with

particulate fillers–A review report. Int. J. Adv. Eng. Res. Appl, 1, 22-29.

 

Kumar, V., Tyagi, L & Sinha, S. (2011). Wood flour–reinforced plastic composites: a

review. Reviews in chemical engineering, 27(5-6), 253-264.

 

Kuswandi, B. & Moradi, M. (2019). Improvement of Food Packaging Based on

Functional Nanomaterial. Nanotechnology: Applications in Energy, Drug and

Food (pp. 309-344). Springer, Cham.

 

Kuswandi, B (2017). Environmental friendly food nano-packaging. Environmental

Chemistry Letters, 15(2), 205-221.

 

Labrecque, L.V., Kumar, R.A., Dave, V., Gross, R.A & McCarthy, S.P. (1997). Citrate

esters as plasticizers for poly(lactic acid). Journal of Applied Polymer Science.

66(8), 1507-1513.

 

Lagarón, J. M (2011). Polylactic acid (PLA) nanocomposites for food packaging

applications. Multifunctional and Nanoreinforced Polymers for Food

Packaging (pp. 485-497). Woodhead Publishing.

 

Lai, J. C. H., Rahman, M. & Hamdan, S. (2015). Physical, mechanical, and thermal

analysis of polylactic acid/fumed silica/clay (1.28 E)

nanocomposites. International Journal of Polymer Science, 2015.

 

Lee, J. H., Park, T. G., Park, H. S., Lee, D. S., Lee, Y. K., Yoon, S. C., et al (2003).

Thermal and mechanical characteristics of poly (L-lactic acid) nanocomposite

scaffold. Biomaterials, 24(16), 2773-2778.

 

Lee, S. H. & Wang, S. (2006). Biodegradable polymers/bamboo fiber biocomposite

with bio-based coupling agent. Composites Part A: Applied Science and

Manufacturing, 37(1), 80-91.

 

Lei, Wu. C., Zhang, M. Q., Rong, M. Z & Friedrich, K. (2005). Silica nanoparticles

filled polypropylene: effects of particle surface treatment, matrix ductility and

particle species on mechanical performances of the composites. Composites

Science and Technology. 65(3-4), 635-645.

 

Lei, Y., Wu, Q., Yao, F & Xu, Y. (2007). Preparation and properties of recycled

HDPE/natural fiber composites. Composites Part A: applied science and

manufacturing, 38(7), 1664-1674.

 

Li, C., Dou, Q., Bai, Z & Lu, Q. (2015). Non-isothermal crystallization behaviors and

spherulitic morphology of poly (lactic acid) nucleated by a novel nucleating

agent. Journal of Thermal Analysis and Calorimetry, 122(1), 407-417.

 

Li, J., He, Y & Inoue, Y. (2003). Thermal and mechanical properties of biodegradable

blends of poly (L?lactic acid) and lignin. Polymer International, 52(6), 949-955.

 

Li, J., Luo, X & Lin, X. (2013). Preparation and characterization of hollow glass

microsphere reinforced poly (butylene succinate) composites. Materials &

Design, 46, 902-909.

 

Li, S. D. & Huang, L. (2008). Pharmacokinetics and biodistribution of

nanoparticles. Molecular pharmaceutics, 5(4), 496-504.

 

Lim, L. T., Auras, R & Rubino, M. (2008). Processing technologies for poly (lactic

acid). Progress in polymer science, 33(8), 820-852.

 

Lim, L. T., Cink, K & Vanyo, T. (2010). Processing of poly (lactic acid). Poly (Lactic

Acid) Synthesis, Structures, Properties, Processing, and Applications, 189-215.

 

Liu, D., Zhong, T., Chang, P. R., Li, K & Wu, Q. (2010). Starch composites reinforced

by bamboo cellulosic crystals. Bioresource technology, 101(7), 2529-2536.

 

Liu, H. & Zhang, J. (2011). Research progress in toughening modification of poly

(lactic acid). Journal of polymer science part B: Polymer Physics, 49(15), 1051-

1083.

 

Ljungberg, N., Colombini, D & Wesslén, B. (2005). Plasticization of poly (lactic acid)

with oligomeric malonate esteramides: Dynamic mechanical and thermal film

properties. Journal of Applied Polymer Science, 96(4), 992-1002.

 

Ljungberg, N. & Wesslen, B. (2003). Tributyl citrate oligomers as plasticizers for poly

(lactic acid): thermo-mechanical film properties and aging. Polymer, 44(25),

7679-7688.

 

Ljungberg N. & Wesslén B. (2002). The effects of plasticizers on the dynamic

mechanical and thermal propertiesof poly(lactic acid). Journal of Applied

Science. 86, 1227-1234.

 

Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R & Fernandez, A. (2012). Metallicbased

micro and nanocomposites in food contact materials and active food

packaging. Trends in Food Science & Technology, 24(1), 19-29.

 

Lopez-Rubio, A., Almenar, E., Hernandez-Muñoz, P., Lagarón, J. M., Catalá, R &

Gavara, R. (2004). Overview of active polymer-based packaging technologies for

food applications. Food Reviews International, 20(4), 357-387.

 

Lunt, J (1998). Large-scale production, properties and commercial applications of

polylactic acid polymers. Polymer degradation and stability, 59(1-3), 145-152.

 

Maiti, P., Yamada, K., Okamoto, M., Ueda, K & Okamoto, K. (2002). New

polylactide/layered silicate nanocomposites: role of organoclays. Chemistry of

materials, 14(11), 4654-4661.

 

Maiza, M., Benaniba, M. T., Quintard, G & Massardier-Nageotte, V. (2015). Biobased

additive plasticizing Polylactic acid (PLA). Polimeros, 25(6), 581-590.

 

Majdzadeh-Ardakani, K. & Sadeghi-Ardakani, S. (2010). Experimental Investigation

Of Mechanical Properties Of Starch/Natural Rubber/Clay

Nanocomposites. Digest Journal of Nanomaterials & Biostructures

(DJNB), 5(2).

 

Man, C., Zhang, C., Liu, Y., Wang, W., Ren, W., Jiang, L., et al (2012). Poly (lactic

acid)/titanium dioxide composites: preparation and performance under ultraviolet

irradiation. Polymer degradation and stability, 97(6), 856-862.

 

Mangaraj, S., Yadav, A., Bal, L. M., Dash, S. K & Mahanti, N. K. (2019). Application

of biodegradable polymers in food packaging industry: a comprehensive

review. Journal of Packaging Technology and Research, 3(1), 77-96.

 

Marra, A., Silvestre, C., Kujundziski, A. P., Chamovska, D & Duraccio, D. (2017).

Preparation and characterization of nanocomposites based on PLA and TiO2

nanoparticles functionalized with fluorocarbons. Polymer Bulletin, 74(8), 3027-

3041.

 

Mathur, M. & Hira, M. A. (2008). Specialty Fibres-IV: Poly Lactic Acid

Fibres. Man-Made Textiles in India, 51(7).

 

Mehta, R., Kumar, V., Bhunia, H & Upadhyay, S. N. (2005). Synthesis of poly (lactic

acid): a review. Journal of Macromolecular Science, Part C: Polymer

Reviews, 45(4), 325-349.

 

Mekonnen, T., Mussone, P., Khalil, H & Bressler, D. (2013). Progress in bio-based

plastics and plasticizing modifications. Journal of Materials Chemistry A, 1(43),

13379-13398.

 

Mhlanga, N. & Ray, S. S. (2014). Characterisation and thermal properties of titanium

dioxide nanoparticles-containing biodegradable polylactide composites

synthesized by sol–gel method. Journal of nanoscience and

nanotechnology, 14(6), 4269-4277.

 

Mihindukulasuriya, S. D. F. & Lim, L. T. (2014). Nanotechnology development in food

packaging: A review. Trends in Food Science & Technology, 40(2), 149-167.

 

Miller, G. & Senjen, R. (2008). Out of the Laboratory and onto our Plates:

Nanotechnology in Food & Agriculture. A report prepared for Friends of the

Earth Australia. Friends of the Earth Europe and Friends of the Earth United

States and supported by Friends of the Earth Germany. Friends of the Earth

Australia Nanotechnology Project, Australia.

 

Mo, S. D. & Ching, W. Y. (1995). Electronic and optical properties of three phases of

titanium dioxide: Rutile, anatase, and brookite. Physical Review B, 51(19),

13023.

 

Mohanty, A. K., Misra, M. A & Hinrichsen, G. I. (2000). Biofibres, biodegradable

polymers and biocomposites: An overview. Macromolecular materials and

Engineering, 276(1), 1-24.

 

Mustapa, I. R., Czajka, M., Chandran, S., Daud, N., Kong, I & Shanks, R. A. (2016).

Crystallization Behavior Of Plasticized Poly (Lactic Acid)-Hemp

Nanocomposites. Polymers Research Journal, 10(4), 199.

 

Mustapa, I. R. & Shanks, R. A. (2014). Multiple melting behavior of poly (lactic acid)-

hemp-silica composites using modulated-temperature differential scanning

calorimetry. Journal of Polymer Engineering, 34(9), 895-903.

 

Mustapa, I. R., Chandran, S., Shanks, R. A & Kong, I. (2014). Non-isothermal

Crystallization of Poly (lactic acid)-Hemp-Silica Nanocomposites Plasticized

with Tributyl Citrate. In 37th Annual Condensed Matter and Materials Meeting

(pp. 33-36). Australian Institute of Physics.

 

Mustapa, I. R., Shanks, R. A & Kong, I. (2013a). Melting behaviour and dynamic

mechanical properties of Poly (lactic acid)-hemp-nanosilica composites. Asian

Transactions on Basic and Applied Sciences, 3(2), 29-37.

 

Mustapa, I., Shanks, R & Kong, I. (2013b). Poly (lactic acid)-hemp-nanosilica hybrid

composites: thermomechanical, thermal behavior and morphological properties.

International Journal of Advanced Science and Engineering Technology, 3(1),

192-199.

 

Mustapa, I. R. & Shanks, R. A. (2012). Dynamic Mechanical Properties and Melting

Behaviour of Poly (Lactic Acid)–Hemp–Nanosilica Hybrid Composites. In Proc.

15th European Conference on Composite Materials.

 

Nafchi, A. M., Nassiri, R., Sheibani, S., Ariffin, F & Karim, A. A. (2013). Preparation

and characterization of bionanocomposite films filled with nanorod-rich zinc

oxide. Carbohydrate polymers, 96(1), 233-239.

 

Nagarajan, V., Mohanty, A. K & Misra, M. (2016). Perspective on Polylactic Acid

(PLA) based Sustainable Materials for Durable Applications: Focus on

Toughness and Heat Resistance. ACS Sustainable Chemistry and Engineering, 4,

2899−2916.

 

Nair, L. S. & Laurencin, C. T. (2007). Biodegradable polymers as

biomaterials. Progress in polymer science, 32(8-9), 762-798.

 

Nampoothiri, K. M., Nair, N. R & John, R. P. (2010). An overview of the recent

developments in polylactide (PLA) research. Bioresource technology, 101(22),

8493-8501.

 

Nomai, J., Suksut, B & Schlarb, A. K. (2015). Crystallization behavior of poly (lactic

acid)/titanium dioxide nanocomposites. KMUTNB International Journal of

Applied Science and Technology, 8, 251-258.

 

Ohkita, T. & Lee, S. H. (2006). Thermal degradation and biodegradability of poly

(lactic acid)/corn starch biocomposites. Journal of applied polymer

science, 100(4), 3009-3017.

 

Ojijo, V., Sinha Ray, S & Sadiku, R. (2012a). Effect of nanoclay loading on the thermal

and mechanical properties of biodegradable polylactide/poly [(butylene

succinate)-co-adipate] blend composites. ACS applied materials &

interfaces, 4(5), 2395-2405.

 

Ojijo, V., Sinha Ray, S & Sadiku, R. (2012b). Role of specific interfacial area in

controlling properties of immiscible blends of biodegradable polylactide and poly

[(butylene succinate)-co-adipate]. ACS applied materials & interfaces, 4(12),

6690-6701.

 

Ozkoc, G. & Kemaloglu, S. (2009). Morphology, biodegradability, mechanical, and

thermal properties of nanocomposite films based on PLA and plasticized

PLA. Journal of Applied Polymer Science, 114(4), 2481-2487.

 

Pan, H., Xu, D., Liu, Q., Ren, H. Q & Zhou, M. (2014). Preparation and characterization

of corn starch-nanodiamond composite films. Applied Mechanics and

Materials (Vol. 469, pp. 156-161). Trans Tech Publications.

 

Pandey, J. K., Chu, W. S., Lee, C. S & Ahn, S. H. (2007). Preparation characterization

and performance evaluation of nanocomposites from natural fiber reinforced

biodegradable polymer matrix for automotive applications. International

Symposium on Polymers and the Environment: Emerging Technology and

Science, BioEnvironmental Polymer Society (BEPS).

 

Papageorgiu, GZ., Achilias, DS., Nanaki, S., Beslikas, T & Bikiaris, D. (2010). PLA

nanocomposites: effect of filler type on non-isothermal crystallization.

Thermochim Acta.;511:129–38.

 

Park, E. S., Kim, M. N & Yoon, J. S. (2002). Grafting of polycaprolactone onto poly

(ethylene?co?vinyl alcohol) and application to polyethylene?based bioerodable

blends. Journal of Polymer Science Part B: Polymer Physics, 40(22), 2561-2569.

 

Paul, M. A., Delcourt, C., Alexandre, M., Degée, P., Monteverde, F., Rulmont, A., et

al (2005). (Plasticized) polylactide/(organo?) clay nanocomposites by in situ

intercalative polymerization. Macromolecular Chemistry and physics, 206(4),

484-498.

 

Paul, M. A., Alexandre, M., Degée, P., Calberg, C., Jérôme, R & Dubois, P. (2003).

Exfoliated Polylactide/Clay Nanocomposites by In?Situ Coordination–Insertion

Polymerization. Macromolecular rapid communications, 24(9), 561-566.

 

Petersen, K., Nielsen, P. V., Bertelsen, G., Lawther, M., Olsen, M. B., Nilsson, N. H.,

et al (1999). Potential of biobased materials for food packaging. Trends in food

science & technology, 10(2), 52-68.

 

Phetwarotai, W., Potiyaraj, P & Aht?Ong, D. (2012). Characteristics of biodegradable

polylactide/gelatinized starch films: Effects of starch, plasticizer, and

compatibilizer. Journal of Applied Polymer Science, 126(S1), E162-E172.

 

Pillai, S. K., Ray, S. S., Scriba, M., Ojijo, V & Hato, M. J. (2013). Morphological and

thermal properties of photodegradable biocomposite films. Journal of Applied

Polymer Science, 129(1), 362-370.

 

Pillin, I., Montrelay, N., Bourmaud, A & Grohens, Y. (2008). Effect of thermomechanical

cycles on the physico-chemical properties of poly (lactic acid).

Polymer Degradation and Stability, 93(2), 321-328.

 

Pluta M. & Galeski A. (2002). Crystalline and supermolecular structure of polylactide

in relation to the crystallization method. Journal of Applied Polymer Science.

86(6), 1386-1395.

 

Pluta, M., Galeski, A., Alexandre, M., Paul, M. A & Dubois, P. (2002).

Polylactide/montmorillonite nanocomposites and microcomposites prepared by

melt blending: structure and some physical properties. Journal of Applied

Polymer Science, 86(6), 1497-1506.

 

Pogodina, N. V., Cerclé, C., Avérous, L., Thomann, R., Bouquey, M & Muller, R.

(2008). Processing and characterization of biodegradable polymer

nanocomposites: detection of dispersion state. Rheologica Acta, 47(5-6), 543-

553.

 

Qin, Y., Yang, J., Yuan, M., Xue, J., Chao, J., Wu, Y., et al (2014). Mechanical, barrier,

and thermal properties of poly (lactic acid)/poly (trimethylene carbonate)/talc

composite films. Journal of Applied Polymer Science, 131(6).

 

Raquez, J. M., Habibi, Y., Murariu, M & Dubois, P. (2013). Polylactide (PLA)-based

nanocomposites. Progress in Polymer Science, 38(10-11), 1504-1542.

 

Rasal R. M. & Hirt D. E. (2008) Toughness decrease of PLA-PHBHHx blend films

upon surface-confined photopolymerization. Journal of Biomedical Materials

Research Part-A. 88(4), 1079-1086.

 

Ratanakamnuan, U. & Aht?Ong, D. (2006). Preparation and characterization of lowdensity

polyethylene/banana starch films containing compatibilizer and

photosensitizer. Journal of applied polymer science, 100(4), 2717-2724.

 

Ray, S. S. & Bousmina, M. (2006). Biodegradable polymer/layered silicate

nanocomposites. In Polymer Nanocomposites (pp. 57-129). Woodhead

Publishing.

 

Ray, S. S. & Bousmina, M. (2005). Biodegradable polymers and their layered silicate

nanocomposites: in greening the 21st century materials world. Progress in

materials science, 50(8), 962-1079.

 

Ren, Z., Dong, L & Yang, Y. (2006). Dynamic mechanical and thermal properties of

plasticized poly (lactic acid). Journal of Applied Polymer Science, 101(3), 1583-

1590.

 

Rhim, J. W., Mohanty, A. K., Singh, S. P & Ng, P. K. (2006). Effect of the processing

methods on the performance of polylactide films: Thermocompression versus

solvent casting. Journal of applied polymer science, 101(6), 3736-3742.

 

Rhim, J. W., Park, H. M & Ha, C. S. (2013). Bio-nanocomposites for food packaging

applications. Progress in polymer science, 38(10-11), 1629-1652.

 

Rhim, J. W., Hong, S. I & Ha, C. S. (2009). Tensile, water vapor barrier and

antimicrobial properties of PLA/nanoclay composite films. LWT-Food Science

and Technology, 42(2), 612-617.

 

Righetti, M. C., Cinelli, P., Mallegni, N., Massa, C. A., Bronco, S., Stäbler, A., et al

(2019). Thermal, Mechanical, and Rheological Properties of Biocomposites

Made of Poly (lactic acid) and Potato Pulp Powder. International journal of

molecular sciences, 20(3), 675.

 

Rostami, A., Nazockdast, H & Karimi, M. (2016). Graphene induced microstructural

changes of PLA/MWCNT biodegradable nanocomposites: rheological,

morphological, thermal and electrical properties. RSC Advances, 6(55), 49747-

49759.

 

Rydz, J., Musio?, M., Zawidlak-W?grzy?ska, B & Sikorska, W. (2018). Present and

future of biodegradable polymers for food packaging applications. Biopolymers

for Food Design (pp. 431-467). Academic Press.

 

Samadi, S., Moradkhani, M., Beheshti, H., Irani, M & Aliabadi, M. (2018). Fabrication

of chitosan/poly (lactic acid)/graphene oxide/TiO2 composite nanofibrous

scaffolds for sustained delivery of doxorubicin and treatment of lung

cancer. International journal of biological macromolecules, 110, 416-424.

 

Scheirs, J., Camino, G & Tumiatti, W. (2001). Overview of water evolution during the

thermal degradation of cellulose. European Polymer Journal, 37(5), 933-942.

 

Sejidov, F. T., Mansoori, Y & Goodarzi, N. (2005). Esterification reaction using solid

heterogeneous acid catalysts under solvent-less condition. Journal of Molecular

Catalysis A: Chemical, 240(1-2), 186-190.

 

Sears, J. K. & Darby, J. R. (1982). Mechanism of plasticizer action. The Technology of

Plasticizers, 35-77.

 

Shankar, S. & Rhim, J. W. (2018). Bionanocomposite films for food packaging

applications. Reference module in food science, 1-10.

 

Shankar, S. & Rhim, J. W. (2016). Polymer nanocomposites for food packaging

applications. Functional and physical properties of polymer nanocomposites, 29.

 

Shi, N. & Dou, Q. (2015). Non-isothermal cold crystallization kinetics of poly (lactic

acid)/poly (butylene adipate-co-terephthalate)/treated calcium carbonate

composites. Journal of Thermal Analysis and Calorimetry, 119(1), 635-642.

 

Shirai, M. A., Grossmann, M. V. E., Mali, S., Yamashita, F., Garcia, P. S & Müller, C.

M. O. (2013). Development of biodegradable flexible films of starch and poly

(lactic acid) plasticized with adipate or citrate esters. Carbohydrate Polymers,

92(1), 19-22.

 

Shtarkman, B. P. & Razinskaya, I. N. (1983). Plasticization mechanism and structure

of polymers. Acta polymerica, 34(8), 514-520.

 

Shyang, C. W. & Kuen, L. S. (2008). Flexural, morphological and thermal properties

of poly (lactic acid)/organo-montmorillonite nanocomposites. Polymers and

Polymer Composites, 16(4), 263-270.

 

Silverajah, V. S., Ibrahim, N. A., Zainuddin, N., Yunus, W. M. Z. W & Hassan, H. A.

(2012). Mechanical, thermal and morphological properties of poly (lactic

acid)/epoxidized palm olein blend. Molecules, 17(10), 11729-11747.

 

Silvestre, C., Duraccio, D & Cimmino, S. (2011). Food packaging based on polymer

nanomaterials. Progress in polymer science, 36(12), 1766-1782.

 

Singh, S., Maspoch, M. L & Oksman, K. (2019). Crystallization of triethyl?citrateplasticized

poly (lactic acid) induced by chitin nanocrystals. Journal of Applied

Polymer Science, 136(36), 47936.

 

Singla, R. K., Maiti, S. N & Ghosh, A. K. (2016). Mechanical, morphological, and

solid-state viscoelastic responses of poly (lactic acid)/ethylene-co-vinyl-acetate

super-tough blend reinforced with halloysite nanotubes. Journal of Materials

Science, 51(22), 10278-10292.

 

Sinha J., K., PandeyD., Rutot P.D & Dubois P. (2003). Biodegradation of poly (ε-

caprolactone)/starch blends and composites in composting and culture

environment: the effect of compatibilization on the inherent biodegradability of

the host polymer. Carbohydrates Research. 338, 1759-1769.

 

Sinha Ray, S., Okamoto, K., Yamada, K & Okamoto, M. (2002a). Novel porous

ceramic material via burning of polylactide/layered silicate nanocomposite. Nano

Letters, 2(4), 423-425.

 

Sinha Ray, S., Yamada, K., Okamoto, M & Ueda, K. (2002b). Polylactide-layered

silicate nanocomposite: a novel biodegradable material. Nano Letters, 2(10),

1093-1096.

 

Sinha Ray, S., Maiti, P., Okamoto, M., Yamada, K & Ueda, K. (2002c). New

polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and

properties. Macromolecules, 35(8), 3104-3110.

 

Smijs, T. G. & Pavel, S. (2011). Titanium dioxide and zinc oxide nanoparticles in

sunscreens: focus on their safety and effectiveness. Nanotechnology, science and

applications, 4, 95.

 

Siracusa, V., Rocculi, P., Romani, S & Dalla Rosa, M. (2008). Biodegradable polymers

for food packaging: a review. Trends in Food Science & Technology, 19(12),

634-643.

 

Snejdrova, E. & Dittrich, M. (2012). Pharmaceutical applications of plasticized

polymers. Recent advances in plasticizers. IntechOpen.

 

Södergård, A. & Stolt, M. (2002). Properties of lactic acid based polymers and their

correlation with composition. Progress in polymer science, 27(6), 1123-1163.

 

Song, M., Pan, C., Li, J., Wang, X & Gu, Z. (2006). Electrochemical study on

synergistic effect of the blending of nano TiO2 and PLA polymer on the

interaction of antitumor drug with DNA. Electroanalysis: An International

Journal Devoted to Fundamental and Practical Aspects of

Electroanalysis, 18(19? 20), 1995-2000.

 

Sorrentino, A., Gorrasi, G & Vittoria, V. (2007). Potential perspectives of bionanocomposites

for food packaging applications. Trends in food science &

technology, 18(2), 84-95.

 

Sothornvit, R. & Krochta, J. M. (2005). Plasticizers in edible films and coatings.

In Innovations in food packaging (pp. 403-433). Academic Press.

 

Sothornvit, R. & Krochta, J. M. (2001). Plasticizer effect on mechanical properties of

β-lactoglobulin films. Journal of Food Engineering, 50(3), 149-155.

 

Sozer, N. & Kokini, J. L. (2009). Nanotechnology and its applications in the food

sector. Trends in biotechnology, 27(2), 82-89.

 

Sullivan, E. M., Karimineghlani, P., Naraghi, M., Gerhardt, R. A & Kalaitzidou, K.

(2016). The effect of nanofiller geometry and compounding method on polylactic

acid nanocomposite films. European Polymer Journal, 77, 31-42.

 

Su, Z., Li, Q., Liu, Y., Hu, G. H & Wu, C. (2009). Multiple melting behavior of poly

(lactic acid) filled with modified carbon black. Journal of Polymer Science Part

B: Polymer Physics, 47(20), 1971-1980.

 

Tang, X. Z., Kumar, P., Alavi, S & Sandeep, K. P. (2012). Recent advances in

biopolymers and biopolymer-based nanocomposites for food packaging

materials. Critical reviews in food science and nutrition, 52(5), 426-442.

 

Tang, X., Alavi, S & Herald, T. J. (2008). Barrier and mechanical properties of starchclay

nanocomposite films. Cereal chemistry, 85(3), 433-439.

 

Teixeira, E. D. M., Pasquini, D., Curvelo, A. A., Corradini, E., Belgacem, M. N &

Dufresne, A. (2009). Cassava bagasse cellulose nanofibrils reinforced

thermoplastic cassava starch. Carbohydrate polymers, 78(3), 422-431.

 

Tham, W. L., Mohd Ishak, Z. A & Chow, W. S. (2014). Mechanical and thermal

properties enhancement of poly (lactic acid)/halloysite nanocomposites by

maleic-anhydride functionalized rubber. Journal of Macromolecular Science,

Part B, 53(3), 371-382.

 

Thuy, N. T., Duc, V. M & Liem, N. T. (2018). Properties of poly (lactic acid) plasticized

by epoxidized rubber seed oil. Vietnam Journal of Chemistry, 56(2), 181-186.

 

Tsuji, H., Takai, H & Saha, S.K. (2006). Isothermal and non-isothermal crystallization

behaviour of poly(l-lactic acid): Effects of stereocomplex as nucleating agent.

Polymer, 47(11), 3826-3837.

 

Tsuji, H. & Yamada, T. (2003). Blends of aliphatic polyesters. VIII. Effects of poly (Llactide?

co?ε?caprolactone) on enzymatic hydrolysis of poly (L?lactide), poly (ε?

caprolactone), and their blend films. Journal of applied polymer science, 87(3),

412-419.

 

Tsuji, H. & Ikada, Y. (2000). Properties and morphology of poly (L-lactide) 4. Effects

of structural parameters on long-term hydrolysis of poly (L-lactide) in phosphatebuffered

solution. Polymer Degradation and Stability, 67(1), 179-189.

 

Väisänen, T., Das, O & Tomppo, L. (2017). A review on new bio-based constituents

for natural fiber-polymer composites. Journal of Cleaner Production, 149, 582-

596.

 

Vieira, M. G. A., da Silva, M. A., dos Santos, L. O & Beppu, M. M. (2011).

Natural-based plasticizers and biopolymer films: A review. European Polymer

Journal, 47(3), 254-263.

 

Venugopal, J. & Ramakrishna, S. (2005). Applications of polymer nanofibers in

biomedicine and biotechnology. Applied biochemistry and biotechnology,

125(3), 147-157.

 

Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N & Debevere, J. (1999).

Developments in the active packaging of foods. Trends in food science &

technology, 10(3), 77-86.

 

Vignon, M. R., Dupeyre, D & Garcia-Jaldon, C. (1996). Morphological

characterization of steam-exploded hemp fibers and their utilization in

polypropylene-based composites. Bioresource Technology, 58(2), 203-215.

 

Vink, E. T. & Davies, S. (2015). Life cycle inventory and impact assessment data for

2014 Ingeo™ polylactide production. Industrial Biotechnology, 11(3), 167-180.

 

Wang, G., Zhang, J & Murray, R. W. (2002). DNA binding of an ethidium intercalator

attached to a monolayer-protected gold cluster. Analytical chemistry, 74(17),

4320-4327.

 

Wang, L. F. & Rhim, J. W. (2016). Grapefruit seed extract incorporated antimicrobial

LDPE and PLA films: Effect of type of polymer matrix. LWT, 74, 338-345.

 

Wang, N., Zhang, X., Ma, X & Fang, J. (2008). Influence of carbon black on the

properties of plasticized poly(lactic acid) composites. Polymer Degradation and

Stability. 93(6), 1044-1052.

 

Wen, X., Lin, Y., Han, C., Zhang, K., Ran, X., Li, Y., et al (2009). Thermomechanical

and optical properties of biodegradable poly(L-lactide)/silica nanocomposites by

melt compounding. Journal of Applied Polymer Science. 114(6), 3379-3388.

 

Wu, D., Lin, D., Zhang, J., Zhou, W., Zhang, M., Zhang, Y., et al (2011). Selective

localization of nanofillers: effect on morphology and crystallization of PLA/PCL

blends. Macromolecular Chemistry and Physics, 212(6), 613-626.

 

Wu, W., Wu, G & Zhang, H. (2017). Effect of wood flour as nucleating agent on the

isothermal crystallization of poly (lactic acid). Polymers for Advanced

Technologies, 28(2), 252-260.

 

Xiao, H., Lu, W & Yeh, J. T. (2009). Effect of plasticizer on the crystallization behavior

of poly (lactic acid). Journal of applied polymer science, 113(1), 112-121.

 

Yamada, K., Ueda, K., Ray, S. S & Okamoto, M. (2002). Preparation and properties of

polylactide/layered silicate nanocomposite. Kobunshi ronbunshu

(Tokyo), 59(12), 760-766.

 

Yam, K. L., Takhistov, P. T & Miltz, J. (2005). Intelligent packaging: concepts and

applications. Journal of food science, 70(1), R1-R10.

 

Yang, C. S., Chang, C. H., Tsai, P. J., Chen, W. Y., Tseng, F. G & Lo, L. W. (2004).

Nanoparticle-based in vivo investigation on blood− brain barrier permeability

following ischemia and reperfusion. Analytical chemistry, 76(15), 4465-4471.

 

Yasuniwa, M., Sakamo, K., Ono, Y & Kawahara, W. (2008). Melting behavior of poly

(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer, 49(7),

1943-1951.

 

Yasuniwa, M., Tsubakihara, S., Sugimoto, Y & Nakafuku, C. (2004). Thermal analysis

of the double?melting behavior of poly (L?lactic acid). Journal of Polymer

Science Part B: Polymer Physics, 42(1), 25-32.

 

Yee, Y. Y., Ching, Y. C., Rozali, S., Hashim, N. A & Singh, R. (2016). Preparation and

characterization of poly (lactic acid)-based composite reinforced with oil palm

empty fruit bunch fiber and nanosilica. BioResources, 11(1), 2269-2286.

 

Yu, F., Liu, T., Zhao, X., Yu, X., Lu, A & Wang, J. (2012). Effects of talc on the

mechanical and thermal properties of polylactide. Journal of Applied Polymer

Science. 125 (S2), E99-E109.

 

Yu, L., Dean, K & Li, L. (2006). Polymer blends and composites from renewable

resources. Progress in polymer science, 31(6), 576-602.

 

Zabihzadeh, S. M (2010). Water uptake and flexural properties of natural filler/HDPE

composites. BioResources, 5(1), 316-232.

 

Zhang, J., Lou, J., Ilias, S., Krishnamachari, P & Yan, J. (2008). Thermal properties of

poly (lactic acid) fumed silica nanocomposites: experiments and molecular

dynamics simulations. Polymer, 49(9), 2381-2386.

 

Zhang, L., Xiong, C & Deng, X. (1996). Miscibility, crystallization and morphology of

poly (β-hydroxybutyrate)/poly (d, l-lactide) blends. Polymer, 37(2), 235-241.

 

Zhang, M. & Thomas, N. L. (2011). Blending polylactic acid with

polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation

properties. Advances in Polymer Technology, 30(2), 67-79.

 

Zhang, Q., Li, D., Zhang, H., Su, G & Li, G. (2018). Preparation and properties of poly

(lactic acid)/sesbania gum/nano-TiO2 composites. Polymer Bulletin, 75(2), 623-

635.

 

Zhao, J. L., Pan, H. W., Yang, H. L., Bian, J. J., Zhang, H. L., Gao, G., et al (2019).

Studies on Rheological, Thermal, and Mechanical Properties of

Polylactide/Methyl Methacrylate-Butadiene-Styrene Copolymer/Poly (propylene

carbonate) Polyurethane Ternary Blends. Chinese Journal of Polymer Science,

1-10.

 

Zhao, Y. Q., Cheung, H. Y., Lau, K. T., Xu, C. L., Zhao, D. D & Li, H. L. (2010).

Silkworm silk/poly (lactic acid) biocomposites: Dynamic mechanical, thermal

and biodegradable properties. Polymer degradation and stability, 95(10), 1978-

1987.

 

Zhijun, Q., Xingxiang, Z., Ning, W & Jianming, F. (2009). Poly(1,3-butylene adipate)

plasticized poly(lactic acid)/carbon black as electrical conductive polymer

composites. Polymer Composites. 30(11), 1576-1584.

 

Zhuang, W., Zhang, J., Liu, J., Zhang, Q., Hu, B & Shen, J. (2008). Preparation and

characterization of nano-TiO2/polylactide composites. Acta Mater. Compos.

Sinica, 25, 8-11.

 

 

 

 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.