UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The study aimed to investigate the reinforcement of plasticized poly(lactic acid) (PLA)
with titanium dioxide (TiO2) nanofiller. In this research, solvent casting and
thermocompression methods are adopted to prepare PLA nanocomposites with
different percentages of TiO2 at 0.5, 2.0, 3.5, 5.0, and 7.0 %?w/w that dispersed in PLA
solution using a mechanical mixer and ultrasonication technique. The composites were
characterized using dynamic mechanical analysis (DMA), differential scanning
calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron
microscopy (SEM). Results showed that tributyl citrate (TBC) plasticizer reduced the
brittle failure and increased the flexibility of PLA whilst TiO2 nanofiller improved the
crystallization of PLA composites as evidenced in DSC results at slow scanning rate.
The presence of 3.5 %?w/w TiO2 in plasticized PLA increased the glass transition
temperature (Tg) from 41.75 °C to 42.22 °C indicating restricted mobility of polymer
chains. The storage modulus improved from 2.36 GPa to 2.85 GPa due to the good
dispersion of TiO2 in the polymer matrix, as proven in SEM results. Thermal analysis
proved that the crystallinity of PLA increased with the addition of TBC and TiO2 from
24.98 % to 36.57 % at optimum loading of 7.0 %·w/w and 3.5 %?w/w, respectively.
However, agglomeration of nanoparticles was formed at higher filler loading
(>3.5 %?w/w), which reduced its properties. TiO2 was distributed uniformly throughout
the polymer matrix, acted as a reinforcement agent that improved the thermomechanical
properties and thermal stability of the composites. In conclusion, the incorporation of
plasticizer and nanofiller increased flexibility, improved thermomechanical properties,
thermal behavior, and thermal stability of the PLA nanocomposites at optimum
7.0 %·w/w TBC and 3.5 %?w/w TiO2. The implication of the study is that modification
of PLA in the acquirement of improved flexibility, toughness and strength has potential
in the packaging industry due to PLA biodegradability and compostability. |
References |
Abdelwahab, M. A., Flynn, A., Chiou, B. S., Imam, S., Orts, W & Chiellini, E. (2012). Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polymer Degradation and Stability, 97(9), 1822-1828.
Adeosun, S. O., Lawal, G. I., Balogun, S. A & Akpan, E. I. (2012). Review of green polymer nanocomposites. Journal of Minerals and Materials Characterization and Engineering, 11(04), 385.
Ahmed, J. & Varshney, S. K. (2011). Polylactides—chemistry, properties and green packaging technology: a review. International Journal of Food Properties, 14(1), 37-58.
Ahmed, J., Varshney, S. K., Auras, R & Hwang, S. W. (2010). Thermal and rheological properties of L?polylactide/polyethylene glycol/silicate nanocomposites films. Journal of Food Science, 75(8), N97-N108.
Alberton, J., Martelli, S. M., Fakhouri, F. M & Soldi, V. (2014). Mechanical and moisture barrier properties of titanium dioxide nanoparticles and halloysite nanotubes reinforced polylactic acid (PLA). In IOP Conference Series: Materials Science and Engineering (Vol. 64, No. 1, p. 012010). IOP Publishing.
Ali, F. B., Awale, R. J., Fakhruldin, H & Anuar, H. (2016). Plasticizing poly (lactic acid) using epoxidized palm oil for environmental friendly packaging material. Malaysian Journal of Analytical Sciences, 20(5), 1153-1158.
Ali, F., Chang, Y. W., Kang, S. C & Yoon, J. Y. (2009). Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polymer Bulletin, 62(1), 91-98.
Amass, W., Amass, A & Tighe, B. (1998). A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polymer international, 47(2), 89-144.
Anderson K. S., Schreck K. M & Hillmyer M. A. (2008). Toughening Polylactide, Polymer Revision. 48, 85-108.
Anuar, H., Razali, M. S., Saidin, H. A., Hisham, A. F. B., Apandi, S. N. E. Z. M & Ali, F. (2016). Tensile properties of durian skin fibre reinforced plasticized polylactic acid biocomposites. International Journal of Engineering Materials and Manufacture, 1(1), 16-20.
Anuar, H., Izzati, A. N. F., Inani, S. S. N., E’zzati, M. S. N., Salimah, A. S. M., Ali, F., et al (2017). Impregnation of Cinnamon Essential Oil into Plasticised Polylactic Acid Biocomposite Film for Active Food Packaging. Journal of Packaging Technology and Research, 1(3), 149-156.
Arjmandi, R., Hassan, A., Haafiz, M. M., Zakaria, Z & Inuwa, I. M. (2014). Characterization of polylactic acid/microcrystalline cellulose/montmorillonite hybrid composites. Malays J Anal Sci, 18, 642-650.
Armentano, I., Bitinis, N., Fortunati, E., Mattioli, S., Rescignano, N., Verdejo, R., et al (2013). Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science, 38(10-11), 1720-1747.
Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., et al (2015). Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. eXPRESS Polymer Letters, Vol 9(7), 583-596.
Arrieta, M.P., Samper, M.D., Aldas, M & López, J. (2017). On the use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10, 1008.
Arrieta, M. P., Fortunati, E., Dominici, F., López, J & Kenny, J. M. (2015). Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate polymers, 121, 265-275.
Arrieta, M. P., Castro-Lopez, M. D. M., Ray?n, E., Barral-Losada, L. F., L?pez- Vilari?o, J. M., L?pez, J., et al (2014a). Plasticized poly (lactic acid)–poly (hydroxybutyrate)(PLA–PHB) blends incorporated with catechin intended for active food-packaging applications. Journal of agricultural and food chemistry, 62(41), 10170-10180.
Arrieta, M. P., Fortunati, E., Dominici, F., Rayón, E., López, J & Kenny, J. M. (2014b). Multifunctional PLA–PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohydrate polymers, 107, 16-24.
Arrieta, M. P., Fortunati, E., Dominici, F., Rayón, E., López, J & Kenny, J. M. (2014c). PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polymer Degradation and Stability, 107, 139-149.
Asadi, G. & Mousavi, S. M. (2006). Application of nanotechnology in food packaging. In 13th World Congress of Food Science & Technology 2006 (pp. 739-739).
Athanasiou K. A., Niederauer G. G & Agrawal C. M. (1996). Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 17, 93-102.
Auras, R., Harte, B & Selke, S. (2004). An overview of polylactides as packaging materials. Macromolecular bioscience, 4(9), 835-864.
Avella, M., Buzarovska, A., Errico, M. E., Gentile, G & Grozdanov, A. (2009). Ecochallenges of bio-based polymer composites. Materials, 2(3), 911-925.
Averous, L. & Le Digabel, F. (2006). Properties of biocomposites based on lignocellulosic fillers. Carbohydrate polymers, 66(4), 480-493.
Averous, L. & Boquillon, N. (2004). Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate polymers, 56(2), 111-122.
Averous, L., Fringant, C & Moro, L. (2001). Starch?based biodegradable materials suitable for thermoforming packaging. Starch?Stärke, 53(8), 368-371.
Awale, R. J., Ali, F. B., Azmi, A. S., Puad, N. I. M., Anuar, H & Hassan, A. (2018). Enhanced flexibility of biodegradable polylactic acid/starch blends using epoxidized palm oil as plasticizer. Polymers, 10(9), 977.
Azizi Samir, M. A. S., Alloin, F & Dufresne, A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6(2), 612-626.
Baek, N., Kim, Y. T., Marcy, J. E., Duncan, S. E & O’Keefe, S. F. (2018). Physical properties of nanocomposite polylactic acid films prepared with oleic acid modified titanium dioxide. Food Packaging and Shelf Life, 17, 30-38.
Baiardo M., Frisoni G., Scandola M., Rimelen M., Lips D., Ruffieux K., et al (2003). Thermal and mechanical properties of plasticized poly(L lactic acid). Journal of Applied Polymer Science. 90(7), 1731-1738.
Bajpai, P. K., Singh, I & Madaan, J. (2014). Development and characterization of PLAbased green composites: A review. Journal of Thermoplastic Composite Materials, 27(1), 52-81.
Balakrishnan, H., Masoumi, I., Yussuf, A. A., Imran, M., Hassan, A & Wahit, M. U. (2012). Ethylene copolymer toughened polylactic acid nanocomposites. Polymer-Plastics Technology and Engineering, 51(1), 19-27.
Barrau, S., Vanmansart, C., Moreau, M., Addad. A., Stoclet, G., Lefebvre, J., et al (2011). Crystallization behaviour of carbon nanotube-polylactide nanocomposites. Macromolecules. 44(16), 6496-6502.
Behnajady, M. A., Eskandarloo, H., Modirshahla, N & Shokri, M. (2011). Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination, 278(1-3), 10-17.
Bodros, E., Pillin, I., Montrelay, N & Baley, C. (2007). Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications?. Composites Science and Technology, 67(3-4), 462-470.
Bogaert, J. C. & Coszach, P. (2000). Poly (lactic acids): a potential solution to plastic waste dilemma. Macromolecular symposia (Vol. 153, No. 1, pp. 287-303). Weinheim: WILEY?VCH Verlag.
Bordes, P., Pollet, E & Avérous, L. (2009). Nano-biocomposites: biodegradable polyester/nanoclay systems. Progress in Polymer Science, 34(2), 125-155.
Bouapao, L., Tsuji, H., Tashiro, K., Zhang, J & Hanesaka, M. (2009). Crystallization, spherulite growth, and structure of blends of crystalline and amorphous poly (lactide) s. Polymer, 50(16), 4007-4017.
Brody, A. L (2007). Case studies on nanotechnologies for food packaging. Food technology, 07:102-107.
Buasri, A., Buranasing, G., Piemjaiswang, R., Yousatit, S & Loryuenyong, V. (2014). Effect of titanium dioxide nanoparticles on mechanical and thermal properties of poly (lactic acid) and poly (butylene succinate) blends. Advances in Science and Technology (Vol. 96, pp. 33-38). Trans Tech Publications.
Burgos, N., Tolaguera, D., Fiori, S & Jiménez, A. (2014). Synthesis and characterization of lactic acid oligomers: Evaluation of performance as poly (lactic acid) plasticizers. Journal of Polymers and the Environment, 22(2), 227- 235.
Buzarovska, A (2013). PLA nanocomposites with functionalized TiO2 nanoparticles. Polymer-Plastics Technology and Engineering, 52(3), 280-286.
Buzarovska, A. & Grozdanov, A. (2012). Biodegradable poly(L-lactic acid)/TiO2 nanocomposites: thermal properties and degradation. Journal of Applied Polymer Science. 123:2187-2193.
Cagri, A., Ustunol, Z & Ryser, E. T. (2004). Antimicrobial edible films and coatings. Journal of food protection, 67(4), 833-848.
Campoccia, D., Visai, L., Renò, F., Cangini, I., Rizzi, M., Poggi, A., et al (2015). Bacterial adhesion to poly?(d, l) lactic acid blended with vitamin E: Toward gentle anti?infective biomaterials. Journal of Biomedical Materials Research Part A, 103(4), 1447-1458.
Cao, X., Dong, H & Li, C. M. (2007). New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules, 8(3), 899-904.
Cargnello, M., Gordon, T. R & Murray, C. B. (2014). Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chemical reviews, 114(19), 9319-9345.
Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X & Auras, R. (2016). Poly (lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced drug delivery reviews, 107, 333-366.
Cha, D. S. & Chinnan, M. S. (2004). Biopolymer-based antimicrobial packaging: a review. Critical reviews in food science and nutrition, 44(4), 223-237.
Chandra, R. & Rustgi, R. (1998). Biodegradable polymers. Progress in polymer science, 23, 1273-1335.
Chang, J. H., An, Y. U., Cho, D & Giannelis, E. P. (2003). Poly (lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica (II). Polymer, 44(13), 3715-3720.
Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., et al (2008). Applications and implications of nanotechnologies for the food sector. Food additives and contaminants, 25(3), 241-258.
Chen, C. C., Chueh, J. Y., Tseng, H., Huang, H. M & Lee, S. Y. (2003). Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials, 24(7), 1167-1173.
Chen, C., Lv, G., Pan, C., Song, M., Wu, C., Guo, D., et al (2007). Poly (lacticacid)(PLA) based nanocomposites—a novel way of drug- releasing. Biomedical materials, 2(4), L1.
Chen, L. & Dou, Q. (2019). Influence of the combination of nucleating agent and plasticizer on the non-isothermal crystallization kinetics and activation energies of poly (lactic acid). Journal of Thermal Analysis and Calorimetry, 1-22.
Chen, X. & Mao, S. S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical reviews, 107(7), 2891-2959.
Chen, Y., Yao, X., Gu, Q & Pan, Z. (2013). Non-isothermal crystallization kinetics of poly (lactic acid)/graphene nanocomposites. Journal of Polymer Engineering, 33(2), 163-171.
Chieng, B., Ibrahim, N., Yunus, W & Hussein, M. (2014a). Poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers, 6(1), 93-104.
Chieng, B., Ibrahim, N., Then, Y & Loo, Y. (2014b). Epoxidized vegetable oils plasticized poly (lactic acid) biocomposites: mechanical, thermal and morphology properties. Molecules, 19(10), 16024-16038.
Chow, W. S., Leu, Y. Y & Ishak, Z. M. (2014). Poly (lactic acid) nanocomposites with improved impact and thermal properties. Journal of Composite Materials, 48(2), 155-163.
Clarinval, A. M, & Halleux, J. (2005). Classification of biodegradable polymers. In Biodegradable polymers for industrial applications (pp. 3-31). Woodhead Publishing.
Cohn, D. & Salomon, A. H. (2005). Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials, 26(15), 2297-2305.
Conte, A., Longano, D., Costa, C., Ditaranto, N., Ancona, A., Cioffi, N., et al (2013). A novel preservation technique applied to fiordilatte cheese. Innovative food science & emerging technologies, 19, 158-165.
Costa, R. G., Brichi, G. S., Ribeiro, C & Mattoso, L. H. (2016). Nanocomposite fibers of poly (lactic acid)/titanium dioxide prepared by solution blow spinning. Polymer Bulletin, 73(11), 2973-2985.
Costa, R. G., Ribeiro, C & Mattoso, L. H. (2013). Study of the effect of rutile/anatase TiO2 nanoparticles synthesized by hydrothermal route in electrospun PVA/TiO2 nanocomposites. Journal of Applied Polymer Science, 127(6), 4463-4469.
Costa, R. G., Ribeiro, C & Mattoso, L. H. (2010). Morphological and photocatalytic properties of PVA/TiO2 nanocomposite fibers produced by electrospinning. Journal of nanoscience and nanotechnology, 10(8), 5144-5152.
Courgneau, C., Domenek, S., Guinault, A., Avérous, L & Ducruet, V. (2011). Analysis of the structure-properties relationships of different multiphase systems based on plasticized poly (lactic acid). Journal of Polymers and the Environment, 19(2), 362-371.
Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R & Kumar, A. (2015). Nanotechnology in agro-food: from field to plate. Food Research International, 69, 381-400.
De Azeredo, H. M (2009). Nanocomposites for food packaging applications. Food research international, 42(9), 1240-1253.
Di Gioia, L., Cuq, B & Guilbert, S. (1999). Thermal properties of corn gluten meal and its proteic components. International journal of biological macromolecules, 24(4), 341-350.
Di Lorenzo, M. L (2005). Crystallization behavior of poly (L-lactic acid). European Polymer Journal, 41(3), 569-575.
Di Maio, L., Scarfato, P., Milana, M. R., Feliciani, R., Denaro, M., Padula, G., et al (2014). Bionanocomposite polylactic acid/organoclay films: Functional properties and measurement of total and lactic acid specific migration. Packaging Technology and Science, 27(7), 535-547.
Dil, E. J., Virgilio, N & Favis, B. D. (2016). The effect of the interfacial assembly of nano-silica in poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends on morphology, rheology and mechanical properties. European Polymer Journal, 85, 635-646.
Dorgan, J. R., Lehermeier, H & Mang, M. (2000). Thermal and rheological properties of commercial-grade poly (lactic acid). Journal of Polymers and the Environment, 8(1), 1-9.
Doyle, M. E (2006). Nanotechnology: a brief literature review. Food Research Institute, UW-Madison.
Duncan, T. V (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of colloid and interface science, 363(1), 1-24.
Ebadi-Dehaghani, H., Barikani, M., Khonakdar, H. A & Jafari, S. H. (2015). Microstructure and non-isothermal crystallization behavior of PP/PLA/clay hybrid nanocomposites. Journal of Thermal Analysis and Calorimetry, 121(3), 1321-1332.
Eguiburu, J. L., Iruin, J. J., Fernandez-Berridi, M. J & San Roman, J. (1998). Blends of amorphous and crystalline polylactides with poly (methyl methacrylate) and poly (methyl acrylate): a miscibility study. Polymer, 39(26), 6891-6897.
Famá, L., Gerschenson, L & Goyanes, S. (2009). Starch-vegetable fibre composites to protect food products. Carbohydrate polymers, 75(2), 230-235.
Fan, C., Plaxco, K. W & Heeger, A. J. (2002). High-efficiency fluorescence quenching of conjugated polymers by proteins. Journal of the American Chemical Society, 124(20), 5642-5643.
Farah, S., Anderson, D. G & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Advanced drug delivery reviews, 107, 367-392.
Fenollar, O., García, D., Sánchez, L., López, J & Balart, R. (2009). Optimization of the curing conditions of PVC plastisols based on the use of an epoxidized fatty acid ester plasticizer. European Polymer Journal, 45(9), 2674-2684.
Finkenstadt V. L., Liu C. K., Cooke P. H., Liu L. S & Willett J. L. (2008). Mechanical Property Characterization of Plasticized Sugar Beet Pulp and Poly(Lactic Acid) Green Composites Using Acoustic Emission and Confocal Microscopy. Journal of Polymers and the Environment. 16(1), 19-26.
Flory, P. J (1953). Principles of polymer chemistry. Cornell University Press.
Fortunati, E., Armentano, I., Zhou, Q., Puglia, D., Terenzi, A., Berglund, L. A., et al (2012). Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polymer degradation and stability, 97(10), 2027-2036.
Foruzanmehr, M., Vuillaume, P. Y., Elkoun, S & Robert, M. (2016). Physical and mechanical properties of PLA composites reinforced by TiO2 grafted flax fibers. Materials & Design, 106, 295-304.
Fujishima, A., Rao, T. N & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of photochemistry and photobiology C: Photochemistry reviews, 1(1), 1-21.
Garlotta, D. (2001). A literature review of poly (lactic acid). Journal of Polymers and the Environment, 9(2), 63-84.
Ge H., Yang F., Hao Y., Wu G., Zhang H & Dong L. (2013). Thermal, mechanical, and rheological properties of plasticized poly(L-lactic acid). Journal of Applied Polymer Science. 127(4), 2832-2839.
Gil, N., Saska, M & Negulescu, I. (2006). Evaluation of the effects of biobased plasticizers on the thermal and mechanical properties of poly (vinyl chloride). Journal of applied polymer science, 102(2), 1366-1373.
Guan, J. & Hanna, M. A. (2006). Selected morphological and functional properties of extruded acetylated starch–cellulose foams. Bioresource Technology, 97(14), 1716-1726.
Guigo, N., Vincent, L., Mija, A., Naegele, H & Sbirrazzuoli, N. (2009). Innovative green nanocomposites based on silicate clays/lignin/natural fibres. Composites Science and Technology, 69(11-12), 1979-1984.
Gumiero, M., Peressini, D., Pizzariello, A., Sensidoni, A., Iacumin, L., Comi, G., et al (2013). Effect of TiO2 photocatalytic activity in a HDPE-based food packaging on the structural and microbiological stability of a short-ripened cheese. Food chemistry, 138(2-3), 1633-1640.
Gurunathan, T., Mohanty, S & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25.
Gutierrez?Villarreal, M. H. & Rodríguez?Velazquez, J. (2007). The effect of citrate esters as plasticizers on the thermal and mechanical properties of poly (methyl methacrylate). Journal of applied polymer science, 105(4), 2370-2375.
Han, Q., Wang, Y., Shao, C., Zheng, G., Li, Q & Shen, C. (2014). Nonisothermal crystallization kinetics of biodegradable poly(lactic acid)/zinc phenylphosphonate composites. Journal of Composite Matter. 48(22), 2737- 2746.
Harte, I., Birkinshaw, C., Jones, E., Kennedy, J & DeBarra, E. (2012). The effect of citrate ester plasticizers on the thermal and mechanical properties of poly(DLlactide). Journal of Applied Polymer Science. 1-7.
Hartmann, M. H (1998). High molecular weight polylactic acid polymers. Biopolymers from renewable resources (pp. 367-411). Springer, Berlin, Heidelberg.
Henton, D. E., Gruber, P., Lunt, J & Randall, J. (2005). Polylactic acid technology. Natural fibers, biopolymers, and biocomposites, 16, 527-577.
Huang, H. D., Ren, P. G., Xu, J. Z., Xu, L., Zhong, G. J., Hsiao, B. S., et al (2014). Improved barrier properties of poly (lactic acid) with randomly dispersed graphene oxide nanosheets. Journal of Membrane Science, 464, 110-118.
Huang, Z. M., Zhang, Y. Z., Kotaki, M & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 63(15), 2223-2253.
Heydari, A., Alemzadeh, I & Vossoughi, M. (2013). Functional properties of biodegradable corn starch nanocomposites for food packaging applications. Materials & Design, 50, 954-961.
Huski?, M. & ?igon, M. (2007). PMMA/MMT nanocomposites prepared by one-step in situ intercalative solution polymerization. European Polymer Journal, 43(12), 4891-4897.
Immergut, E. H. & Mark, H. F. (1965). Principles of plasticization. Plasticization and plasticizer processes, 48, 1-26.
Imre, B. & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European polymer journal, 49(6), 1215-1233.
Ingrao, C., Tricase, C., Cholewa-Wójcik, A., Kawecka, A., Rana, R & Siracusa, V. (2015). Polylactic acid trays for fresh-food packaging: A Carbon Footprint assessment. Science of the Total Environment, 537, 385-398.
Jacobsen, S. & Fritz, H. G. (1996). Filling of poly (lactic acid) with native starch. Polymer Engineering & Science, 36(22), 2799-2804.
Jacobsen, S., Fritz, H. G., Degée, P., Dubois, P. H & Jérôme, R. (1999). Polylactide (PLA)—a new way of production. Polymer Engineering & Science, 39(7), 1311- 1319.
Jacobsen, S. & Fritz, H. G. (1999). Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polymer Engineering & Science, 39(7), 1303-1310.
Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M & Desobry, S. (2010). Poly-lactic acid: production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552- 571.
Jorda-Beneyto, M., Ortuño, N., Devis, A., Aucejo, S., Puerto, M., Gutiérrez-Praena, D., et al (2014). Use of nanoclay platelets in food packaging materials: technical and cytotoxicity approach. Food Additives & Contaminants: Part A, 31(3), 354-363.
Kang, H., Li, Y., Gong, M., Guo, Y., Guo, Z., Fang, Q., et al (2018). An environmentally sustainable plasticizer toughened polylactide. RSC advances, 8(21), 11643-11651.
Kelnar, I., Kratochvíl, J., Kaprálková, L., Zhigunov, A & Nevoralová, M. (2017). Graphite nanoplatelets-modified PLA/PCL: Effect of blend ratio and nanofiller localization on structure and properties. Journal of the mechanical behavior of biomedical materials, 71, 271-278.
Kerry, J. P., O’grady, M. N & Hogan, S. A. (2006). Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat science, 74(1), 113-130.
Khanam, P. N. & AlMaadeed, M. A. (2014). Improvement of ternary recycled polymer blend reinforced with date palm fibre. Materials & Design, 60, 532-539.
Kim, H. S., Park, B. H., Choi, J. H & Yoon, J. S. (2008). Mechanical properties and thermal stability of poly (L?lactide)/calcium carbonate composites. Journal of applied polymer science, 109(5), 3087-3092.
Kobashi, K., Villmow, T., Andres, T & Pötschke, P. (2008). Liquid sensing of meltprocessed poly (lactic acid)/multi-walled carbon nanotube composite films. Sensors and Actuators B: Chemical, 134(2), 787-795.
Kratochvíl, J. & Kelnar, I. (2017). Non-isothermal kinetics of cold crystallization in multicomponent PLA/thermoplastic polyurethane/nanofiller system. Journal of Thermal Analysis and Calorimetry, 130(2), 1043-1052.
Kumar, R., Singh, T & Singh, H. (2015). Natural fibers polymeric composites with particulate fillers–A review report. Int. J. Adv. Eng. Res. Appl, 1, 22-29.
Kumar, V., Tyagi, L & Sinha, S. (2011). Wood flour–reinforced plastic composites: a review. Reviews in chemical engineering, 27(5-6), 253-264.
Kuswandi, B. & Moradi, M. (2019). Improvement of Food Packaging Based on Functional Nanomaterial. Nanotechnology: Applications in Energy, Drug and Food (pp. 309-344). Springer, Cham.
Kuswandi, B (2017). Environmental friendly food nano-packaging. Environmental Chemistry Letters, 15(2), 205-221.
Labrecque, L.V., Kumar, R.A., Dave, V., Gross, R.A & McCarthy, S.P. (1997). Citrate esters as plasticizers for poly(lactic acid). Journal of Applied Polymer Science. 66(8), 1507-1513.
Lagarón, J. M (2011). Polylactic acid (PLA) nanocomposites for food packaging applications. Multifunctional and Nanoreinforced Polymers for Food Packaging (pp. 485-497). Woodhead Publishing.
Lai, J. C. H., Rahman, M. & Hamdan, S. (2015). Physical, mechanical, and thermal analysis of polylactic acid/fumed silica/clay (1.28 E) nanocomposites. International Journal of Polymer Science, 2015.
Lee, J. H., Park, T. G., Park, H. S., Lee, D. S., Lee, Y. K., Yoon, S. C., et al (2003). Thermal and mechanical characteristics of poly (L-lactic acid) nanocomposite scaffold. Biomaterials, 24(16), 2773-2778.
Lee, S. H. & Wang, S. (2006). Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A: Applied Science and Manufacturing, 37(1), 80-91.
Lei, Wu. C., Zhang, M. Q., Rong, M. Z & Friedrich, K. (2005). Silica nanoparticles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performances of the composites. Composites Science and Technology. 65(3-4), 635-645.
Lei, Y., Wu, Q., Yao, F & Xu, Y. (2007). Preparation and properties of recycled HDPE/natural fiber composites. Composites Part A: applied science and manufacturing, 38(7), 1664-1674.
Li, C., Dou, Q., Bai, Z & Lu, Q. (2015). Non-isothermal crystallization behaviors and spherulitic morphology of poly (lactic acid) nucleated by a novel nucleating agent. Journal of Thermal Analysis and Calorimetry, 122(1), 407-417.
Li, J., He, Y & Inoue, Y. (2003). Thermal and mechanical properties of biodegradable blends of poly (L?lactic acid) and lignin. Polymer International, 52(6), 949-955.
Li, J., Luo, X & Lin, X. (2013). Preparation and characterization of hollow glass microsphere reinforced poly (butylene succinate) composites. Materials & Design, 46, 902-909.
Li, S. D. & Huang, L. (2008). Pharmacokinetics and biodistribution of nanoparticles. Molecular pharmaceutics, 5(4), 496-504.
Lim, L. T., Auras, R & Rubino, M. (2008). Processing technologies for poly (lactic acid). Progress in polymer science, 33(8), 820-852.
Lim, L. T., Cink, K & Vanyo, T. (2010). Processing of poly (lactic acid). Poly (Lactic Acid) Synthesis, Structures, Properties, Processing, and Applications, 189-215.
Liu, D., Zhong, T., Chang, P. R., Li, K & Wu, Q. (2010). Starch composites reinforced by bamboo cellulosic crystals. Bioresource technology, 101(7), 2529-2536.
Liu, H. & Zhang, J. (2011). Research progress in toughening modification of poly (lactic acid). Journal of polymer science part B: Polymer Physics, 49(15), 1051- 1083.
Ljungberg, N., Colombini, D & Wesslén, B. (2005). Plasticization of poly (lactic acid) with oligomeric malonate esteramides: Dynamic mechanical and thermal film properties. Journal of Applied Polymer Science, 96(4), 992-1002.
Ljungberg, N. & Wesslen, B. (2003). Tributyl citrate oligomers as plasticizers for poly (lactic acid): thermo-mechanical film properties and aging. Polymer, 44(25), 7679-7688.
Ljungberg N. & Wesslén B. (2002). The effects of plasticizers on the dynamic mechanical and thermal propertiesof poly(lactic acid). Journal of Applied Science. 86, 1227-1234.
Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R & Fernandez, A. (2012). Metallicbased micro and nanocomposites in food contact materials and active food packaging. Trends in Food Science & Technology, 24(1), 19-29.
Lopez-Rubio, A., Almenar, E., Hernandez-Muñoz, P., Lagarón, J. M., Catalá, R & Gavara, R. (2004). Overview of active polymer-based packaging technologies for food applications. Food Reviews International, 20(4), 357-387.
Lunt, J (1998). Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer degradation and stability, 59(1-3), 145-152.
Maiti, P., Yamada, K., Okamoto, M., Ueda, K & Okamoto, K. (2002). New polylactide/layered silicate nanocomposites: role of organoclays. Chemistry of materials, 14(11), 4654-4661.
Maiza, M., Benaniba, M. T., Quintard, G & Massardier-Nageotte, V. (2015). Biobased additive plasticizing Polylactic acid (PLA). Polimeros, 25(6), 581-590.
Majdzadeh-Ardakani, K. & Sadeghi-Ardakani, S. (2010). Experimental Investigation Of Mechanical Properties Of Starch/Natural Rubber/Clay Nanocomposites. Digest Journal of Nanomaterials & Biostructures (DJNB), 5(2).
Man, C., Zhang, C., Liu, Y., Wang, W., Ren, W., Jiang, L., et al (2012). Poly (lactic acid)/titanium dioxide composites: preparation and performance under ultraviolet irradiation. Polymer degradation and stability, 97(6), 856-862.
Mangaraj, S., Yadav, A., Bal, L. M., Dash, S. K & Mahanti, N. K. (2019). Application of biodegradable polymers in food packaging industry: a comprehensive review. Journal of Packaging Technology and Research, 3(1), 77-96.
Marra, A., Silvestre, C., Kujundziski, A. P., Chamovska, D & Duraccio, D. (2017). Preparation and characterization of nanocomposites based on PLA and TiO2 nanoparticles functionalized with fluorocarbons. Polymer Bulletin, 74(8), 3027- 3041.
Mathur, M. & Hira, M. A. (2008). Specialty Fibres-IV: Poly Lactic Acid Fibres. Man-Made Textiles in India, 51(7).
Mehta, R., Kumar, V., Bhunia, H & Upadhyay, S. N. (2005). Synthesis of poly (lactic acid): a review. Journal of Macromolecular Science, Part C: Polymer Reviews, 45(4), 325-349.
Mekonnen, T., Mussone, P., Khalil, H & Bressler, D. (2013). Progress in bio-based plastics and plasticizing modifications. Journal of Materials Chemistry A, 1(43), 13379-13398.
Mhlanga, N. & Ray, S. S. (2014). Characterisation and thermal properties of titanium dioxide nanoparticles-containing biodegradable polylactide composites synthesized by sol–gel method. Journal of nanoscience and nanotechnology, 14(6), 4269-4277.
Mihindukulasuriya, S. D. F. & Lim, L. T. (2014). Nanotechnology development in food packaging: A review. Trends in Food Science & Technology, 40(2), 149-167.
Miller, G. & Senjen, R. (2008). Out of the Laboratory and onto our Plates: Nanotechnology in Food & Agriculture. A report prepared for Friends of the Earth Australia. Friends of the Earth Europe and Friends of the Earth United States and supported by Friends of the Earth Germany. Friends of the Earth Australia Nanotechnology Project, Australia.
Mo, S. D. & Ching, W. Y. (1995). Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B, 51(19), 13023.
Mohanty, A. K., Misra, M. A & Hinrichsen, G. I. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular materials and Engineering, 276(1), 1-24.
Mustapa, I. R., Czajka, M., Chandran, S., Daud, N., Kong, I & Shanks, R. A. (2016). Crystallization Behavior Of Plasticized Poly (Lactic Acid)-Hemp Nanocomposites. Polymers Research Journal, 10(4), 199.
Mustapa, I. R. & Shanks, R. A. (2014). Multiple melting behavior of poly (lactic acid)- hemp-silica composites using modulated-temperature differential scanning calorimetry. Journal of Polymer Engineering, 34(9), 895-903.
Mustapa, I. R., Chandran, S., Shanks, R. A & Kong, I. (2014). Non-isothermal Crystallization of Poly (lactic acid)-Hemp-Silica Nanocomposites Plasticized with Tributyl Citrate. In 37th Annual Condensed Matter and Materials Meeting (pp. 33-36). Australian Institute of Physics.
Mustapa, I. R., Shanks, R. A & Kong, I. (2013a). Melting behaviour and dynamic mechanical properties of Poly (lactic acid)-hemp-nanosilica composites. Asian Transactions on Basic and Applied Sciences, 3(2), 29-37.
Mustapa, I., Shanks, R & Kong, I. (2013b). Poly (lactic acid)-hemp-nanosilica hybrid composites: thermomechanical, thermal behavior and morphological properties. International Journal of Advanced Science and Engineering Technology, 3(1), 192-199.
Mustapa, I. R. & Shanks, R. A. (2012). Dynamic Mechanical Properties and Melting Behaviour of Poly (Lactic Acid)–Hemp–Nanosilica Hybrid Composites. In Proc. 15th European Conference on Composite Materials.
Nafchi, A. M., Nassiri, R., Sheibani, S., Ariffin, F & Karim, A. A. (2013). Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide. Carbohydrate polymers, 96(1), 233-239.
Nagarajan, V., Mohanty, A. K & Misra, M. (2016). Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance. ACS Sustainable Chemistry and Engineering, 4, 2899−2916.
Nair, L. S. & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in polymer science, 32(8-9), 762-798.
Nampoothiri, K. M., Nair, N. R & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource technology, 101(22), 8493-8501.
Nomai, J., Suksut, B & Schlarb, A. K. (2015). Crystallization behavior of poly (lactic acid)/titanium dioxide nanocomposites. KMUTNB International Journal of Applied Science and Technology, 8, 251-258.
Ohkita, T. & Lee, S. H. (2006). Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites. Journal of applied polymer science, 100(4), 3009-3017.
Ojijo, V., Sinha Ray, S & Sadiku, R. (2012a). Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly [(butylene succinate)-co-adipate] blend composites. ACS applied materials & interfaces, 4(5), 2395-2405.
Ojijo, V., Sinha Ray, S & Sadiku, R. (2012b). Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly [(butylene succinate)-co-adipate]. ACS applied materials & interfaces, 4(12), 6690-6701.
Ozkoc, G. & Kemaloglu, S. (2009). Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA. Journal of Applied Polymer Science, 114(4), 2481-2487.
Pan, H., Xu, D., Liu, Q., Ren, H. Q & Zhou, M. (2014). Preparation and characterization of corn starch-nanodiamond composite films. Applied Mechanics and Materials (Vol. 469, pp. 156-161). Trans Tech Publications.
Pandey, J. K., Chu, W. S., Lee, C. S & Ahn, S. H. (2007). Preparation characterization and performance evaluation of nanocomposites from natural fiber reinforced biodegradable polymer matrix for automotive applications. International Symposium on Polymers and the Environment: Emerging Technology and Science, BioEnvironmental Polymer Society (BEPS).
Papageorgiu, GZ., Achilias, DS., Nanaki, S., Beslikas, T & Bikiaris, D. (2010). PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochim Acta.;511:129–38.
Park, E. S., Kim, M. N & Yoon, J. S. (2002). Grafting of polycaprolactone onto poly (ethylene?co?vinyl alcohol) and application to polyethylene?based bioerodable blends. Journal of Polymer Science Part B: Polymer Physics, 40(22), 2561-2569.
Paul, M. A., Delcourt, C., Alexandre, M., Degée, P., Monteverde, F., Rulmont, A., et al (2005). (Plasticized) polylactide/(organo?) clay nanocomposites by in situ intercalative polymerization. Macromolecular Chemistry and physics, 206(4), 484-498.
Paul, M. A., Alexandre, M., Degée, P., Calberg, C., Jérôme, R & Dubois, P. (2003). Exfoliated Polylactide/Clay Nanocomposites by In?Situ Coordination–Insertion Polymerization. Macromolecular rapid communications, 24(9), 561-566.
Petersen, K., Nielsen, P. V., Bertelsen, G., Lawther, M., Olsen, M. B., Nilsson, N. H., et al (1999). Potential of biobased materials for food packaging. Trends in food science & technology, 10(2), 52-68.
Phetwarotai, W., Potiyaraj, P & Aht?Ong, D. (2012). Characteristics of biodegradable polylactide/gelatinized starch films: Effects of starch, plasticizer, and compatibilizer. Journal of Applied Polymer Science, 126(S1), E162-E172.
Pillai, S. K., Ray, S. S., Scriba, M., Ojijo, V & Hato, M. J. (2013). Morphological and thermal properties of photodegradable biocomposite films. Journal of Applied Polymer Science, 129(1), 362-370.
Pillin, I., Montrelay, N., Bourmaud, A & Grohens, Y. (2008). Effect of thermomechanical cycles on the physico-chemical properties of poly (lactic acid). Polymer Degradation and Stability, 93(2), 321-328.
Pluta M. & Galeski A. (2002). Crystalline and supermolecular structure of polylactide in relation to the crystallization method. Journal of Applied Polymer Science. 86(6), 1386-1395.
Pluta, M., Galeski, A., Alexandre, M., Paul, M. A & Dubois, P. (2002). Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties. Journal of Applied Polymer Science, 86(6), 1497-1506.
Pogodina, N. V., Cerclé, C., Avérous, L., Thomann, R., Bouquey, M & Muller, R. (2008). Processing and characterization of biodegradable polymer nanocomposites: detection of dispersion state. Rheologica Acta, 47(5-6), 543- 553.
Qin, Y., Yang, J., Yuan, M., Xue, J., Chao, J., Wu, Y., et al (2014). Mechanical, barrier, and thermal properties of poly (lactic acid)/poly (trimethylene carbonate)/talc composite films. Journal of Applied Polymer Science, 131(6).
Raquez, J. M., Habibi, Y., Murariu, M & Dubois, P. (2013). Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 38(10-11), 1504-1542.
Rasal R. M. & Hirt D. E. (2008) Toughness decrease of PLA-PHBHHx blend films upon surface-confined photopolymerization. Journal of Biomedical Materials Research Part-A. 88(4), 1079-1086.
Ratanakamnuan, U. & Aht?Ong, D. (2006). Preparation and characterization of lowdensity polyethylene/banana starch films containing compatibilizer and photosensitizer. Journal of applied polymer science, 100(4), 2717-2724.
Ray, S. S. & Bousmina, M. (2006). Biodegradable polymer/layered silicate nanocomposites. In Polymer Nanocomposites (pp. 57-129). Woodhead Publishing.
Ray, S. S. & Bousmina, M. (2005). Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Progress in materials science, 50(8), 962-1079.
Ren, Z., Dong, L & Yang, Y. (2006). Dynamic mechanical and thermal properties of plasticized poly (lactic acid). Journal of Applied Polymer Science, 101(3), 1583- 1590.
Rhim, J. W., Mohanty, A. K., Singh, S. P & Ng, P. K. (2006). Effect of the processing methods on the performance of polylactide films: Thermocompression versus solvent casting. Journal of applied polymer science, 101(6), 3736-3742.
Rhim, J. W., Park, H. M & Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in polymer science, 38(10-11), 1629-1652.
Rhim, J. W., Hong, S. I & Ha, C. S. (2009). Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT-Food Science and Technology, 42(2), 612-617.
Righetti, M. C., Cinelli, P., Mallegni, N., Massa, C. A., Bronco, S., Stäbler, A., et al (2019). Thermal, Mechanical, and Rheological Properties of Biocomposites Made of Poly (lactic acid) and Potato Pulp Powder. International journal of molecular sciences, 20(3), 675.
Rostami, A., Nazockdast, H & Karimi, M. (2016). Graphene induced microstructural changes of PLA/MWCNT biodegradable nanocomposites: rheological, morphological, thermal and electrical properties. RSC Advances, 6(55), 49747- 49759.
Rydz, J., Musio?, M., Zawidlak-W?grzy?ska, B & Sikorska, W. (2018). Present and future of biodegradable polymers for food packaging applications. Biopolymers for Food Design (pp. 431-467). Academic Press.
Samadi, S., Moradkhani, M., Beheshti, H., Irani, M & Aliabadi, M. (2018). Fabrication of chitosan/poly (lactic acid)/graphene oxide/TiO2 composite nanofibrous scaffolds for sustained delivery of doxorubicin and treatment of lung cancer. International journal of biological macromolecules, 110, 416-424.
Scheirs, J., Camino, G & Tumiatti, W. (2001). Overview of water evolution during the thermal degradation of cellulose. European Polymer Journal, 37(5), 933-942.
Sejidov, F. T., Mansoori, Y & Goodarzi, N. (2005). Esterification reaction using solid heterogeneous acid catalysts under solvent-less condition. Journal of Molecular Catalysis A: Chemical, 240(1-2), 186-190.
Sears, J. K. & Darby, J. R. (1982). Mechanism of plasticizer action. The Technology of Plasticizers, 35-77.
Shankar, S. & Rhim, J. W. (2018). Bionanocomposite films for food packaging applications. Reference module in food science, 1-10.
Shankar, S. & Rhim, J. W. (2016). Polymer nanocomposites for food packaging applications. Functional and physical properties of polymer nanocomposites, 29.
Shi, N. & Dou, Q. (2015). Non-isothermal cold crystallization kinetics of poly (lactic acid)/poly (butylene adipate-co-terephthalate)/treated calcium carbonate composites. Journal of Thermal Analysis and Calorimetry, 119(1), 635-642.
Shirai, M. A., Grossmann, M. V. E., Mali, S., Yamashita, F., Garcia, P. S & Müller, C. M. O. (2013). Development of biodegradable flexible films of starch and poly (lactic acid) plasticized with adipate or citrate esters. Carbohydrate Polymers, 92(1), 19-22.
Shtarkman, B. P. & Razinskaya, I. N. (1983). Plasticization mechanism and structure of polymers. Acta polymerica, 34(8), 514-520.
Shyang, C. W. & Kuen, L. S. (2008). Flexural, morphological and thermal properties of poly (lactic acid)/organo-montmorillonite nanocomposites. Polymers and Polymer Composites, 16(4), 263-270.
Silverajah, V. S., Ibrahim, N. A., Zainuddin, N., Yunus, W. M. Z. W & Hassan, H. A. (2012). Mechanical, thermal and morphological properties of poly (lactic acid)/epoxidized palm olein blend. Molecules, 17(10), 11729-11747.
Silvestre, C., Duraccio, D & Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress in polymer science, 36(12), 1766-1782.
Singh, S., Maspoch, M. L & Oksman, K. (2019). Crystallization of triethyl?citrateplasticized poly (lactic acid) induced by chitin nanocrystals. Journal of Applied Polymer Science, 136(36), 47936.
Singla, R. K., Maiti, S. N & Ghosh, A. K. (2016). Mechanical, morphological, and solid-state viscoelastic responses of poly (lactic acid)/ethylene-co-vinyl-acetate super-tough blend reinforced with halloysite nanotubes. Journal of Materials Science, 51(22), 10278-10292.
Sinha J., K., PandeyD., Rutot P.D & Dubois P. (2003). Biodegradation of poly (ε- caprolactone)/starch blends and composites in composting and culture environment: the effect of compatibilization on the inherent biodegradability of the host polymer. Carbohydrates Research. 338, 1759-1769.
Sinha Ray, S., Okamoto, K., Yamada, K & Okamoto, M. (2002a). Novel porous ceramic material via burning of polylactide/layered silicate nanocomposite. Nano Letters, 2(4), 423-425.
Sinha Ray, S., Yamada, K., Okamoto, M & Ueda, K. (2002b). Polylactide-layered silicate nanocomposite: a novel biodegradable material. Nano Letters, 2(10), 1093-1096.
Sinha Ray, S., Maiti, P., Okamoto, M., Yamada, K & Ueda, K. (2002c). New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties. Macromolecules, 35(8), 3104-3110.
Smijs, T. G. & Pavel, S. (2011). Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnology, science and applications, 4, 95.
Siracusa, V., Rocculi, P., Romani, S & Dalla Rosa, M. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19(12), 634-643.
Snejdrova, E. & Dittrich, M. (2012). Pharmaceutical applications of plasticized polymers. Recent advances in plasticizers. IntechOpen.
Södergård, A. & Stolt, M. (2002). Properties of lactic acid based polymers and their correlation with composition. Progress in polymer science, 27(6), 1123-1163.
Song, M., Pan, C., Li, J., Wang, X & Gu, Z. (2006). Electrochemical study on synergistic effect of the blending of nano TiO2 and PLA polymer on the interaction of antitumor drug with DNA. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 18(19? 20), 1995-2000.
Sorrentino, A., Gorrasi, G & Vittoria, V. (2007). Potential perspectives of bionanocomposites for food packaging applications. Trends in food science & technology, 18(2), 84-95.
Sothornvit, R. & Krochta, J. M. (2005). Plasticizers in edible films and coatings. In Innovations in food packaging (pp. 403-433). Academic Press.
Sothornvit, R. & Krochta, J. M. (2001). Plasticizer effect on mechanical properties of β-lactoglobulin films. Journal of Food Engineering, 50(3), 149-155.
Sozer, N. & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in biotechnology, 27(2), 82-89.
Sullivan, E. M., Karimineghlani, P., Naraghi, M., Gerhardt, R. A & Kalaitzidou, K. (2016). The effect of nanofiller geometry and compounding method on polylactic acid nanocomposite films. European Polymer Journal, 77, 31-42.
Su, Z., Li, Q., Liu, Y., Hu, G. H & Wu, C. (2009). Multiple melting behavior of poly (lactic acid) filled with modified carbon black. Journal of Polymer Science Part B: Polymer Physics, 47(20), 1971-1980.
Tang, X. Z., Kumar, P., Alavi, S & Sandeep, K. P. (2012). Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Critical reviews in food science and nutrition, 52(5), 426-442.
Tang, X., Alavi, S & Herald, T. J. (2008). Barrier and mechanical properties of starchclay nanocomposite films. Cereal chemistry, 85(3), 433-439.
Teixeira, E. D. M., Pasquini, D., Curvelo, A. A., Corradini, E., Belgacem, M. N & Dufresne, A. (2009). Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydrate polymers, 78(3), 422-431.
Tham, W. L., Mohd Ishak, Z. A & Chow, W. S. (2014). Mechanical and thermal properties enhancement of poly (lactic acid)/halloysite nanocomposites by maleic-anhydride functionalized rubber. Journal of Macromolecular Science, Part B, 53(3), 371-382.
Thuy, N. T., Duc, V. M & Liem, N. T. (2018). Properties of poly (lactic acid) plasticized by epoxidized rubber seed oil. Vietnam Journal of Chemistry, 56(2), 181-186.
Tsuji, H., Takai, H & Saha, S.K. (2006). Isothermal and non-isothermal crystallization behaviour of poly(l-lactic acid): Effects of stereocomplex as nucleating agent. Polymer, 47(11), 3826-3837.
Tsuji, H. & Yamada, T. (2003). Blends of aliphatic polyesters. VIII. Effects of poly (Llactide? co?ε?caprolactone) on enzymatic hydrolysis of poly (L?lactide), poly (ε? caprolactone), and their blend films. Journal of applied polymer science, 87(3), 412-419.
Tsuji, H. & Ikada, Y. (2000). Properties and morphology of poly (L-lactide) 4. Effects of structural parameters on long-term hydrolysis of poly (L-lactide) in phosphatebuffered solution. Polymer Degradation and Stability, 67(1), 179-189.
Väisänen, T., Das, O & Tomppo, L. (2017). A review on new bio-based constituents for natural fiber-polymer composites. Journal of Cleaner Production, 149, 582- 596.
Vieira, M. G. A., da Silva, M. A., dos Santos, L. O & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254-263.
Venugopal, J. & Ramakrishna, S. (2005). Applications of polymer nanofibers in biomedicine and biotechnology. Applied biochemistry and biotechnology, 125(3), 147-157.
Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N & Debevere, J. (1999). Developments in the active packaging of foods. Trends in food science & technology, 10(3), 77-86.
Vignon, M. R., Dupeyre, D & Garcia-Jaldon, C. (1996). Morphological characterization of steam-exploded hemp fibers and their utilization in polypropylene-based composites. Bioresource Technology, 58(2), 203-215.
Vink, E. T. & Davies, S. (2015). Life cycle inventory and impact assessment data for 2014 Ingeo™ polylactide production. Industrial Biotechnology, 11(3), 167-180.
Wang, G., Zhang, J & Murray, R. W. (2002). DNA binding of an ethidium intercalator attached to a monolayer-protected gold cluster. Analytical chemistry, 74(17), 4320-4327.
Wang, L. F. & Rhim, J. W. (2016). Grapefruit seed extract incorporated antimicrobial LDPE and PLA films: Effect of type of polymer matrix. LWT, 74, 338-345.
Wang, N., Zhang, X., Ma, X & Fang, J. (2008). Influence of carbon black on the properties of plasticized poly(lactic acid) composites. Polymer Degradation and Stability. 93(6), 1044-1052.
Wen, X., Lin, Y., Han, C., Zhang, K., Ran, X., Li, Y., et al (2009). Thermomechanical and optical properties of biodegradable poly(L-lactide)/silica nanocomposites by melt compounding. Journal of Applied Polymer Science. 114(6), 3379-3388.
Wu, D., Lin, D., Zhang, J., Zhou, W., Zhang, M., Zhang, Y., et al (2011). Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends. Macromolecular Chemistry and Physics, 212(6), 613-626.
Wu, W., Wu, G & Zhang, H. (2017). Effect of wood flour as nucleating agent on the isothermal crystallization of poly (lactic acid). Polymers for Advanced Technologies, 28(2), 252-260.
Xiao, H., Lu, W & Yeh, J. T. (2009). Effect of plasticizer on the crystallization behavior of poly (lactic acid). Journal of applied polymer science, 113(1), 112-121.
Yamada, K., Ueda, K., Ray, S. S & Okamoto, M. (2002). Preparation and properties of polylactide/layered silicate nanocomposite. Kobunshi ronbunshu (Tokyo), 59(12), 760-766.
Yam, K. L., Takhistov, P. T & Miltz, J. (2005). Intelligent packaging: concepts and applications. Journal of food science, 70(1), R1-R10.
Yang, C. S., Chang, C. H., Tsai, P. J., Chen, W. Y., Tseng, F. G & Lo, L. W. (2004). Nanoparticle-based in vivo investigation on blood− brain barrier permeability following ischemia and reperfusion. Analytical chemistry, 76(15), 4465-4471.
Yasuniwa, M., Sakamo, K., Ono, Y & Kawahara, W. (2008). Melting behavior of poly (l-lactic acid): X-ray and DSC analyses of the melting process. Polymer, 49(7), 1943-1951.
Yasuniwa, M., Tsubakihara, S., Sugimoto, Y & Nakafuku, C. (2004). Thermal analysis of the double?melting behavior of poly (L?lactic acid). Journal of Polymer Science Part B: Polymer Physics, 42(1), 25-32.
Yee, Y. Y., Ching, Y. C., Rozali, S., Hashim, N. A & Singh, R. (2016). Preparation and characterization of poly (lactic acid)-based composite reinforced with oil palm empty fruit bunch fiber and nanosilica. BioResources, 11(1), 2269-2286.
Yu, F., Liu, T., Zhao, X., Yu, X., Lu, A & Wang, J. (2012). Effects of talc on the mechanical and thermal properties of polylactide. Journal of Applied Polymer Science. 125 (S2), E99-E109.
Yu, L., Dean, K & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in polymer science, 31(6), 576-602.
Zabihzadeh, S. M (2010). Water uptake and flexural properties of natural filler/HDPE composites. BioResources, 5(1), 316-232.
Zhang, J., Lou, J., Ilias, S., Krishnamachari, P & Yan, J. (2008). Thermal properties of poly (lactic acid) fumed silica nanocomposites: experiments and molecular dynamics simulations. Polymer, 49(9), 2381-2386.
Zhang, L., Xiong, C & Deng, X. (1996). Miscibility, crystallization and morphology of poly (β-hydroxybutyrate)/poly (d, l-lactide) blends. Polymer, 37(2), 235-241.
Zhang, M. & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology, 30(2), 67-79.
Zhang, Q., Li, D., Zhang, H., Su, G & Li, G. (2018). Preparation and properties of poly (lactic acid)/sesbania gum/nano-TiO2 composites. Polymer Bulletin, 75(2), 623- 635.
Zhao, J. L., Pan, H. W., Yang, H. L., Bian, J. J., Zhang, H. L., Gao, G., et al (2019). Studies on Rheological, Thermal, and Mechanical Properties of Polylactide/Methyl Methacrylate-Butadiene-Styrene Copolymer/Poly (propylene carbonate) Polyurethane Ternary Blends. Chinese Journal of Polymer Science, 1-10.
Zhao, Y. Q., Cheung, H. Y., Lau, K. T., Xu, C. L., Zhao, D. D & Li, H. L. (2010). Silkworm silk/poly (lactic acid) biocomposites: Dynamic mechanical, thermal and biodegradable properties. Polymer degradation and stability, 95(10), 1978- 1987.
Zhijun, Q., Xingxiang, Z., Ning, W & Jianming, F. (2009). Poly(1,3-butylene adipate) plasticized poly(lactic acid)/carbon black as electrical conductive polymer composites. Polymer Composites. 30(11), 1576-1584.
Zhuang, W., Zhang, J., Liu, J., Zhang, Q., Hu, B & Shen, J. (2008). Preparation and characterization of nano-TiO2/polylactide composites. Acta Mater. Compos. Sinica, 25, 8-11.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |