UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :N Fine Arts
Main Author :Muhammad Modi Lakulu
Additional Authors :Ramlah Mailok
Harunur Rosyid
Title :Optimizing K-Means initial number of cluster based heuristic approach: literature review analysis perspective
Place of Production :Tanjong Malim
Publisher :Fakulti Seni, Komputeran dan Industri Kreatif
Year of Publication :2019
Corporate Name :Universiti Pendidikan Sultan Idris

Abstract : Universiti Pendidikan Sultan Idris
One  popular  clustering  technique -the  K-means  widely  use  in educational  scope  to  clustering  and  mapping  document,  data,  and  user performance in  skill. K-means clustering is  one  of  the classical and  most widely used clustering algorithms shows its efficiency in many  traditional applications its defect appears obviously when the data set to become much more complicated. Based on some research on K-means algorithm shows that Number of a cluster of K-means cannot easily  be specified in much real-world application, several algorithms requiring  the number of cluster as a parameter cannot be effectively employed. The aim of this paper describes the perspective  K-means  problems  underlying  research.  Literature  analysis  of previous studies suggesting that selection of the number of clusters randomly cause problems such as suitable producing globular cluster, less efficient if as the  number  of  cluster  grow  K-means  clustering  becomes  untenable. From those literature reviews, the heuristic optimization will be approached to solve an initial number of cluster randomly.   

References

[1]  A. Dutt,  S. Aghabozrgi, M. Akmal, B. Ismail, and H. Mahroeian, “Clustering Algorithms Applied,” in Educational Data Mining, vol. 5, no. 2, pp. 112–116, 2015. [Online]. Available: https://doi.org/10.7763/ JIEE.2015.V5.513.

[2]  D. Roy, “Synthesis of clustering techniques in educational data mining,” 2017.

[3]  S.  ÿaL·atay,  and  F.  Y.  Gürocak,  “Is  CEFR  Really  over  There?,” Procedia  -  Social  and Behavioral  Sciences,  vol.  232,  pp.  705–712,  April  2016.  [Online].  Available: https://doi.org/10.1016/j.sbspro.2016.10.096.

[4]  Dunham,  M.  H,  “Data  Mining  Introductory  and  Advanced  Topics,”  Prentice  Hall/Pearson Education, 2003.

[5]  J.N.D.  Macqueen,  “Some  Methods  For  Classification  And  Analysis  Of  Multivariate Observations", vol. 233, no. 233, pp. 281–297.

[6]  D. Sharmilarani and N. Kousika, “Modified K-Means Algorithm for Automatic Stimation of Number of Clusters Using Advanced Visual Assessment of Cluster Tendency”, pp. 236–239,  2014.

[7]  X. Wang, Y. Jiao, and S. Fei, “Estimation of Clusters Number and Initial Centers of K-means Algorithm Using Watershed Method, no. 0, 2015. [Online]. Available:  https://doi.org/10.1109/ DCABES.2015.132.

[8]  R. Forsati, A. Keikha, and M. Shmasfard, “Accepted Manuscript An Improved Bee Colony Optimization Algorithm with an Application to Document Clustering,” Neurocomputing, 2015. [Online]. Available:  https://doi.org/10.1016/j.neucom.2015.02.048.

[9]  J. Xiao, Y. Yan, J. Zhang, and Y. Tang, “Expert Systems with Applications A quantum-inspired genetic algorithm for k -means clustering,” Expert Systems With Applications, vol. 37, no. 7, pp. 4966–4973, 2010. [Online]. Available:  https://doi.org/10.1016/j.eswa.2009.12.017.

[10]  K.  R.  Zetty,  “An  efficient  k-means  clustering  algorithm,”  vol.  29,  pp.  1385–1391,  2008. [Online]. Available:  https:// doi.org/10. 1016/j.patrec.2008.02.014.

[11]  D. Karaboga, and C. Ozturk, “A novel clustering approach,” Artificial Bee Colony (ABC ) algorithm, vol.  11,  pp,  652-657,  2011.  [Online].  Available:    https://doi.org/10.1016/ j.asoc.2009.12.025.

[12]  A. Kishor, P. K. Singh, and J. Prakash, “NSABC: Non-dominated sorting based multi-objective artificial bee colony algorithm and its application in data clustering,” Neurocomputing, vol. 216, pp. 514-533, 2016. [Online]. Available: https://doi.org/10.1016/j.neucom.2016.08.003.

[13]  S.  M.  Laszlo,  “A  genetic  algorithm  using  hyper-quadtrees  for  low-dimensional  k-means clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 533–543, 2006.

[14]  Y.  Liu,  X.  Wu,  and  Y.  Shen,  “Automatic  clustering  using  genetic  algorithms,” Applied Mathematics and Computation, vol. 218, no. 4,    pp. 1267–1279, 2011. [Online]. Available:  https://doi.org/10.1016/j.amc.2011.06.007. 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.