UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :Q Science (General)
Main Author :Zuraini Othman
Additional Authors :Azizi Abdullah
Sharifah Sakinah Syed Ahmad
Fauziah Kasmin
Title :Extrema points application in Determining Iris region of interest
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2019
Corporate Name :Universiti Pendidikan Sultan Idris

Abstract : Universiti Pendidikan Sultan Idris
Extrema points are usually applied to solve everyday problems, for example, to determine the potential of a created tool and for optimisation. In this study, extrema points were used to help determine the region of interest (ROI) for the iris  in  iris  recognition  systems.  Iris  recognitionis  an  automated  method  ofbiometricidentification  that  uses mathematical  pattern-recognition  techniques  on  the  images  of  one  or  both irisesof  an  individual'seyes,  where  the complex patterns are unique, stable, and can be seen from a distance. In orderto obtain accurate results, the iris must be localised correctly. Hence, to address this issue, this paper proposed a method of iris localisation in the case of ideal and non-ideal iris images. In this study, the algorithm was based on finding the classification for the region of interest (ROI) with the help of a Support Vector Machine (SVM) by applying a histogram of grey level values as a descriptor in each region from the region growing technique. The valid ROI was found from the probabilities graph of the SVM obtained by looking at the global minimum conditions determined by a second derivative model in a graph of functions. Furthermore, the model from the global minimum condition values was used in the test phase, and the results showed that the ROI image obtained helped in the elimination of sensitive noise with the involvement of fewer computations, while reserving relevant information

References

[1]Feng, H., & Wah, C. C. (2003). Online signature verification using a new extreme points warping technique. Pattern Recognition Letters, 24(16), 2943–2951. https://doi.org/10.1016/S0167-8655(03)00155-7

[2]Gupta, G. K., & Joyce, R. C. (2007). Using position extrema points to capture shape in on-line handwritten signature verification. Pattern Recognition, 40(10), 2811–2817. https://doi.org/10.1016/j.patcog.2007.01.014

[3]Lu,  Y.,  &  Lu,  R.  (2018).  Fast  Bi-dimensional  empirical  mode  decomposition  as  an  image  enhancement technique  for  fruit  defect  detection. Computers  and  Electronics  in  Agriculture, 152(June),  314–323. https://doi.org/10.1016/j.compag.2018.07.025

[4]Usman, M., & Usman, M. (2018). Spatial frequency based video stream analysis for object classification and recognition  in  clouds  Spatial  Frequency  based  Video  Stream  Analysis  for  Object  Classification  and Recognition in Clouds

[5]Yang, M. D., Huang, K. S., Yang, Y. F., Lu, L. Y., Feng, Z. Y., & Tsai, H. P. (2016). Hyperspectral Image Classification Using Fast and Adaptive Bidimensional Empirical Mode Decomposition With Minimum Noise Fraction. IEEE Geoscience and Remote Sensing Letters, PP(99), 1–5. https://doi.org/10.1109/LGRS.2016.2618930

[6]Abiyev, R. H., & Altunkaya, K. (2009). Neural network based biometric personal identification with fast iris segmentation. International     Journal     of     Control,     Automation     and     Systems, 7(1),     17–23. https://doi.org/10.1007/s12555-009-0103-1

[7]Jayalakshmi, S., & Sundaresan, M. (2013). A survey on Iris Segmentation methods. In 2013 International Conference   on   Pattern   Recognition,   Informatics   and   Mobile   Engineering(pp.   418–423).   Ieee. https://doi.org/10.1109/ICPRIME.2013.6496513

[8]Negin, M., Chmielewski,T. a., Salganicoff, M., Camus, T. a., Cahn Von Seelen, U. M., Venetianer, P. L., & Zhang,  G.  G.  (2000).  Iris  biometric  system  for  public  and  personal  use. Computer, 33(2),  70–75. https://doi.org/10.1109/2.820042

[9]Lodin,  A.,  &  Demea,  S.  (2009).  Design  of  an  iris-based  medical  diagnosis  system. 2009  International Symposium on Signals, Circuits and Systems, ISSCS 2009, 3–6. https://doi.org/10.1109/ISSCS.2009.5206187

[10]Ma, L., Tan, T., Wang, Y., & Zhang, D. (2003). Personal identification based on iris texture analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions On, 25(12), 1519–1533. https://doi.org/10.1109/TPAMI.2003.1251145

[11]Sankowski, W., Grabowski, K., Napieralska, M., Zubert, M., & Napieralski, A. (2010). Reliable algorithm for     iris     segmentation     in     eye     image. Image     and     Vision     Computing, 28(2),     231–237. https://doi.org/10.1016/j.imavis.2009.05.014

[12]Li,  Y.,  Li,  W.,  &  Ma,  Y.  (2012).  Accurate  iris  location  based  on  region  of  interest. Proceedings -2012 International   Conference   on   Biomedical   Engineering   and   Biotechnology,   ICBEB   2012,   704–707. https://doi.org/10.1109/iCBEB.2012.47

[13]Othman, Z., & Abdullah, A. (2018). Adaptive Threshold and Piecewise Fitting for Iris Localisation. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(2–7), 153–158

[14]Chapra,    S.    C.,    &    Canale,    R.    P.    (2005). Numerical    methods    for    engineers(Vol.    5th). https://doi.org/10.1016/0378-4754(91)90127-O

[15]Strang, G. (1991). CALCULUS. Wellesley: Wellesley Cambridge Press

[16]Abdou, I. E., & Pratt, W. K. (1979). Quantitative Design and Evaluation of Enhancement/Thresholding Edge Detectors. Proc IEEE, 67(5), 753–763. https://doi.org/10.1109/PROC.1979.11325

[17]Ibrahim,  M.  T.,  Khan,  T.  M.,  Khan,  S.  a.,  Khan,  M.  A.,  &  Guan,  L.  (2012).  Iris  localization  using  local histogram    and    other    image    statistics. Optics    and    Lasers    in    Engineering, 50(5),    645–654. https://doi.org/10.1016/j.optlaseng.2011.11.008

[18]Abdullah,  A.,  Veltkamp,  R.  C.,  &  Wiering,  M.  a.  (2009).  Spatial  pyramids  and  two-layer  stacking  SVM classifiers for image categorization: A comparative study. Proceedings of the International Joint Conference on Neural Networks, 5–12. https://doi.org/10.1109/IJCNN.2009.5178743

[19]Cortes,   C.,   &   Vapnik,   V.   (1995).   Support-vector   networks. Machine   Learning, 20(3),   273–297. https://doi.org/10.1007/BF00994018

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.