UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :QA76 Computer software
Main Author :Al-Qaysi, Mohammed Ahmed Chyad
Title :Design and development of skin detection model based deep learning on different skin tones
Place of Production :Tanjong Malim
Publisher :Fakulti Seni, Komputeran dan Industri Kreatif
Year of Publication :2021
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
The aim of this study is to design and develop a systematic dataset for multiple skin tones and to  analyse the reasons behind misclassifications of skin and non-skin, using different deep learning  models, colour spaces, and different optimisation parameters. Related academic literature have  cited three problems, namely data-related issues (e.g. skin-like), data volume (e.g. large volume  requires high computer source), and technical issues  (e.g.  optimising  parameters).  Two   articles  on  Deep  Learning  (DL)  for  skin detection failed to address the issues extensively.  DL foundation is a training dataset and  the  quality of  training depends  on  the  quality of   the  data-input.  To  address  the issues, a systematic dataset consisting of 17 million patches  was created for multiple skin tones with (skin-like) images. The dataset was then converted into  different colour spaces with multiple labels that characterise different scenarios, running  different DL. Experimentally  utilised  YCbCr  and  CNN  present  high  performance  of  binary   and multi-class classifications. Binary classification of skin and skin-like resulted in 98% and  multi-class classification of four classes 84% and 69% for five classes respectively. Furthermore,  a binary classification between skin tone and skin-like (e.g. black skin tone  and  black   skin-like)  resulted  in  97%,  81%,  60%,  and  51%  for  black,  brown, medium, and fair  consequently.  From empirical experiment, darker skin tone is a better classification accuracy  followed by optimising parameters (Hidden-Layers, Neurons, Activations-Functions,  Optimiser,   Initialiser,  Data-Input,  and  Data-Size).   A  hybrid CNN-RNN benchmark improves the accuracy by  99% compared with 98%, and 97% for SAE compared to 91% as reported.  By studying different skin  scenarios, one can analyse  the  reasons  behind  overlapping  between  skin  and  skin-tones.   This  is  a promising study for further research by developing and applying a generalised version of skin detector with different applications.  

References

Abdullah-Al-Wadud, M., & Chae, O. (2008). Skin segmentation using color distance map and water-flow 

property. Paper presented at the Information Assurance and Security, 2008. ISIAS'08. Fourth 

International Conference on.

 

Ahmadi, E., Garmsirian, F., & Azimifar, Z. (2012). A discriminative fusion framework for  skin  

detection.  Paper  presented  at  the  Artificial  Intelligence  and  Signal Processing (AISP), 

2012 16th CSI International Symposium on.

 

Aibinu, A. M., Shafie, A. A., & Salami, M. J. E. (2012). Performance analysis of ANN based YCbCr 

skin detection algorithm. Procedia Engineering, 41, 1183-1189.

 

Al-Mohair, H. K., Mohamad-Saleh, J., & Suandi, S. A. (2014). Color space selection for  human  skin 

 detection  using  color-texture  features  and  neural  networks. Paper presented at the Computer 

and Information Sciences (ICCOINS), 2014 International Conference on.

 

Al-Mohair, H. K., Saleh, J. M., & Suandi, S. A. (2015). Hybrid human skin detection using   neural  

 network   and   K-means   clustering   technique.   Applied   Soft Computing, 33, 337-347.

 

Al-Tairi,  Z.  H.,  Rahmat,  R.  W.  O.,  Saripan,  M.  I.,  &  Sulaiman,  P.  S.  (2014).  Skin 

Segmentation Using YUV and RGB Color Spaces. JIPS, 10(2), 283-299.

 

Al Abbadi, N. K., Dahir, N. S., Al-Dhalimi, M. A., & Restom, H. (2010). Psoriasis Detection Using 

Skin Color and Texture Features 1.

 

Araban,  S.,  Farokhi,  F.,  &  Kangarloo,  K.  (2011a).  Determining  effective  colour components 

  for   skin   detection   using   a   clustered   neural   network.   Paper presented  at  the  

2011  IEEE  International  Conference  on  Signal  and  Image Processing Applications (ICSIPA).

 

Araban,  S.,  Farokhi,  F.,  &  Kangarloo,  K.  (2011b).  Determining  effective  colour components 

  for   skin   detection   using   a   clustered   neural   network.   Paper presented  at  the  

Signal  and  Image  Processing  Applications  (ICSIPA),  2011 IEEE International Conference on.

 

Arya,  S.,  Pratap,  N.,  &  Bhatia,  K.  (2015).  Future  of  face  recognition:  A  review.

Procedia Computer Science, 58, 578-585.

 

Aznaveh, M. M., Mirzaei, H., Roshan, E., & Saraee, M. (2008). A new and improves skin detection 

method using RGB vector space. Paper presented at the Systems, Signals and Devices, 2008. IEEE SSD 

2008. 5th International Multi-Conference

on.

 

Aznaveh, M. M., Mirzaei, H., Roshan, E., & Saraee, M. (2008). A new color based method  for  skin  

detection  using  RGB  vector  space.  Paper  presented  at  the Human System Interactions, 2008 

Conference on.

 

Bilal, S., Akmeliawati, R., Salami, M. J. E., & Shafie, A. A. (2015). Dynamic approach for  

real-time  skin  detection.  Journal  of  Real-Time  Image  Processing,  10(2), 371-385.

 

Bouguila, N. (2011). Bayesian hybrid generative discriminative learning based on finite Liouville 

mixture models. Pattern Recognition, 44(6), 1183-1200.

 

Bouirouga, H., El Fkihi, S., Jilbab, A., & Bakrim, M. h. (2010). A comparison of skin detection  

techniques  for  objectionable  videos.  Paper  presented  at  the  I/V Communications   and   

Mobile   Network   (ISVC),   2010   5th   International Symposium on.

 

Bouirouga, H., Lrit, S. E., Jilbab, A., & Aboutajdine, D. (2011). Recognition of adult video  by  

combining  skin  detection  features  with  motion  information.  Paper presented   at   the   

Multimedia   Computing   and   Systems   (ICMCS),   2011 International Conference on.

 

Brancati,  N.,  De  Pietro,  G.,  Frucci,  M.,  &  Gallo,  L.  (2017).  Human  skin  detection 

through  correlation  rules  between  the  YCb  and  YCr  subspaces  based  on dynamic color 

clustering. Computer Vision and Image Understanding, 155, 33- 42.

 

Bush,  I.  J.,  Abiyev,  R.,  Ma’aitah,  M.  K.  S.,  &  Alt?parmak,  H.  (2018).  Integrated 

artificial intelligence algorithm for skin detection. Paper presented at the ITM Web of 

conferences.

 

Chakraborty, B. K., & Bhuyan, M. (2015). Skin segmentation using possibilistic fuzzy c-means 

clustering in presence of skin-colored background. Paper presented at the Intelligent Computational 

Systems (RAICS), 2015 IEEE Recent Advances in.

 

Chakraborty, B. K., Bhuyan, M., & Kumar, S. (2016a). Adaptive propagation-based skin   segmentation 

  method   for   color   images.   Paper   presented   at   the Communication (NCC), 2016 Twenty 

Second National Conference on.

 

Chakraborty, B. K., Bhuyan, M., & Kumar, S. (2016b). A Weighted Skin Probability Map   for   skin   

color   segmentation.   Paper   presented   at   the   Wireless Communications,     Signal     

Processing     and     Networking     (WiSPNET), International Conference on.

 

Chakraborty, B. K., Bhuyan, M., & Kumar, S. (2017). Combining image and global pixel  distribution  

model  for  skin  colour  segmentation.  Pattern  Recognition

Letters, 88, 33-40.

 

Chang, L., Jun-min, L., & Chong-xiu, Y. (2013). Skin detection using a modified self- organizing 

mixture network. Paper presented at the Automatic Face and Gesture Recognition (FG), 2013 10th IEEE 

International Conference and Workshops on.

 

Chaves-González,  J. M., Vega-Rodríguez,  M. A., Gómez-Pulido, J. A., & Sánchez- Pérez, J. M. 

(2010). Detecting skin in face recognition systems: A colour spaces study. Digital Signal 

Processing, 20(3), 806-823.

 

Chen, F., Hu, Z., Li, K., & Liu, W. (2016). A hybrid skin detection model from multiple color  

spaces  based  on  a  dual-threshold  Bayesian  algorithm.  International Journal of Pattern 

Recognition and Artificial Intelligence, 30(07), 1655018.

 

Chen,  G.,  Li,  J.,  Zeng,  J.,  Wang,  B.,  &  Lu,  G.  (2016).  Optimizing  human  model 

reconstruction from RGB-D images based on skin detection. Virtual Reality, 20(3), 159-172.

 

Chen, W., Wang, K., Jiang, H., & Li, M. (2016). Skin color modeling for face detection and  

segmentation:  a  review  and  a  new  approach.  Multimedia  Tools  and Applications, 75(2), 

839-862.

 

Chenaoua, K., & Bouridane, A. (2010). Information theoretical based feature selection approach for 

human skin detection. Paper presented at the Acoustics Speech and Signal Processing (ICASSP), 2010 

IEEE International Conference on.

 

Chenaoua,  K.,  Kurugollu,  F.,  &  Bouridane,  A.  (2014).  Data  cleaning  and  outlier removal:  

application  in human  skin  detection.  Paper  presented  at  the  Visual Information Processing 

(EUVIP), 2014 5th European Workshop on.

 

Cheng, P., Zhang, M., & Zhou, J. (2011). Automatic Image Grading Based on Skin Segmentation. Paper 

presented at the Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2011 International 

Conference on.

 

Dong,  B.,  &  Wang,  X.  (2016).  Comparison  deep  learning  method  to  traditional methods 

using for network intrusion detection. Paper presented at the 2016 8th IEEE  International  

Conference  on  Communication  Software  and  Networks (ICCSN).

 

Dong, M., Yin, L., Guo, J., Deng, W., & Xu, W. (2012). Integrative labeling based statistical color 

models with application to skin detection. Paper presented at the Image Processing (ICIP), 2012 

19th IEEE International Conference on.

 

DUMITRESCU,  C.  M.,  &  Dumitrache,  I.  (2016).  HUMAN  SKIN  DETECTION USING      NEURAL      

NETWORKS      AND      BLOCK      PROCESSING TECHNIQUES. UNIVERSITY POLITEHNICA OF BUCHAREST 

SCIENTIFIC BULLETIN   SERIES   C-ELECTRICAL   ENGINEERING   AND   COMPUTER

SCIENCE, 78(1), 87-102.

 

El  Fkihi,  S.,  Daoudi,  M.,  &  Aboutajdine,  D.  (2008).  The  mixture  of  K-Optimal- 

Spanning-Trees based probability approximation: Application to skin detection. Image and Vision 

Computing, 26(12), 1574-1590.

 

Elmasry,  W.,  Akbulut,  A.,  &  Zaim,  A.  H.  (2018).  Deep  Learning  Approaches  for Predictive 

 Masquerade  Detection.  Security  and  Communication  Networks, 2018.

 

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017).  

Dermatologist-level  classification  of  skin  cancer  with  deep  neural networks. Nature, 

542(7639), 115-118.

 

Farooq, M. A., Azhar, M. A. M., & Raza, R. H. (2016). Automatic lesion detection system (ALDS) for 

skin cancer classification using SVM and neural classifiers. Paper   presented   at   the   2016   

IEEE   16th   International   Conference   on Bioinformatics and Bioengineering (BIBE).

 

Farooq, M. S., Khan, M. A., Abbas, S., Athar, A., Ali, N., & Hassan, A. (2019). Skin Detection  

based  Pornography  Filtering  using  Adaptive  Back  Propagation Neural Network. Paper presented 

at the 2019 8th International Conference on Information and Communication Technologies (ICICT).

 

Fatahi, M., Nadjafi, M., & Makki, S. V. A.-D. (2013). Improving the performance of skin  

segmentation  in  quasi-skin  regions  via  multiple  classifier  system.  Paper presented  at  the 

 Machine  Vision  and  Image  Processing  (MVIP),  2013  8th Iranian Conference on.

 

Ferrer, M., Morales, A., Travieso, C., & Alonso, J. (2012). Wide band spectroscopic skin detection 

for contactless hand biometrics. IET computer vision, 6(5), 415- 424.

 

Filali,  I.,  Ziou,  D.,  &  Benblidia,  N.  (2012).  Multinomial  bayesian  kernel  logistic 

discriminant  based  method  for  skin  detection.  Paper  presented  at  the  Signal Image   

Technology   and   Internet   Based   Systems   (SITIS),   2012   Eighth International Conference 

on.

 

Gao, Y., Tannenbaum, A., Chen, H., Torres, M., Yoshida, E., Yang, X., . . . Liu, T. (2013). 

Automated skin segmentation in ultrasonic evaluation of skin toxicity in breast cancer 

radiotherapy. Ultrasound in medicine & biology, 39(11), 2166- 2175.

 

Geng,  J.,  Miao,  Z.,  Liang,  Q.,  &  Wang,  S.  (2015).  Rotation  invariant  ellipsoid 

projection for domain transfer in human skin detection. Paper presented at the Multimedia   Signal  

 Processing   (MMSP),   2015   IEEE   17th   International Workshop on.

 

Geng, J., Miao, Z., & Zhong, C. (2011). Skin detection with illumination adaptation in single 

image. Paper presented at the Multimedia and Expo (ICME), 2011 IEEE

International Conference on.

 

Ghazali, K. H. B., Ma, J., & Xiao, R. (2012). An innovative face detection based on

YCgCr color space. Physics Procedia, 25, 2116-2124.

 

Ghaziasgar, M., Connan, J., & Bagula, A. B. (2016). Enhanced adaptive skin detection with 

contextual tracking feedback. Paper presented at the Pattern Recognition Association  of  South  

Africa  and  Robotics  and  Mechatronics  International Conference (PRASA-RobMech), 2016.

 

Ghomsheh, A. N., Talebpour, A., & Basseri, M. (2011). Regional skin detection based on eliminating 

skin-like Lambertian surfaces. Paper presented at the Computers & Informatics (ISCI), 2011 IEEE 

Symposium on.

 

Ghouzali, S., El Aroussi, M., El Hassouni, M., Rziza, M., & Aboutajdine, D. (2010). Statistical    

block-based    skin    detection.    Paper    presented    at    the    I/V Communications   and   

Mobile   Network   (ISVC),   2010   5th   International Symposium on.

 

Ghouzali, S., Hemami, S., Rziza, M., Aboutajdine, D., & Mouaddib, E. M. (2008). A skin detection 

algorithm based on discrete cosine transform and generalized gaussian density. Paper presented at 

the Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on.

 

Golhani, K., Balasundram, S. K., Vadamalai, G., & Pradhan, B. (2018). A review of neural networks 

in plant disease detection using hyperspectral data. Information Processing in Agriculture, 5(3), 

354-371.

 

Gonlin,  V.  (2020).  Colorful  Reflections:  Skin  Tone,  Reflected  Race,  and  Perceived 

Discrimination  among  Blacks,  Latinxs,  and  Whites.  RACE  AND  SOCIAL PROBLEMS.

 

Hamuda, E., Mc Ginley, B., Glavin, M., & Jones, E. (2017). Automatic crop detection under   field   

conditions   using   the   HSV   colour   space   and   morphological operations. Computers and 

Electronics in Agriculture, 133, 97-107.

 

Han, H., Shan, S., Chen, X., & Gao, W. (2013). A comparative study on illumination preprocessing in 

face recognition. Pattern Recognition, 46(6), 1691-1699.

 

Hao-Kui, T., & Zhi-Quan, F. (2012). Skin Recognition Based on Color Image Enhance Algorithm. Paper 

presented at the Computer Science & Service System (CSSS), 2012 International Conference on.

 

Hatcher, W. G., & Yu, W. (2018). A Survey of Deep Learning: Platforms, Applications and Emerging 

Research Trends. IEEE Access, 6, 24411-24432.

 

He,  Y.,  Shi,  J.,  Wang,  C.,  Huang,  H.,  Liu,  J.,  Li,  G.,  .  .  .  Wang,  J.  (2019).  

Semi-

supervised Skin Detection by Network with Mutual Guidance. Paper presented

at the Proceedings of the IEEE International Conference on Computer Vision.

 

Hettiarachchi, R., & Peters, J. F. (2016). Multi-manifold-based skin classifier on feature space 

Voronoï regions for skin segmentation. Journal of Visual Communication and Image Representation, 

41, 123-139.

 

Hu, Z., Wang, G., Lin, X., & Yan, H. (2009). Skin segmentation based on graph cuts.

Tsinghua Science and Technology, 14(4), 478-486.

 

Huang, L., Ji, W., Wei, Z., Chen, B.-W., Yan, C. C., Nie, J., . . . Jiang, B. (2015). Robust skin  

detection  in  real-world  images.  Journal  of  Visual  Communication  and Image Representation, 

29, 147-152.

 

Huang, L., Xia, T., Zhang, Y., & Lin, S. (2011). Human skin detection in images by MSER  analysis.  

Paper  presented  at  the  Image  Processing  (ICIP),  2011  18th IEEE International Conference on.

 

Huang, T.-h., Yu, Y.-m., & Qin, X.-g. (2011). A High-Performance Skin Segmentation Method. Procedia 

Engineering, 15, 608-612.

 

Hussain, S. A.-K., & Al-Bayati, M. A. (2019). Human Face Detection with skin color properties. 

Technology, 10(5), 157-161.

 

Hwang,  I.,  Kim,  Y.,  &  Cho,  N.  I.  (2017a).  Skin  detection  based  on  multi-seed 

propagation in a multi-layer graph for regional and color consistency. Paper presented at the 

Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on.

 

Hwang,  I.,  Kim,  Y.,  &  Cho,  N.  I.  (2017b).  Skin  detection  based  on  multi-seed 

propagation in a multi-layer graph for regional and color consistency. Paper presented at the 2017 

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

 

Islam, A. R., Alammari, A., & Buckles, B. (2019). Skin detection in image and video founded  in  

clustering  and  region  growing.  Paper  presented  at  the  Mobile Multimedia/Image Processing, 

Security, and Applications 2019.

 

Islam, M., Watters, P. A., & Yearwood, J. (2011). Real-time detection of children’s skin   on   

social   networking   sites   using   Markov   random   field   modelling. Information Security 

Technical Report, 16(2), 51-58.

 

Jati, H., & Dominic, D. D. (2008). Human skin detection using defined skin region. Paper   

presented   at   the   Information   Technology,   2008.   ITSim   2008. International Symposium 

on.

 

Jensch, D., Mohr, D., & Zachmann, G. (2015). A Comparative Evaluation of Three Skin Color Detection 

Approaches. Journal of Virtual Reality and Broadcasting,

12(1).

 

Jiang, Z., Yao, M., & Jiang, W. (2007). Skin detection using color, texture and space information. 

Paper presented at the Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International 

Conference on.

 

Jo, Y. C., Kim, H. N., Kang, J. H., Hong, H. K., Choi, Y. S., Jung, S. W., & Kim, S. P.

(2017). Novel wearable-type biometric devices based on skin tissue optics with multispectral  

LED–photodiode matrix. Japanese Journal  of Applied Physics, 56(4S), 04CM01.

 

Jusoh, R. M., Hamzah, N., Marhaban, M. H., & Alias, N. M. A. (2010). Skin detection based  on  

thresholding  in  RGB  and  hue  component.  Paper  presented  at  the Industrial Electronics & 

Applications (ISIEA), 2010 IEEE Symposium on.

 

Kaabneh,  K.,  Abu-Hammad,  E.,  &  Hamd,  F.  (2007).  Enhanced  Skin  Detection Technique Using 

Block Matching. Paper presented at the Signal Processing and Communications, 2007. ICSPC 2007. IEEE 

International Conference on.

 

Kawulok,  M.,  Kawulok,  J.,  & Nalepa,  J.  (2014).  Spatial-based  skin  detection  using 

discriminative skin-presence features. Pattern Recognition Letters, 41, 3-13.

 

Kawulok, M., Kawulok, J., Nalepa, J., & Papiez, M. (2013). Skin detection using spatial analysis 

with adaptive seed. Paper presented at the Image Processing (ICIP), 2013 20th IEEE International 

Conference on.

 

Kelly, W., Donnellan, A., & Molloy, D. (2008). Screening for objectionable images: a review of skin 

detection techniques. Paper presented at the Machine Vision and Image Processing Conference, 2008. 

IMVIP'08. International.

 

Ketenci, S., & Gencturk, B. (2013). Performance analysis in common color spaces of 2D  Gaussian  

Color  Model  for  skin  segmentation.  Paper  presented  at  the EUROCON, 2013 IEEE.

 

Khalid, S., Jamil, U., Saleem, K., Akram, M. U., Manzoor, W., Ahmed, W., & Sohail,

A.  (2016).  Segmentation  of  skin  lesion  using  Cohen–Daubechies–Feauveau biorthogonal wavelet. 

SpringerPlus, 5(1), 1603.

 

Khan, R., Hanbury, A., Sablatnig, R., Stöttinger, J., Khan, F. A., & Khan, F. A. (2014). Systematic 

skin segmentation: merging spatial and non-spatial data. Multimedia tools and applications, 69(3), 

717-741.

 

Khan,  R.,  Hanbury,  A.,  &  Stoettinger,  J.  (2010).  Skin  detection:  A  random  forest 

approach.  Paper  presented  at  the  Image  Processing  (ICIP),  2010  17th  IEEE International 

Conference on.

 

Khan, R., Hanbury, A., Stöttinger, J., Khan, F. A., Khattak, A. U., & Ali, A. (2014). Multiple 

color space channel fusion for skin detection. Multimedia tools and

applications, 72(2), 1709-1730.

 

Kidono,  K.,  Kanzawa,  Y.,  Tagawa,  T.,  Kojima,  Y.,  &  Naito,  T.  (2013).  Skin segmentation 

using a multiband camera for early pedestrian detection. Paper presented at the Intelligent 

Vehicles Symposium (IV), 2013 IEEE.

 

Kim, Y., Hwang, I., & Cho, N. I. (2017). Convolutional neural networks and training strategies for 

skin detection. Paper presented at the 2017  IEEE  International Conference on Image Processing 

(ICIP).

 

Klevan,   K.,   Hanafi,   M.,   &  Ramli,   A.   (2014).   Optimal   Combination  of   Color 

Components for Skin Detection. Paper presented at the Artificial Intelligence with   Applications   

in   Engineering   and   Technology   (ICAIET),   2014   4th International Conference on.

 

Kolkur,  S.,  Kalbande,  D.,  Shimpi,  P.,  Bapat,  C.,  &  Jatakia,  J.  (2017).  Human  skin 

detection   using   RGB,   HSV   and   YCbCr   color   models.   arXiv   preprint arXiv:1708.02694.

 

Kuiaski,  D.,  Neto,  H.  V.,  Borba,  G.,  &  Gamba,  H.  (2009).  A  study  of  the  effect  of 

illumination conditions and color spaces on skin segmentation. Paper presented at  the  Computer  

Graphics  and  Image  Processing  (SIBGRAPI),  2009  XXII Brazilian Symposium on.

 

Kumar, A. (2014). An empirical study of selection of the appropriate color space for skin 

detection: A case of face detection in color images. Paper presented at the Issues  and  Challenges 

 in  Intelligent  Computing  Techniques  (ICICT),  2014 International Conference on.

 

Labati, R. D., Genovese, A., Piuri, V., & Scotti, F. (2019). A Scheme for Fingerphoto Recognition 

in Smartphones Selfie Biometrics (pp. 49-66): Springer.

 

Lee, Y., Jang, C., & Kim, H. (2016). Accelerating a computer vision algorithm on a mobile  SoC  

using CPU-GPU  co-processing:  a  case  study  on  face detection. Paper presented at the 

Proceedings of the International Conference on Mobile Software Engineering and Systems.

 

Lei, Y., Xiaoyu, W., Hui, L., Dewei, Z., & Jun, Z. (2011). An algorithm of skin detection based on 

texture. Paper presented at the Image and Signal Processing (CISP), 2011 4th International Congress 

on.

 

Lei,  Y.,  Yuan,  W.,  Wang,  H.,  Wenhu,  Y.,  &  Bo,  W.  (2016).  A  skin  segmentation 

algorithm based on stacked autoencoders. IEEE Transactions on Multimedia, 19(4), 740-749.

 

Lei,  Y.,  Yuan,  W.,  Wang,  H.,  Wenhu,  Y.,  &  Bo,  W.  (2017).  A  skin  segmentation 

algorithm based on stacked autoencoders. IEEE Transactions on Multimedia,

19(4), 740-749.

 

Li, B., Xue, X., & Fan, J. (2007). A robust incremental learning framework for accurate skin region 

segmentation in color images. Pattern Recognition, 40(12), 3621- 3632.

 

Lionnie, R., & Alaydrus, M. (2017). A comparison of human skin color detection for biometrie 

identification. Paper presented at the 2017 International Conference on Broadband Communication, 

Wireless Sensors and Powering (BCWSP).

 

Liu, Q., & Peng, G.-z. (2010). A robust skin color based face detection algorithm. Paper presented  

at  the  2010  2nd  International  Asia  Conference  on  Informatics  in Control, Automation and 

Robotics (CAR 2010).

 

Luo, Y., & Guan, Y.-P. (2017). Adaptive skin detection using face location and facial structure 

estimation. IET Computer Vision, 11(7), 550-559.

 

Mahmoodi, M. R., & Sayedi, S. M. (2014). Boosting performance of face detection by using   an   

efficient   skin   segmentation   algorithm.   Paper   presented   at   the Information   

Technology   and   Electrical   Engineering   (ICITEE),   2014   6th International Conference on.

 

Mahmoodi, M. R., & Sayedi, S. M. (2016). A Comprehensive Survey on Human Skin Detection. 

International Journal of Image, Graphics & Signal Processing, 8(5).

 

Mahmoodi, M. R., Sayedi, S. M., & Karimi, F. (2017). Color-based skin segmentation in videos using 

a multi-step spatial method. Multimedia Tools and Applications, 76(7), 9785-9801.

 

Mahmoodi, M. R., Sayedi, S. M., Karimi, F., Fahimi, Z., Rezai, V., & Mannani, Z. (2015). SDD: A 

skin detection dataset for training and assessment of human skin  classifiers.  Paper  presented  

at  the  Knowledge-Based  Engineering  and Innovation (KBEI), 2015 2nd International Conference on.

 

Medeiros, R., Scharcanski, J., & Wong, A. (2016). Image segmentation via multi-scale stochastic  

regional  texture  appearance  models.  Computer  Vision  and  Image Understanding, 142, 23-36.

 

Mendenhall, M. J., Nunez, A. S., & Martin, R. K. (2015). Human skin detection in the visible and 

near infrared. Applied optics, 54(35), 10559-10570.

 

Mitra, S. (2013). A probabilistic method of skin detection. Paper presented at the Image 

Information Processing (ICIIP), 2013 IEEE Second International Conference on.

 

Moallem, P., Mousavi, B. S., & Monadjemi, S. A. (2011). A novel fuzzy rule base system for pose 

independent faces detection. Applied Soft Computing, 11(2),

1801-1810.

 

MOHAMMED, A. A. Q., Lv, J., & Islam, M. (2019). A Deep Learning-Based End-to- End Composite System 

for Hand Detection and Gesture Recognition. Sensors, 19(23), 5282.

 

Moradi, B., & Ezoji, M. (2015). Skin detection based on contextual information. Paper presented at 

the Pattern  Recognition  and Image Analysis  (IPRIA), 2015 2nd International Conference on.

 

Muhammad, B., & Abu-Bakar, S. A. R. (2015). A hybrid skin color detection using HSV and YCgCr color 

space for face detection. Paper presented at the Signal and   Image   Processing   Applications   

(ICSIPA),   2015   IEEE   International Conference on.

 

Musa, Z., Jumari, K., & Zainal, N. (2011). A method of human skin detection base on background   

subtraction   and   color   enhancement.   Paper   presented   at   the Business,  Engineering  and 

 Industrial  Applications  (ISBEIA),  2011  IEEE Symposium on.

 

Mustafa, A. A., Elbashir, A. A., & Babikir, S. F. (2015). A study of color constancy methods  for  

skin  detection.  Paper  presented  at  the  Computing,  Control, Networking,  Electronics  and  

Embedded  Systems  Engineering  (ICCNEEE), 2015 International Conference on.

 

Nadian, A., & Talebpour, A. (2011). Pixel-based skin detection using sinc function. Paper presented 

at the Computers & Informatics (ISCI), 2011 IEEE Symposium on.

 

Nadimi, N., Azimifar, Z., & Ahmadi, E. (2013). Skin detection using a statistical color spaces  

fusion  model.  Paper  presented  at  the  Machine  Vision  and  Image Processing (MVIP), 2013 8th 

Iranian Conference on.

 

Naji, S., Jalab, H. A., & Kareem, S. A. (2019). A survey on skin detection in colored images. 

Artificial Intelligence Review, 52(2), 1041-1087.

 

Naji, S. A., Zainuddin, R., & Jalab, H. A. (2012). Skin segmentation based on multi pixel color 

clustering models. Digital Signal Processing, 22(6), 933-940.

 

Nallaperumal, K., Ravi, S., Babu, C. N. K., Selvakumar, R., Fred, A. L., Christopher, S., & 

Vinsley, S. (2007). Skin detection using color  pixel classification with application  to  face  

detection:  A  comparative  study.  Paper  presented  at  the iccima.

 

Ng,  P.,  & Pun,  C.-M.  (2012).  Skin  segmentation  based  on  human  face illumination feature. 

Paper presented at the Proceedings of the The 2012 IEEE/WIC/ACM International  Joint  Conferences  

on  Web  Intelligence  and  Intelligent  Agent

Technology-Volume 03.

 

Nguyen-Trang, T. (2018). A new efficient approach to detect skin in color image using Bayesian   

classifier   and   connected   component   algorithm.   Mathematical Problems in Engineering, 2018.

 

Oghaz, M. M., Maarof, M. A., Zainal, A., Rohani, M. F., & Yaghoubyan, S. H. (2015). A hybrid color 

space for skin detection using genetic algorithm heuristic search and principal component analysis 

technique. PLoS ONE, 10(8), e0134828.

 

Omanovic, S., Buza, E., & Besic, I. (2014). RGB ratios based skin detection. Paper presented at the 

Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2014 37th 

International Convention on.

 

Osman, M. Z., Maarof, M. A., & Rohani, M. F. (2014). Improved skin detection based on   dynamic   

threshold   using   multi-colour   space.   Paper   presented   at   the Biometrics    and    

Security    Technologies    (ISBAST),    2014    International Symposium on.

 

Patil, S., & Udupi, V. (2015). Using Histogram Specification in a Hybrid Preprocessing Technique  

for  Segmentation  of  Malignant  Skin  Lesions  from  Dermoscopic Images.   International   

Journal   of   Computer   Science   Engineering   and Information Technology Research, 5(4), 71-82.

 

Perez, M., Avila, S., Moreira, D., Moraes, D., Testoni, V., Valle, E., . . . Rocha, A. (2017).  

Video  pornography  detection  through  deep  learning  techniques  and motion information. 

Neurocomputing, 230, 279-293.

 

Powar, V., Kulkami, A., Lokare, R., & Lonkar, A. (2013). Skin detection for forensic investigation. 

Paper presented at the Computer Communication and Informatics (ICCCI), 2013 International 

Conference on.

 

Raghunandan, A., Raghav, P., & Aradhya, H. R. (2018). Object detection algorithms for video 

surveillance applications. Paper presented at the 2018 International Conference on Communication 

and Signal Processing (ICCSP).

 

Rahman, M. A., Purnama, I. K. E., & Purnomo, M. H. (2014). Simple method of human skin  detection  

using  HSV  and  YCbCr  color  spaces.  Paper  presented  at  the Intelligent Autonomous Agents, 

Networks and Systems (INAGENTSYS), 2014 IEEE International Conference on.

 

Razmjooy,  N.,  Mousavi,  B.  S.,  &  Soleymani,  F.  (2013).  A  hybrid  neural  network 

Imperialist Competitive Algorithm for skin color segmentation. Mathematical and Computer Modelling, 

57(3-4), 848-856.

 

Roy, K., Mohanty, A., & Sahay, R. R. (2017). Deep learning based hand detection in cluttered   

environment   using   skin   segmentation.   Paper   presented   at   the Proceedings   of   the   

IEEE   International   Conference   on   Computer   Vision

Workshops.

 

Saar, B. G., Freudiger, C. W., Reichman, J., Stanley, C. M., Holtom, G. R., & Xie, X.

S.  (2010).  Video-rate  molecular  imaging  in  vivo  with  stimulated  Raman scattering. science, 

330(6009), 1368-1370.

 

Sahu, P., Yu, D., & Qin, H. (2018). Apply  lightweight  deep learning on  internet of things for 

low-cost and easy-to-access skin cancer detection. Paper presented at the Medical Imaging 2018: 

Imaging Informatics for Healthcare, Research, and Applications.

 

Salimi,  F.,  Farzin,  H.,  &  Ebrahimi,  F.  (2012).  A  novel  skin  detection  method  using 

Generalized Discriminant Analysis. Paper presented at the Computer Systems and Industrial 

Informatics (ICCSII), 2012 International Conference on.

 

Sandnes, F. E., Neyse, L., & Huang, Y.-P. (2016). Simple and practical skin detection with  static  

RGB-color  lookup  tables:  A  visualization-based  study.  Paper presented   at   the   Systems,   

Man,   and   Cybernetics   (SMC),   2016   IEEE International Conference on.

 

Sarkar, A., Abbott, A. L., & Doerzaph, Z. (2017). Universal Skin Detection Without Color  

Information.  Paper  presented  at  the  Applications  of  Computer  Vision (WACV), 2017 IEEE 

Winter Conference on.

 

Sawicki, D. J., & Miziolek, W. (2015). Human colour skin detection in CMYK colour space. IET Image 

Processing, 9(9), 751-757.

 

Saxen, F., & Al-Hamadi, A. (2014a). Color-based skin segmentation: An evaluation of the state of 

the art. Paper presented at the ICIP.

 

Saxen, F., & Al-Hamadi, A. (2014b). Color-based skin segmentation: An evaluation of the state of 

the art. Paper presented at the 2014 IEEE International Conference on Image Processing (ICIP).

 

Selamat, A., Maarof, M. A., & Chin, T. Y. (2009). Fuzzy Mamdani Inference System Skin Detection. 

Paper presented at the Hybrid Intelligent Systems, 2009. HIS'09. Ninth International Conference on.

 

Shaik,  K.  B.,  Ganesan,  P.,  Kalist,  V.,  Sathish,  B.,  &  Jenitha,  J.  M.  M.  (2015a). 

Comparative study of skin color detection and segmentation in HSV and YCbCr color space. Procedia 

Computer Science, 57, 41-48.

 

Shaik,  K.  B.,  Ganesan,  P.,  Kalist,  V.,  Sathish,  B.,  &  Jenitha,  J.  M.  M.  (2015b). 

Comparative study of skin color detection and segmentation in HSV and YCbCr color space. Procedia 

Computer Science, 57(12), 41-48.

 

Shemshaki, M., & Amjadifard, R. (2011). Skin detection using fuzzy rule base system.

Paper presented at the Automation, Robotics and Applications (ICARA), 2011

5th International Conference on.

 

Shirali-Shahreza,  S.,  &  Mousavi,  M.  (2008).  A  new  Bayesian  classifier  for  skin 

detection.  Paper  presented  at  the  Innovative  Computing  Information  and Control, 2008. 

ICICIC'08. 3rd International Conference on.

 

Shoyaib, M., Abdullah-Al-Wadud, M., & Chae, O. (2012). A skin detection approach based  on  the  

Dempster–Shafer  theory  of  evidence.  International  Journal  of Approximate Reasoning, 53(4), 

636-659.

 

Shruthi, M., & Harsha, B. (2013). Non-parametric histogram based skin modeling for skin   

detection.   Paper   presented   at   the   Computational   Intelligence   and Computing Research 

(ICCIC), 2013 IEEE International Conference on.

 

Soleimanizadeh, S., Mohamad, D.,  Saba,  T.,  & Rehman, A.  (2015). Recognition  of partially  

occluded  objects  based  on  the  three  different  color  spaces  (RGB, YCbCr, HSV). 3D Research, 

6(3), 22.

 

Song, W., Wu, D., Xi, Y., Park, Y. W., & Cho, K. (2017). Motion-based skin region of interest  

detection  with  a  real-time  connected  component  labeling  algorithm. Multimedia tools and 

applications, 76(9), 11199-11214.

 

Soria-Frisch, A., Verschae, R., & Olano, A. (2007). Fuzzy fusion for skin detection.

Fuzzy Sets and Systems, 158(3), 325-336.

 

Sumithra, R., Suhil, M., & Guru, D. (2015). Segmentation and classification of skin lesions for 

disease diagnosis. Procedia Computer Science, 45, 76-85.

 

Sun,  H.-M.  (2010).  Skin  detection  for  single  images  using  dynamic  skin  color modeling. 

Pattern recognition, 43(4), 1413-1420.

 

Swaney, C., Akusok, A., Björk, K.-M., Miche, Y., & Lendasse, A. (2015). Efficient skin  

segmentation  via  neural  networks:  HP-ELM  and  BD-SOM.  Procedia Computer Science, 53, 400-409.

 

Tavallali,  P.,  &  Yazdi,  M.  (2015).  Robust  skin  detector  based  on  AdaBoost  and 

statistical    luminance    features.    Paper    presented    at    the    Technology, 

Communication and Knowledge (ICTCK), 2015 International Congress on.

 

Teodoro, B. T., Bernardes, J., & Digiampietri, L. A. (2017). Skin Color Segmentation and 

Levenshtein Distance Recognition of BSL Signs in Video. Paper presented at  the  2017  30th  

SIBGRAPI  Conference  on  Graphics,  Patterns  and  Images (SIBGRAPI).

 

Tomaschitz, J. A., & Facon, J. (2009). Skin detection applied to multi-racial images. Paper 

presented at the Systems, Signals and Image Processing, 2009. IWSSIP 2009. 16th International 

Conference on.

 

Ungureanu, A.-S., Javidnia, H., Costache, C., & Corcoran, P. (2016a). A review and

comparative  study  of  skin  segmentation  techniques  for  handheld  imaging

 

devices.  Paper  presented  at  the  2016  IEEE  International  Conference  on

Consumer Electronics (ICCE).

 

Ungureanu, A.-S., Javidnia, H., Costache, C., & Corcoran, P. (2016b). A review and comparative  

study  of  skin  segmentation  techniques  for  handheld  imaging devices.  Paper  presented  at  

the  Consumer  Electronics  (ICCE),  2016  IEEE International Conference on.

 

Vinayakumar,  R.,  Alazab,  M.,  Soman,  K.,  Poornachandran,  P.,  Al-Nemrat,  A.,  & Venkatraman, 

 S.  (2019).  Deep  learning  approach  for  intelligent  intrusion detection system. IEEE Access, 

7, 41525-41550.

 

White,  K.  M.  (2015).  The  salience  of  skin  tone:  Effects  on  the  exercise  of  police 

enforcement authority. Ethnic and Racial Studies, 38(6), 993-1010.

 

Wu,  Q.,  Cai,  R.,  Fan,  L.,  Ruan,  C.,  &  Leng,  G.  (2012).  Skin  detection  using  color 

processing mechanism inspired by the visual system.

 

Yadav, S., & Nain, N. (2016). A novel approach for face detection using hybrid skin color model. 

Journal of Reliable Intelligent Environments, 2(3), 145-158.

 

Yas, Q. M., Zadain, A., Zaidan, B., Lakulu, M., & Rahmatullah, B. (2017). Towards on develop a 

framework for the evaluation and benchmarking of skin detectors based  on  artificial  intelligent  

models  using  multi-criteria  decision-making techniques.   International   Journal   of   Pattern 

  Recognition   and   Artificial Intelligence, 31(03), 1759002.

 

Yas,  Q.  M.,  Zaidan,  A.,  Zaidan,  B.,  Rahmatullah,  B.,  &  Karim,  H.  A.  (2018). 

Comprehensive  insights  into  evaluation  and  benchmarking  of  real-time  skin detectors:  

Review,  open  issues  &  challenges,  and  recommended  solutions. Measurement, 114, 243-260.

 

Yogarajah, P., Condell, J., Curran, K., McKevitt, P., & Cheddad, A. (2011). A dynamic threshold  

approach  for  skin  tone  detection  in  colour  images.  International Journal of Biometrics, 

4(1), 38-55.

 

Yong-jia, Z., Shu-ling, D., & Xiao, X. (2008). A Mumford-Shah level-set approach for skin  

segmentation  using  a  new  color  space.  Paper  presented  at  the  System Simulation  and  

Scientific  Computing,  2008.  ICSC  2008.  Asia  Simulation Conference-7th International 

Conference on.

 

Yu, J.-J., & Han, S.-W. (2014). Skin detection for adult image identification. Paper presented at 

the Advanced Communication Technology (ICACT), 2014 16th International Conference on.

 

Yu, Z. (2006). Fast Gaussian mixture clustering for skin detection. Paper presented at

the Image Processing, 2006 IEEE International Conference on.

 

Yun, L., & Chuan-xu, W. (2008). An improved algorithm of human skin detection in video  image  

based  on  linear  combination  of  2-order  Markov  and  Wiener predictor.   Paper   presented   

at   the   Computer   Science   and   Computational Technology, 2008. ISCSCT'08. International 

Symposium on.

 

Zafarifar, B., & Bellers, E. B. (2013). Application and evaluation of texture-adaptive skin  

detection  in  TV  image  enhancement.  Paper  presented  at  the  Consumer Electronics (ICCE), 

2013 IEEE International Conference on.

 

Zafarifar, B., Martinière, A., & de With, P. H. (2010). Improved skin segmentation for TV image 

enhancement, using color and texture features. Paper presented at the Consumer Electronics (ICCE), 

2010 Digest of Technical Papers International Conference on.

 

Zafarifar, B., & Van Den Kerkhof, T. (2012). Texture-adaptive skin detection for TV and  its  

real-time  implementation  on  DSP  and  FPGA.  IEEE  Transactions  on Consumer Electronics, 58(1).

 

Zaidan, A., Ahmad, N. N., Karim, H. A., Larbani, M., Zaidan, B., & Sali, A. (2014a). Image skin 

segmentation based on multi-agent learning Bayesian and neural network. Engineering Applications of 

Artificial Intelligence, 32, 136-150.

 

Zaidan, A., Ahmad, N. N., Karim, H. A., Larbani, M., Zaidan, B., & Sali, A. (2014b). On the 

multi-agent learning neural and Bayesian methods in skin detector and pornography      classifier:  

    An      automated      anti-pornography      system. Neurocomputing, 131, 397-418.

 

Zaidan, A., Zaidan, B., Alsalem, M., Albahri, O., Albahri, A., & Qahtan, M. (2019). Multi-agent 

learning neural network and Bayesian model for real-time IoT skin detectors: a new evaluation and 

benchmarking methodology. Neural Computing and Applications, 1-52.

 

Zhang, J., Zhuang, Z., & Geng, W. (2014). Local pixel wise skin detection algorithm based on FPGA. 

Paper presented at the Information Technology and Artificial Intelligence Conference (ITAIC), 2014 

IEEE 7th Joint International.

 

Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and  its  

applications  to  machine  health  monitoring.  Mechanical  Systems  and Signal Processing, 115, 

213-237.

 

Zhao, S., Zhuo, L., Xiao, Z., & Shen, L. (2009). A data-mining based skin detection method  in  

JPEG  compressed  domain.  Paper  presented  at  the  2009  Sixth International Conference on Fuzzy 

Systems and Knowledge Discovery.

 

Zhengming,  L.,  Tong,  Z.,  &  Jin,  Z.  (2010).  Skin  detection  in  color  images.  Paper 

presented  at  the  Computer  Engineering  and  Technology (ICCET),  2010  2nd

International Conference on.

 

Zhongdong,  W.,  Saichao,  W.,  &  Zichao,  H.  (2013).  A  Bayesian  approach  to  skin detection 

in YCbCr color space. Paper presented at the Awareness Science and Technology and Ubi-Media 

Computing (iCAST-UMEDIA), 2013 International Joint Conference on.

 

Zhou,  Y.,  Jiang,  G.,  &  Lin,  Y.  (2016).  A  novel  finger  and  hand  pose  estimation 

technique for real-time hand gesture recognition. Pattern Recognition, 49, 102- 114.

 

Zhu, J.-q., & Cai, C.-h. (2011). Region growing based high brightness skin detection. Paper  

presented  at  the  Signals,  Circuits  and  Systems  (ISSCS),  2011  10th International Symposium 

on.

 

Zuo, H., Fan, H., Blasch, E., & Ling, H. (2017). Combining convolutional and recurrent neural  

networks  for  human  skin  detection.  IEEE  Signal  Processing  Letters,

24(3), 289-293.

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.