UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :QD Chemistry
Main Author :Muqoyyanah
Title :Fabrication of graphene oxide/titanium dioxide hybrid material for solar cell and membrane application
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2019
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
This study aimed to fabricate graphene oxide (GO)/titanium dioxide (TiO2) hybridbased material for dye-sensitized solar cells (DSSCs) and membrane separation applications. The electrochemical exfoliation assisted by customized triple-tail sodium 1, 4-bis (neopentyloxy)-3-(neopentyloxycarbonyl)-1, 4-dioxobutane-2-sulphonate (TC14) and commercially available single-tail sodium dodecyl sulphate (SDS) surfactants were used to synthesize GO with water-based electrolyte and N, Ndimethylacetamide (DMAc) as solvents. The chemical reduction process utilizing hydrazine hydrate was then performed to produce reduced GO (rGO) which further hybridized with multi-walled carbon nanotubes (MWCNTs). The fabrication of DSSCs counter electrode (CE) was done by spraying deposition method on fluorine-doped tin oxide (FTO) as substrate and also coated by thin platinum (Pt). Meanwhile, different variety of TiO2 nanostructures as DSSCs photoanode were synthesized by hydrothermal growth and squeegee methods with different recepi and synthesis time. On the other hand, the DMAc-based GO was used to fabricate nanofiltration (NF) membrane utilizing polyvinylidene fluoride (PVDF) as the main polymer material by using phase inversion method. The DSSCs and NF membrane samples were characterized using solar simulator and dye rejection test, respectively. The DSSCs finding showed that the highest energy conversion efficiency (1.559%) was achieved by TiO2 NRs-NFs/TC14-rGO/TiO2 NPs as photoanode and TC14-rGO_MWCNTs/Pt as CE with the value of open circuit voltage, short circuit density, and fill factor were 0.747 V, 3.275 mA/cm2, and 53.5, respectively. Meanwhile, the NF membrane finding showed that PVDF/SDS-GO/TiO2 presents the highest dye flux (10.148 L/m2h) and high dye rejection efficiency (~92.76%). In conclusion, the synthesized GO showed a potential to be applied as electrode thin films and also membrane materials. Implication of this study is a novel, simpler, low-cost, and less harsh chemical for the GO synthesis to fabricate CE and photoanode film for DSSCs and also NF membrane.

References

Abdelkader, A. M., Cooper, A. J., Dryfe, R. A. W., & Kinloch, I. A. (2015). How to get  between  

the  sheets:  A  review  of  recent  works  on  the  electrochemical exfoliation of graphene 

materials from bulk graphite. Nanoscale, 7, 6944–6956.

 

Aboutalebi, S. H., Chidembo, A. T., Salari, M., Konstantinov, K., Wexler, D., Liu, H. K., et al. 

(2011). Comparison of GO, GO/MWCNTs composite and MWCNTs as potential   electrode   materials   for 

  supercapacitors.   Energy   &  Environmental Science, 4(5), 1855–1865.

 

Ahmad, A. L., Ideris, N., Ooi, B. S., Low, S. C., & Ismail, A. (2014).  Influence of polymer 

concentration on PVDF membrane fabrication for immunoassay analysis. Journal of Applied Sciences, 

14(12), 1299–1303.

 

Ahmad,  M.  K.,  &  Kenji,  M.  (2013).  Effect  of  anatase  TiO2    overlayer  on  the 

photovoltaic  properties  of  rutile  phase  nanostructured  dye-sensitized  solar  cell. Micro and 

Nanoelectronics, 2, 262–264.

 

Ahmad,  M.  K.,  Mohan,  V.  M.,  &  Murakami,  K.  (2015).  Hydrothermal  growth  of bilayered  

rutile-phased  TiO2  nanorods/micro-size  TiO2  flower  in  highly  acidic solution for 

dye-sensitized solar cell. Journal of Sol-Gel Science and Technology, 73, 655–659.

 

Ahmad, M. K., Mokhtar, S. M., Soon, C. F., Nafarizal, N., Suriani, A. B., Mohamed, A., et al. 

(2016). Raman investigation of rutile-phased TiO2 nanorods/nanoflowers with  various  reaction  

times  using  one  step  hydrothermal  method.  Journal  of Materials Science: Materials in 

Electronics, 27(8), 7920–7926.

 

Ahmad, M. K., & Murakami, K. (2011). Application of titanium dioxide nanorods in DSC using 

hydrothermal method. Advanced Materials Research, 222, 24–27.

 

Ahmad, M. K., & Murakami, K. (2012). Low temperature and normal pressure growth of  rutile-phased  

TiO2   nanorods/nanoflowers  for  DSC  application  prepared  by hydrothermal method. Journal of 

Advanced Research in Physics, 3(2), 1–3.

 

Ahmad,  M.  K.,  &  Murakami,  K.  (2015).  Rutile-phased  TiO2  nanorods/nanoflowers based 

dye-sensitized solar cell. Applied Mechanics and Materials, 773–774, 725– 728.

 

Ahmad, M. K., Soon, C. F., Nafarizal, N., Suriani, A. B., Mohamed, A., Mamat, M. H., et al. (2016). 

Effect of heat treatment to the rutile based dye sensitized solar cell.

Optik - International Journal for Light and Electron Optics, 127(8), 4076–4079.

 

Ahmed Al-She’Irey, A. Y., Md Saad, S. K., Umar, A. A., Rahman, M. Y. A., & Salleh,

M.  M.  (2016).  (001)  faceted-Ga-TiO2   microtablet  synthesis  and  its  organic perovskite   

sensitized   solar   cells   characterization.   Journal   of   Alloys   and Compounds, 674(001), 

470–476.

 

Ahn, K.,  Lee, H., Jeong, Y., Kim, J., Jeong, S., & Cho, C.  (2011). Effects of TiO2 nanorod length 

and post-annealing on the electrical properties of TiO2 nanobarbed fiber structures. Journal of 

Nanoscience and Nanotechnology, 11(8), 7155–7158.

 

Al-gharabli, S., Mavukkandy, M. O., Kujawa, J., Nunes, S. P., & Arafat, H. A. (2017). Activation of 

PVDF membranes through facile  hydroxylation of the polymeric dope. Journal of Materials Research, 

32(22), 4219–4231.

 

Ali, I., Bamaga, O. A., Gzara, L., Bassyouni, M., Abdel-Aziz, M. H., Soliman, M. F., et al. (2018). 

Assessment of blend PVDF membranes, and the effect of polymer concentration and blend composition. 

Membranes, 8(13), 1–19.

 

Ambrosi,  A.,  &  Pumera,  M.  (2016).  Electrochemically  exfoliated  graphene  and graphene oxide 

for energy storage and electrochemistry applications. Chemistry - A European Journal, 22, 153–159.

 

Aouaj, M. A., Diaz, R., Belayachi, A., Rueda, F., & Abd-lefdil, M. (2009). Comparative study of ITO 

and FTO thin films grown by spray pyrolysis. Materials Research Bulletin, 44, 1458–1461.

 

Aprile, C., Maretti, L., Alvaro, M., Scaiano, J. C., & Garcia, H. (2008). Nanomaterials for 

alternative energy sources. Dalton Transactions, 40, 5465–5470.

 

Azmina, M. S., Suriani, A. B., Falina, A. N., Salina, M., Rosly, J., & Rusop, M. (2012). 

Preparation of palm oil based carbon nanotubes at various ferrocene concentration. Nanomaterials: 

Synthesis and Characterization, 364, 408–411.

 

Azmina,  M.  S.,  Suriani,  A.  B.,  Falina,  A.  N.,  Salina,  M.,  &  Rusop,  M.  (2012). 

Temperature  effects  on  the  production  of  carbon  nanotubes  from  palm  oil  by thermal   

chemical   vapor   deposition   method.   Nanomaterials:   Synthesis   and Characterization, 364, 

359–362.

 

Bajpai,  R.,  Roy,  S.,  Kumar,  P.,  Bajpai,  P.,  Kulshrestha,  N.,  Ra,  J.,  et  al.  (2011). 

Graphene   supported   platinum   nanoparticle   counter-electrode   for   enhanced performance of 

dye-sensitized solar cells. Applied Materials & Interfaces, 3(10), 3884–3889.

 

Balachandran, U., & Eror, N. G. (1982). Raman spectra of titanium dioxide. Journal of Solid State 

Chemistry, 42, 276–282.

Bi, H., Zhao, W., Sun, S., Cui, H., Lin, T., Huang, F., et al. (2013). Graphene ?lms

decorated with metal sul?de nanoparticles for use as counter electrodes of dye-

sensitized solar cells. Carbon, 61, 116–123.

 

Bohara,  B.  B.,  Batra,  A.  K.,  Arun,  K.  J.,  Aggarwal,  M.  D.,  &  III,  C.  F.  (2017). 

Fabrication        and        characterization        of        polyvinylidene        fluoride 

trifluoroethylene/samarium   oxide   (Sm2O3)   nanocomposite   film.   Advanced Science, 

Engineering and Medicine, 9, 1–6.

 

Bokali?,  M.,  &  Topi?,  M.  (2015).  Spatially  resolved  characterization  in  thin-film 

photovoltaics. Springer.

 

Bokobza, L., & Zhang, J. (2012). Raman spectroscopic characterization of multiwall carbon nanotubes 

and of composites. EXPRESS Polymer Letters, 6(7), 601–608.

 

Buonomenna,  M.  G.,  Choi,  S.-H.,  Galiano,  F.,  &  Drioli,  E.  (2011).  Membranes prepared via 

phase inversion. In Basile, A. & Gallucci, F., Membrane reactors: Preparation,  optimization  and  

selection  (pp.  475–490).  United  Kingdom:  John Wiley & Sons, Ltd.

 

Buonomenna,  M.  G.,  Macchi,  P.,  Davoli,  M.,  &  Drioli,  E.  (2007).  Poly(vinylidene 

fluoride)  membranes  by  phase  inversion:  The  role  the  casting  and  coagulation conditions   

play   in   their   morphology,   crystalline   structure   and   properties. European Polymer 

Journal, 43, 1557–1572.

 

Calogero, G., Bartolotta,  A., Marco, G. Di, Carlo, A. Di, & Bonaccorso,  F. (2015). 

Vegetable-based dye-sensitized solar cells. Chemical Society Reviews, 44, 3244– 3294.

 

Cao, X., Ma, J., Shi, X., & Ren, Z.  (2006). Effect of TiO2  nanoparticle size on the performance 

of PVDF membrane. Applied Surface Science, 253, 2003–2010.

 

Cao, Y., Li, Z., Wang, Y., Zhang, T., Li, Y., Liu, X., et al. (2016). Influence of TiO2 nanorod 

arrays on the bilayered photoanode for dye-sensitized solar cells. Journal of Electronic Materials, 

45(10), 4989–4998.

 

Chang, L. H., Hsieh, C. K., Hsiao, M. C., Chiang, J. C., Liu, P. I., Ho, K. K., et al. (2013). A 

graphene-multi-walled carbon nanotube hybrid supported on fluorinated tin oxide as a counter 

electrode of dye-sensitized solar cells. Journal of Power Sources, 222, 518–525.

 

Chen, C.-M., Hsu, Y.-C., & Cherng, S.-J. (2011). Effects of annealing conditions on the properties 

of TiO2/ITO-based photoanode and the photovoltaic performance of dye-sensitized solar cells. 

Journal of Alloys and Compounds, 509(3), 872–877.

 

Chen, D., Feng, H., & Li, J. (2012). Graphene oxide: Preparation, functionalization,

and electrochemical applications. Chemical Reviews, 112(11), 6027–6053.

 

Chen,  H.-Y.,  Liao,  J.-Y.,  Lei,  B.-X.,  Kuang,  D.-B.,  Fang,  Y.,  &  Su,  C.-Y.  (2012).

Highly   catalytic   carbon   nanotube/Pt   nanohybrid-based   transparent   counter electrode for 

efficient dye-sensitized solar cells. Chemistry an Asian Journal, 7(8), 1–9.

 

Chen, L.-C., Hsu, C.-H., Chan, P.-S., Zhang, X., & Huang, C.-J. (2014). Improving the performance  

of  dye-sensitized  solar  cells  with  TiO2/graphene/TiO2   sandwich structure. Nanoscale Research 

Letters, 9, 1–7.

 

Chiba, Y., Islam, A., Komiya, R., Koide, N., & Han, L. (2006). Conversion efficiency of 10.8% by a 

dye-sensitized solar cell using a TiO2  electrode with high haze. Applied Physics Letter, 

88(223505), 223505.

 

Choi, W., Lahiri, I., Seelaboyina, R., & Kang, Y. S. (2010). Synthesis of graphene and its 

applications: A review. Critical Reviews in Solid State and Materials Sciences, 35, 52–71.

 

Chou, J., Huang, C., Lin, Y., Chu, C., Liao, Y., Tai, L., et al. (2016). The influence of different 

 annealing temperatures  on  graphene  modified  TiO2  for dye-sensitized solar cell. IEEE 

Transactionns on Nanotechnology, 15(2), 164–170.

 

Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: A synthetic chemistry 

viewpoint. Chemical Society Reviews, 43, 291–312.

 

Coros, M., Pogacean, F., Rosu, M.-C., Socaci, C., Borodi, G., Magerusan, L.,  et al. (2016).  

Simple  and  cost-effective  synthesis  of  graphene  by  electrochemical exfoliation of graphite 

rods. RSC Advances, 6, 2651–2661.

 

Costa, S., Borowiak-Palen, E., Kruszynska, M., Bachmatiuk, A., & Kalenczuk, R. J. (2008). 

Characterization of carbon nanotubes by Raman spectroscopy. Materials Science-Poland, 26(2), 

432–441.

 

Cruz, R., Pacheco, D. A. T., & Mendes, A. (2012). Reduced graphene oxide films as transparent 

counter-electrodes for dye-sensitized solar cells. Solar Energy, 86(2), 716–724.

 

Dahlan, D., Md Saad, S. K., Berli, A. U., Bajili, A., & Umar, A. A. (2017). Synthesis of 

two-dimensional nanowall of Cu-Doped TiO2 and its application as photoanode in DSSCs. Physica E: 

Low-Dimensional Systems and Nanostructures, 91, 185– 189.

 

Dawood, S., & Sen, T. K. (2014). Review on dye removal from its aqueous solution into  alternative  

cost  effective  and  non-conventional  adsorbents.  Journal  of Chemical and Process Engineering, 

1(104), 1–7.

 

Demir,  E.,  Savk,  A.,  Sen,  B.,  &  Sen,  F.  (2017).  A  novel  monodisperse  metal

nanoparticles  anchored  graphene  oxide  as  counter  electrode  for  dye-sensitized

solar cells. Nano-Structures & Nano-Objects, 12, 41–45.

 

Demir, E., Sen, B., & Sen, F. (2017). Highly efficient Pt nanoparticles and f-MWCNT nanocomposites  

based  counter  electrodes  for  dye-sensitized  solar  cells.  Nano- Structures & Nano-Objects, 

11, 39–45.

 

Dobrza?ski, L. A., Prokopowicz, M. P., Dryga?a, A., Wierzbicka, A., Lukaszkowicz, K.,  &  Szindler, 

 M.  (2017).  Carbon  nanomaterials  application  as  a  counter electrode  for  dye-sensitized  

solar  cells.  Archives  of  Metallurgy  and  Materials, 62(1), 27–32.

 

Dong, H., Wu, Z., Lu, F., Gao, Y., El-shafei, A., Jiao, B., et al. (2014). Optics–electrics 

highways:  Plasmonic  silver  nanowires@TiO2   core–shell  nanocomposites  for enhanced 

dye-sensitized solar cells performance. Nano Energy, 10, 181–191.

 

Dresselhaus,  M.  S.,  Jorio,  A.,  Hofmann,  M.,  Dresselhaus,  G.,  &  Saito,  R.  (2010). 

Perspectives  on  carbon  nanotubes  and  graphene  raman  spectroscopy.  Nano Letters, 10, 

751–758.

 

Du, P., Song, L., Xiong, J., Li, N., Wang, L., Xi, Z., et al. (2013). Dye-sensitized solar cells 

based on anatase TiO2/multi-walled carbon nanotubes composite nanofibers photoanode. Electrochimica 

Acta, 87, 651–656.

 

Eda, G., & Chhowalla, M. (2009). Graphene-based composite thin films for electronics.

Nano Letters, 9(2), 814–818.

 

Ekanayaka, T. K., Hong, S.-H., Shen, T.-Z., & Song, J.-K. (2017). Effect of solvents on photonic 

crystallinity in graphene oxide dispersions. Carbon, 123, 283–289.

 

Elashmawi, I. S., & Gaabour, L. H. (2015). Raman, morphology and electrical behavior of 

nanocomposites based on PEO/PVDF with Multi-walled Carbon Nanotubes. Results in Physics, 5, 

105–110.

 

Esch, T. R., Gadaczek, I., & Bredow, T. (2014). Surface structures and thermodynamics of low-index 

of rutile, brookite and anatase – A comparative DFT study. Applied Surface Science, 288, 275–287.

 

Faisal,  A.  Q.  D.  (2015).  Synthesis  and  characteristics  study of  TiO2  nanowires  and 

nanoflowers  on  FTO/glass  and  glass  substrates  via  hydrothermal  technique. Journal of 

Materials Science: Materials in Electronics, 26, 317–321.

 

Fang, X., Ma, T., Guan, G., Akiyama, M., Kida, T., & Abe, E. (2004). Effect of the thickness of the 

Pt film coated on a counter electrode on the performance of a dye-

sensitized solar cell. Journal of Electroanalytical Chemistry, 570, 257–263.

 

Fazli, F. I. M., Ahmad, M. K., Soon, C. F., Nafarizal, N., Suriani, A. B., Mohamed, A., et  al.  

(2017).  Dye-sensitized  solar  cell  using  pure  anatase  TiO2   annealed  at different  

temperatures.  Optik  -  International  Journal  for  Light  and  Electron Optics, 140, 1063–1068.

 

Gee, C.-M., Tseng, C.-C., Wu, F.-Y., Chang, H.-P., Li, L.-J., Hsieh, Y.-P., et al. (2013).

Flexible  transparent  electrodes  made  of  electrochemically  exfoliated  graphene sheets from 

low-cost graphite pieces. Displays, 34, 315–319.

 

Ghaffar, A.,  Zhang,  L.,  Zhu, X.,  & Chen,  B. (2018). Porous PVdF/GO  nanofibrous membranes for 

selective separation and recycling of charged organic dyes from water. Environmental Science & 

Technology, 52(7), 4265–4274.

 

Goh, P. S., Ismail, A. F., & Ng, B. C. (2017). Raman spectroscopy. In Hilal, N., Ismail,

A. F., Matsuura, T., & Oatley-Radcliffe, D., Membrane characterization (pp. 31– 44). Amsterdam, 

Netherland: Elsevier.

 

Gong,  H.  H.,  Park,  S.  H.,  Lee,  S.-S.,  &  Hong,  S.  C.  (2014).  Facile  and  scalable 

fabrication of transparent and high performance Pt/reduced graphene oxide hybrid counter electrode 

for dye-sensitized solar cells. International Journal of Precision Engineering and Manufacturing, 

15(6), 1193–1199.

 

Gong,  J.,  Liang,  J.,  &  Sumathy,  K.  (2012).  Review  on  dye-sensitized  solar  cells 

(DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 16(8), 

5848–5860.

 

Green, M. A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E. D. (2014). Solar cell efficiency   

tables   (version   44).   Progress   in   Photovoltaics:   Research   and Applications, 22, 

701–710.

 

Gu, X. Q., Zhao, Y. L., & Qiang, Y. H. (2012). Influence of annealing temperature on performance  

of  dye-sensitized  TiO2   nanorod  solar  cells.  Journal  of  Materials Science: Materials in 

Electronics, 23(7), 1373–1377.

 

Guai, G. H., Song, Q. L., Guo, C. X., Lu, Z. S., Chen, T., Ng, C. M.,  et al. (2012).

Graphene-Pt\ITO counter electrode to significantly reduce Pt loading and enhance charge  transfer  

for  high  performance  dye-sensitized  solar  cell.  Solar  Energy, 86(7), 2041–2048.

 

Hafez, H., Lan, Z., Li, Q., & Wu, J. (2010). High efficiency dye-sensitized solar cell based  on  

novel  TiO2   nanorod/nanoparticle  bilayer  electrode.  Nanotechnology, Science and Applications, 

3(1), 45–51.

 

Hamed, N. K. A., Khalid, N. S., Fazli, F. I. M., Napi, M. L. M., Nayan, N., & Ahmad,

M. K. (2016). Influence of hydrochloric acid volume on the growth of titanium

dioxide   (TiO2)   nanostructures   by  hydrothermal   method.   Sains   Malaysiana,

45(11), 1669–1673.

 

Hara, K. and Mori S. (2011). Dye-sensitized solar cells. In Luque, A. & Hegedus, S. (2??  Eds.),  

Handbook  of  photovoltaic  science  and  engineering  (pp.  642–645). United Kingdom: John Wiley & 

Sons, Ltd.

 

Hasan, M. M., Haseeb, A. S. M. A., Saidur, R., & Masjuki, H. H. (2008). Effects of annealing 

treatment on optical properties of anatase TiO2 thin films. International Journal of Mechanical, 

Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 2(4), 410–414.

 

Homem, N. C., Yamaguchi, N. U., Vieira, M. F., Amorim, M. T. S. P., & Bergamasco,

R. (2017). Surface modification of microfiltration membrane with GO nanosheets for dyes removal 

from aqueous solutions. Chemical Engineering Transactions, 60, 259–264.

 

Hou, D., Liu, Q., Cheng, H., Li, K., Wang, D., & Zhang, H. (2016). Chrysanthemum extract  assisted  

green  reduction  of  graphene  oxide.  Materials  Chemistry  and Physics, 183, 76–82.

 

Hsiao, P.-T., Lu, M.-D., Tung, Y.-L., & Teng, H. (2010). Influence of hydrothermal pressure during 

crystallization on the structure and electron-conveying ability of TiO2 colloids for dye-sensitized 

solar cells. Journal of Physical Chemistry C, 114, 15625–15632.

 

Hu,  C.,  Zhou,  R.,  Fan,  C.,  &  Zhou,  X.  (2016).  Influence  of  reducing  reagent 

combination in graphene oxide reduction. Micro & Nano Letters, 11(4), 215–220.

 

Hu, J., Cheng, J., Tong, S., Zhao, L., Duan, J., & Yang, Y. (2016). Dye-sensitized solar cells 

based on P25 nanoparticles/TiO2  nanotube arrays/hollow TiO2  boxes three- layer  composite  film.  

Journal  of  Materials  Science:  Materials  in  Electronics, 27(5), 5362–5370.

 

Hu,  M.,  &  Mi,  B.  (2013).  Enabling  graphene  oxide  nanosheets  as  water  separation 

membranes. Environmental Science & Technology, 47(8), 3715–3723.

 

Hummers, W. S. J., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of American 

Chemical Society, 80(6), 1339–1339.

 

Hung,  K.-H.,  Li,  Y.-S.,  &  Wang,  H.-W.  (2012).  Dye-sensitized  solar  cells  using 

graphene-based   counter   electrode.   In   IEEE   International   Conference   on Nanotechnology 

(IEEE-NANO) (pp. 1–12).

 

Hwang, S., Batmunkh, M., Nine, M. J., Chung, H., & Jeong, H. (2015). Dye-sensitized solar cell 

counter electrodes based on carbon nanotubes. Chemical Physics and

Physical Chemistry, 16(1), 53–65.

 

Hwang, Y. J., Hahn, C., Liu, B., & Yang, P. (2012). Photoelectrochemical properties of TiO2  

nanowire arrays: A study of the dependence on length and atomic layer deposition coating. ACS Nano, 

6(6), 5060–5069.

 

Ilyas, A. M., Gondal, M. A., Baig, U., Akhtar, S., & Yamani, Z. H. (2016). Photovoltaic performance 

and photocatalytic activity of facile synthesized graphene decorated TiO2  monohybrid  using  

nanosecond  pulsed  ablation  in  liquid  technique.  Solar Energy, 137, 246–255.

 

Ito, S. (2011). Investigation of dyes for dye-sensitized solar cells: Ruthenium-complex dyes, 

metal-free dyes, metal-complex porphyrin dyes and natural dyes. In Solar cells-dye-sensitized 

devices. Intech.

 

Jena, A., Mohanty, S. P., Kumar, P., Naduvath, J., Gondane, V., Lekha, P., et al. (2012). Dye 

sensitized solar cells: A review. Transactions of the Indian Ceramic Society, 71(1), 1–16.

 

Jiang, C. Y., Sun, X. W., Lo, G. Q., Kwong, D. L., & Wang, J. X. (2007). Improved dye-sensitized  

solar  cells  with  a  ZnO-nanoflower  photoanode.  Applied  Physics Letter, 90(26), 3–6.

 

Johra, F. T., Lee, J.-W., & Jung, W.-G. (2014). Facile and safe graphene preparation on solution 

based platform. Journal of Industrial and Engineering Chemistry, 20(5), 2883–2887.

 

Jusman, Y., Ng, S. C., & Osman, N. A. A. (2014). Investigation of CPD and HMDS sample  preparation  

techniques  for  cervical  cells  in  developing  computer-aided screening system based on 

FE-SEM/EDX. The Scientific World Journal,  2014, 289817, 11 pages.

 

Kakiage,  K.,  Aoyama,  Y.,  Yano,  T.,  Oya,  K.,  Fujisawa,  J.,  &  Hanaya,  M.  (2015). 

Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl- anchor  and  

carboxy-anchor  dyes.  Chemistry  Communication,  51(88),  15894– 15897.

 

Kalyanasundaram,  K.,  Bertoz,  M.,  Bisquert,  J.,  Angelis,  F.  De,  Desilvestro,  H., 

Fabregat-santiago,    F.,    et    al.    (2010).    Dye-sensitized    Solar    Cells.    (K. 

Kalyanasundaram, Ed.) (First). Lausanne: CRC Press, Taylor and Francis Group, LLC.

 

Kang, J. H., Kim, T., Choi, J., Park, J., Kim, Y. S., Chang, M. S., et al. (2016). The hidden 

second oxidation step of Hummers method. Chemistry of Materials, 28(3), 756–764.

 

Karisma, D., Febrianto, G., & Mangindaan, D. (2017). Removal of dyes from textile

wastewater    by    using    nanofiltration    polyetherimide    membrane.    In    The

International Conference on Eco Engineering Development 2017 (pp. 8–14).

 

Karthick, S. N., Hemalatha, K. V, Raj, C. J., Kim, H.-J., & Yi, M. (2012). Titanium dioxide  paste  

preparation  for  dye  sensitized  solar  cell  using  hydrothermal technique. Journal of Ceramic 

Processing Research, 13, 136–139.

 

Kavan, L., Yum, J.-H., & Grätzel, M. (2011). Graphene nanoplatelets outperforming platinum  as  the 

 electrocatalyst  in  Co-bipyridine-mediated  dye-sensitized  solar cells. Nano Letters, 11, 

5501–5506.

 

Kavan,  L.,  Yum,  J.-H.,  Nazeeruddin,  M.  K.,  &  Grätzel,  M.  (2011).  Graphene nanoplatelet  

cathode  for  Co(III)/(II)  mediated  dye-sensitized  solar  cells.  ACS Nano, 5(11), 9171–9178.

 

Keshavarzi,    R.,    Mirkhani,    V.,    Moghadam,    M.,    Tangestaninejad,    S.,    & 

Mohammadpoor-Baltork, I. (2015). Performance enhancement of dye-sensitized solar  cells  based  on  

TiO2   thick  mesoporous  photoanodes  by  morphological manipulation. Langmuir, 31(42), 

11659–11670.

 

Kim, C. W., Suh, S. P., Choi, M. J., Kang, Y. S., & Kang, Y. S. (2013). Fabrication of SrTiO3-TiO2  

 heterojunction  photoanode  with  enlarged  pore  diameter  for  dye- sensitized solar cells. 

Journal of Materials Chemistry A, 1, 11820–11827.

 

Kim, H.-M., Lee, M. H., Lee, H.-S., Wi, J.-S., Lim, K., & Kim, K.-B. (2009). Method

of improving the quality of nanopatterning in atomic image projection electron- beam lithography. 

Journal of Vacuum Science & Technology B, 27(6), 2553–2557.

 

Kim, J., Cote, L. J., Kim, F., Yuan, W., Shull, K. R., & Huang, J. (2010). Graphene oxide  sheets  

at  interfaces.  Journal  of  American  Chemical  Society,  132,  8180– 8186.

 

Kim, J. F., Jung, J. T., Wang, H., Drioli, E., & Lee, Y. (2017). Effect of solvents on membrane    

fabrication    via    thermally    induced    phase    separation    (TIPS): Thermodynamic and 

kinetic perspectives. In Comprehensive Membrane Science and Engineering II (Vol. 1, pp. 386–417). 

Elsevier Ltd.

 

Kim, S.-B., Park, J.-Y., Kim, C.-S., Okuyama, K., Lee, S.-E., Jang, H.-D., et al. (2015).

Effects of  graphene in dye-sensitized solar cells based on nitrogen-doped  TiO2 composite. The 

Journal of Physical Chemistry C, 119(29), 16552–16559.

 

Kong,  H.  X.  (2013).  Hybrids  of  carbon  nanotubes  and  graphene/graphene  oxide.

Current Opinion in Solid State & Materials Science, 17(1), 31–37.

 

Kosyachenko, L. (2011). Solar cells-dye-sensitized devices. Croatia: InTech.

 

Kroon, J. M., Bakker, N. J., Smit, H. J. P., Liska, P., Thampi, K. R., Wang, P., et al.

(2007). Nanocrystalline dye-sensitized solar cells having maximum performance.

Progress in Photovoltaics: Research and Applications, 15, 1–18.

 

Kumar, A., Madaria, A. R., & Zhou, C. (2010). Growth of aligned single-crystalline rutile  TiO2    

nanowires  on  arbitrary  substrates  and  their  application  in  dye- sensitized solar cells. 

Journal of Physical Chemistry C, 114, 7787–7792.

 

Kumar, A., & Pandey,  G. (2018). Different methods used for the synthesis of TiO2 based  

nanomaterials:  A   review.   American   Journal  of  Nano  Research   and Applications, 6(1), 

1–10.

 

Kumaran, R., Alagar, M., Kumar, S. D., Subramanian, V., & Dinakaran, K. (2015). Ag induced  

electromagnetic  interference  shielding  of  Ag-graphite/PVDF  flexible nanocomposites thin films. 

Applied Physics Letter, 107, 113107-1–5.

 

Kymakis, E., Stratakis, E., Stylianakis, M. M., Koudoumas, E., & Fotakis, C. (2011). Spin coated 

graphene ?lms as the transparent electrode in organic photovoltaic devices. Thin Solid Films, 520, 

1238–1241.

 

Ladewig, B., & Al-Shaeli, M. N. Z. (2017). Fundamentals of Membrane Processes. In

Fundamental of Membrane Bioreactors (pp. 13–38). Singapore: Springer.

 

Lalia, B. S., Kochkodan, V., Hashaikeh, R., & Hilal, N. (2013). A review on membrane fabrication: 

Structure, properties and performance relationship. Desalination, 326, 77–95.

 

Lan, T., Qiu, H., Xie, F., Yang, J., & Wei, M. (2015). Rutile TiO2 mesocrystals/reduced graphene   

oxide   with   high-rate   and   long-term   performance   for   lithium-ion batteries. Materials 

for Energy and Catalysis, 5, 1–6.

 

Lee, B. H., Park, S. H., Back, H., & Lee, K. (2011). Novel film-casting method for high-performance 

 flexible  polymer  electrodes.  Advanced  Functional  Materials, 21, 487–493.

 

Lee, K. H., Lee, B., Hwang, S.-J., Lee, J.-U., Cheong, H., Kwon, O.-S., et al. (2014). Large scale 

production of highly conductive reduced graphene oxide sheets by a solvent-free low temperature 

reduction. Carbon, 69, 327–335.

 

Lehman,  J.  H.,  Terrones,  M.,  Mansfield,  E.,  Hurst,  K.  E.,  &  Meunier,  V.  (2011). 

Evaluating  the  characteristics  of  multiwall  carbon  nanotubes.  Carbon,  49(8), 2581–2602.

 

Lei,  J.,  Li,  H.,  Zhang,  J.,  &  Anpo,  M.  (2016).  Mixed-phase  TiO2  nanomaterials  as 

efficient photocatalysts.  In Low dimensional and  nanostructured materials and

devices. Switzerland: Springer.

 

Li, X., Zhang, H., Wang, P., Li, G., Zhao, S., Wang, J., & Chen, L. (2014). Saturable absorption 

and modulation characteristics of laser with graphene oxide spin coated on ITO substrate. Journal 

of Nanomaterials, 2014, 921896.

 

Li,  Z.-Q.,  Chen,  W.-C.,  Guo,  F.-L.,  Mo,  L.-E.,  Hu,  L.-H.,  &  Dai,  S.-Y.  (2015).

Mesoporous  TiO2  yolk-shell  microspheres  for  dye-sensitized  solar  cells  with  a high 

efficiency exceeding 11%. Scientific Reports, 5, 1–8.

 

Li, Z.-Y., Akhtar, M. S., Kuk, J. H., Kong, B.-S., & Yang, O.-B. (2012). Graphene application as a 

counter electrode material for dye-sensitized solar cell. Materials Letters, 86, 96–99.

 

Liao,  J.-Y.,  He,  J.-W.,  Xu,  H.,  Kuang,  D.-B.,  &  Su,  C.-Y.  (2012).  Effect  of  TiO2

morphology   on   photovoltaic   performance    of   dye-sensitized   solar   cells: Nanoparticles, 

nanofibers, hierarchical spheres and ellipsoid spheres. Journal of Materials Chemistry, 22, 

7910–7918.

 

Liao, M. Y., Fang, L., Xu, C. L., Wu, F., Huang, Q. L., & Saleem, M. (2014). Effect of seed layer 

on the growth of rutile TiO2  nanorod arrays and their performance in dye-sensitized solar cells. 

Materials Science in Semiconductor Processing, 24, 1– 8.

 

Liu,  B.,  &  Aydil,  E.  S.  (2009).  Growth  of  oriented  single-crystalline  rutile  TiO2 

nanorods  on  transparent  conducting  substrates  for  dye-sensitized  solar  cells. Journal of 

American Chemical Society, 131, 3985–3990.

 

Liu,  F.,  Hashim,  N.  A.,  Liu,  Y.,  Abed,  M.  R.  M.,  &  Li,  K.  (2011).  Progress  in  the 

production and modification of PVDF membranes. Journal of Membrane Science, 375, 1–27.

 

Liu, J., Fu, X., Cao, D.-P., Mao, L., Wang, J., Mu, D., et al. (2015). Stacked graphene– TiO2  

photoanode via electrospray deposition for highly efficient dye-sensitized solar cells. Organic 

Electronics, 23, 158–163.

 

Liu,  J.,  Hua,  L.,  Li,  S.,  &  Yu,  M.  (2015).  Graphene  dip  coatings:  An  effective 

anticorrosion barrier on aluminium. Applied Surface Science, 327, 241–245.

 

Liu, J., Poh, C. K., Zhan, D., Lai, L., Lim, S. H., Wang, L., et al. (2013). Improved synthesis  of 

 graphene  flakes  from  the  multiple  electrochemical  exfoliation  of graphite rod. Nano Energy, 

2(3), 377–386.

 

Liu,  L.,  Zhang,  Y.,  Zhang,  B.,  &  Feng,  Y.  (2017).  A  detailed  investigation  on  the 

performance of dye-sensitized solar cells based on reduced graphene oxide-doped TiO2  photoanode. 

Journal of Materials Science, 52(13), 8070–8083.

 

Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., & Chen, J. (2008). One-step ionic-liquid-

assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from 

graphite. Advanced Functional Materials, 18, 1518–1525.

 

Luo, Z., Poyraz, A. S., Kuo, C., Miao, R., Meng, Y., Chen, S., et al. (2015). Crystalline mixed  

phase  (anatase/rutile)  mesoporous  titanium  dioxides  for  visible  light photocatalytic 

activity. Chemistry of Materials, 27(1), 6–17.

 

Madaeni, S. S., & Taheri, A. H. (2011). Effect of casting solution on morphology and performance   

of   PVDF   microfiltration   membranes.   Chemical   Engineering Technology, 34(8), 1328–1334.

 

Makertihartha, I. G. B. N., Rizki, Z., Zunita, M., & Dharmawijaya, P. T. (2017). Dyes removal from 

textile based nanofiltration. International Seminar on Fundamental and Application of Chemical 

Engineering, 110006, 1–8.

 

Mani, V., Chen, S.-M., & Lou, B.-S. (2013). Three dimensional graphene oxide-carbon nanotubes  and  

graphene-carbon  nanotubes  hybrids.  International  Journal  of Electrochemical Science, 8, 

11641–11660.

 

Mao, M., Wang, J.-B., Xiao, Z.-F., Dai, S.-Y., & Song, Q.-H. (2012). New 2,6-modified BODIPY 

sensitizers for dye-sensitized solar cells. Dyes and Pigments, 94(2), 224– 232.

 

Marchezi, P. E., Sonai, G. G., Hirata, M. K., Schiavon, M. A., & Nogueira, A. F. (2016). 

Understanding  the  role  of  reduced  graphene  oxide  in  the  electrolyte  of  dye sensitized  

solar  cells.  The  Journal  of  Physical  Chemistry  C,  120(41),  23368– 23376. 9

 

Mathew, S., Yella, A., Gao, P., Humphry-baker, R., Curchod, B. F. E., Ashari-astani, N., et al. 

(2014). Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering 

of porphyrin sensitizers. Nature Chemistry, 6, 242–247.

 

Mayabadi, A. H., Waman, V. S., Funde, A. M., Pathan, H. M., & Jadkar, S. R. (2015). Effect of 

annealing on optical and structural properties of rutile TiO2  nanoarrays. Journal of Nano 

Research, 34, 23–27.

 

Mehmood, U., Malaibari, Z., Rabani, F. A., Rehman, A. U., Ahmad, S. H. A., Atieh,

M.  A.,  et  al.  (2016).  Photovoltaic  improvement  and  charge  recombination reduction by 

aluminum oxide impregnated MWCNTs/TiO2  based photoanode for dye-sensitized solar cells. 

Electrochimica Acta, 203, 162–170.

 

Mehmood,  U.,  Rahman,  S.,  Harrabi,  K.,  Hussein,  I.  A.,  & Reddy,  B.  V.  S.  (2014). Recent 

advances in dye sensitized solar cells. Advances in Materials Science and Engineering, 2014, 1–12.

 

Meier,  R.  J.  (2005).  Vibrational  spectroscopy:  A  ‘vanishing’  discipline?  Chemical

Society Reviews, 34, 743–752.

 

Meng, L., Li, C., & Santos, M. P. dos. (2011). Effect of annealing temperature on TiO2 nanorod  

films  prepared  by dc  reactive  magnetron  sputtering  for  dye-sensitized solar cells. Journal 

of Inorganic and Organometallic Polymers and Materials, 21, 770–776.

 

Meng, N., Priestley, R. C. E., Zhang, Y., Wang, H., & Zhang, X. (2016). The effect of reduction  

degree  of  GO  nanosheets  on  microstructure  and  performance  of PVDF/GO hybrid membranes. 

Journal of Membrane Science, 501, 169–178.

 

Meng, X., Shin, D.-W., Yu, S. M., Jung, J. H., Kim, H. I., Lee, H. M., et al. (2011).

Growth  of  hierarchical  TiO2   nanostructures  on  anatase  nanofibers  and  their application  

in  photocatalytic  activity.  Crystal  Engineering  Communication,  13, 3021–3029.

 

Meng, X., Shin, D.-W., Yu, S. M., Park, M.-H., Yang, C., Lee, J. H., et al. (2014).

Formation  mechanism  of  rutile  TiO2   rods  on  fluorine  doped  tin  oxide  glass.

Journal of Nanoscience and Nanotechnology, 14(11), 8839–8844.

 

Méricq, J.-P., Mendret, J., Brosillon, S., & Faur, C. (2015). High performance PVDF- TiO2  

membranes for water treatment. Chemical Engineering Science, 123, 283– 291.

 

Mikhailov, S. (2011). Synthesis and fabrication. In S. Mikhailov (1?? Ed.), Physics and 

applications of graphene-experiments (pp. 1–72). Rijeka, Croatia: InTech.

 

Mohamed, A., Anas, A. K., Bakar, S. A., Ardyani, T., Zin, W. M. W., Ibrahim, S., et al. (2015). 

Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex  nanocomposites by 

surfactants bearing phenyl  groups.  Journal of Colloid and Interface Science, 455, 179–187.

 

Mohamed, A., Anas, A. K., Bakar, S. A., Aziz, A. A., Sagisaka, M., Brown, P., et al. (2014).  

Preparation  of  multiwall  carbon  nanotubes  (MWCNTs)  stabilised  by highly  branched  

hydrocarbon  surfactants  and  dispersed  in  natural  rubber  latex nanocomposites. Colloid 

Polymer Science, 292, 3013–3023.

 

Mohamed, A., Ardyani, T., Bakar, S. A., Brown, P., Hollamby, M., Sagisaka, M., et al. (2016).  

Graphene-philic  surfactants  for  nanocomposites  in  latex  technology. Advances in Colloid and 

Interface Science, 230, 54–69.

 

Mohamed, A., Trickett, K., Chin, S. Y., Cummings, S., Sagisaka, M., Hudson, L., et al. (2010). 

Universal surfactant for water, oils, and CO2. Langmuir Article, 26(22), 13861–13866.

 

Mokhtar,  N.  M.,  Lau,  W.  J.,  Ng,  B.  C.,  Ismail,  A.  F.,  &  Veerasamy,  D.  (2015).

Preparation and characterization of PVDF membranes incorporated with different additives for dyeing 

solution treatment using membrane distillation. Desalination and Water Treatment, 56(8), 1999–2012.

 

Mokhtar, S. M., Ahmad, M. K., Soon, C. F., Nafarizal, N., Faridah, A. B., Suriani, A. B., et al. 

(2018). Fabrication and characterization of rutile-phased titanium dioxide (TiO2) nanorods array 

with various reaction times using one step hydrothermal method. Optik - International Journal for 

Light and Electron Optics, 154, 510– 515.

 

Muaz, A. K. M., Hashim, U., Ibrahim, F., Thong, K. L., Mokhtar, M. S., & Liu, W.-W. (2015). Effect 

of annealing temperatures on the morphology, optical and electrical properties of TiO2  thin films 

synthesized by the sol–gel method and deposited on Al/TiO2/SiO2/p-Si. Microsystem Technology, 

22(4), 871–881.

 

Muruganandi, G., Saravanan, M., Vinitha, G., Raj, M. B. J., & Girisun, T. C. S. (2018). Barium  

borate  nanorod  decorated  reduced  graphene  oxide  for  optical  power limiting applications. 

Optical Materials, 75, 612–618.

 

Nagavolu, C., Susmitha, K., Raghavender, M., Giribabu, L., Rao, K. B. S., Smith, C.

T. G., et al. (2016). Pt-free spray coated reduced graphene oxide counter electrodes for dye 

sensitized solar cells. Solar Energy, 137, 143–147.

 

Nasib, A. M., Hatim, I., Jullok, N., & Alamery, H. R. (2017). Morphological properties of 

poly(vinylidene fluoride-co-tetrafluoroethylene membrane): Effect of solvents and  polymer  

concentrations.  Malaysian  Journal  of  Analytical  Sciences,  21(2), 356–364.

 

Nawi, N. I. M., Bilad, M. R., & Nordin, N. A. H. M. (2018). Effect of dope solution temperature on 

the membrane structure and membrane distillation performance. IOP Conference Series: Earth and 

Environmental Science, 140, 0–7.

 

Ngang, H. P., Ooi, B. S., Ahmad, A. L., & Lai, S. O. (2012). Preparation of PVDF– TiO2   

mixed-matrix  membrane  and  its  evaluation  on  dye  adsorption  and  UV- cleaning properties. 

Chemical Engineering Journal, 197, 359–367.

 

Nikooe, N., & Saljoughi, E. (2017). Preparation and characterization of novel PVDF nanofiltration 

membranes with hydrophilic property for filtration of dye aqueous solution. Applied Surface 

Science, 413, 41–49.

 

Novoselov, K. S., Geim, A. K., Morozov, S. V, Jiang, D., Zhang, Y., Dubonos, A. V, et al. (2004). 

Electric field effect in atomically thin carbon films. Science, 306, 666–669.

 

Nurhafizah,  M.  D.  (2017a).  Synthesis  of  graphene  oxide  using  electrochemical

exfoliation method for electrode materials application: The effect of different type

of surfactants on physical properties of graphene oxide sample synthesized via electrochemical   

exfoliation   method.   (Doctoral   Dissertation   pp.   225–249). Universiti Pendidikan Sultan 

Idris, Malaysia.

 

Nurhafizah,  M.  D.  (2017b).  Synthesis  of  graphene  oxide  using  electrochemical exfoliation 

method for electrode materials application: The effect of synthesis time on physical properties of 

graphene oxide sample synthesized via electrochemical exfoliation  method.  (Doctoral  Dissertation 

 pp.  141–159).  Universiti  Pendidikan Sultan Idris, Malaysia.

 

Nurhafizah,  M.  D.  (2017c).  Synthesis  of  graphene  oxide  using  electrochemical exfoliation  

method  for  electrode  materials  application:  The  effect  of  applied voltage   on   physical   

properties   of   graphene   oxide   sample   synthesized   via electrochemical   exfoliation   

method.   (Doctoral   Dissertation   pp.   176–199). Universiti Pendidikan Sultan Idris, Malaysia.

 

Nurhafizah, M. D., Suriani, A. B., Alfarisa, S., Mohamed, A., Isa, I., Kamari, A., et al. (2015). 

The synthesis of graphene oxide via electrochemical exfoliation method. Advanced Materials 

Research, 1109, 55–59.

 

O’Regan, B.,  & Grätzel,  M. (1991). A low-cost, high-efficiency solar-cell based on dye-sensitized 

colloidal TiO2  films. Nature, 353(6346), 737–740.

 

Pan,   Y.,   Hou,   Z.,   Yang,   H.,   &   Liu,   Y.   (2015).   Hierarchical   architecture   of 

nanographene-coated    rice-like    manganese    dioxide    nanorods/graphene    for enhanced 

electrocatalytic activity toward hydrogen peroxide reduction. Materials Science in Semiconductor 

Processing, 40, 176–182.

 

Paredes,  J.  I.,  Villar-Rodil,  S.,  Martínez-Alonso,  A.,  &  Tascon,  J.  M.  D.  (2008).

Graphene oxide dispersions in organic solvents. Langmuir, 24, 10560–10564.

 

Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes.

Nature Nanotechnology, 4, 217–224.

 

Parvathi, C., Maruthavanan, T., Sivamani, S., & Prakash, C. (2011). Removal of dyes from textile 

wet processing industry: A review. Chemical Processing, 319–323.

 

Parvez, K., Li, R., Puniredd, S. R., Hernandez, Y., Hinkel, F., Wang, S., et al. (2013). 

Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for 

organic electronics. ACS Nano, 7(4), 3598–3606.

 

Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., et al. (2014). Exfoliation of graphite  

into  graphene  in  aqueous  solutions  of  inorganic  salts.  Journal  of  the American Chemical 

Society, 136, 6083–6091.

 

Pham, V. H., Cuong, T. V., Hur, S. H., Shin, E. W., Kim, J. S., Chung, J. S.,  et al.

2010). Fast and simple fabrication of a large transparent chemically-converted

graphene film by spray-coating. Carbon, 48(7), 1945–1951.

 

Popoola,   I.   K.,   Gondal,   M.   A.,   Alghamdi,   J.   M.,   &   Qahtan,   T.   F.   (2018). 

Photofabrication  of  highly  transparent  platinum  counter  electrodes  at  ambient temperature 

for bifacial dye sensitized solar cells. Scientific Reports, 8(1), 12864.

 

Prakash, T. (2012). Review on nanostructured semiconductors for dye sensitized solar cells. 

Electronic Materials Letters, 8(3), 231–243.

 

Qin,  D.,  Bi,  Y.,  Feng,  X.,  Wang,  W.,  Barber,  G.  D.,  Wang,  T.,  et  al.  (2015). 

Hydrothermal  growth  and  photoelectrochemistry of  highly oriented,  crystalline anatase  TiO2    

nanorods   on  transparent  conducting  electrodes.   Chemistry  of Materials, 27, 4180–4183.

 

Qiu,  L.,  Zhang, H., Wang, W., Chen, Y.,  & Wang,  R. (2014). Effects  of hydrazine hydrate 

treatment on the performance of reduced graphene oxide film as counter electrode in dye-sensitized 

solar cells. Applied Surface Science, 319, 339–343.

 

Quintana, M., Edvinsson, T., Hagfeldt, A., & Boschloo, G. (2007). Comparison of dye- sensitized  

ZnO  and  TiO2   solar  cells:  Studies  of  charge  transport  and  carrier lifetime. Journal of 

Physical Chemistry C, 111, 1035–1041.

 

Ramasamy, E., Lee, W. J., Lee, D. Y., & Song, J. S. (2008). Spray coated multi-wall carbon nanotube 

counter electrode for tri-iodide (I3-) reduction in dye-sensitized solar cells. Electrochemistry 

Communications, 10, 1087–1089.

 

Razzaq, H., Nawaz, H., Siddiqa, A., Siddiq, M., & Qaisar, S. (2016). A brief review on 

nanocomposites  based  on  PVDF with  nanostructured  TiO2  as  filler.  Journal  of Nanotechnology 

& Nanoscience, 1(1), 29–35.

 

Ren, P.-G., Yan, D.-X., Ji, X., Chen, T., & Li, Z.-M. (2011). Temperature dependence of graphene 

oxide reduced by hydrazine hydrate. Nanotechnology, 22, 1–8.

 

Rezvani, F., Parvazian, E., & Hosseini, S. A. (2016). Dye-sensitized solar cells based on  

composite  TiO2   nanoparticle–nanorod  single  and  bi-layer  photoelectrodes. Bulletin of 

Materials Science, 39(6), 1397–1402.

 

Sadhu, S., & Poddar, P. (2014). Template-free fabrication of highly-oriented single- crystalline    

    1D-rutile        TiO2-MWCNT        composite        for        enhanced photoelectrochemical 

activity. Journal of Physical Chemistry C, 118(33), 19363– 19373.

 

Safarpour, M., Vatanpour, V., Khataee, A., & Esmaeili, M. (2015). Development of a novel high flux 

and fouling-resistant thin film composite nanofiltration membrane

by   embedding   reduced   graphene   oxide/TiO2.   Separation   and   Purification

Technology, 154, 96–107.

 

Sarkar, S., Mondal, A., Dey, K., & Ray, R. (2016). Defect driven tailoring of colossal 

dielectricity of  reduced  graphene  oxide.  Materials  Research  Bulletin,  74,  465– 471.

 

Selman, A. M., & Hassan, Z. (2014). Effect of annealing treatment on growth of rutile TiO2  

nanorods prepared by chemical bath deposition method on silicon substrate. Applied Mechanics and 

Materials, 624, 129–133.

 

Shao,  J.-J.,  Lv,  W.,  Guo,  Q.,  Zhang,  C.,  Xu,  Q.,  Yang,  Q.-H.,  &  Kang,  F.  (2012).

Hybridization of graphene oxide and carbon nanotubes at the liquid/air interface.

Chemistry Communication, 48, 3706–3709.

 

Shen, Y., Yang, S., Zhou, P., Sun, Q., Wang, P., Wan, L., et al. (2013). Evolution of the band-gap 

and optical properties of graphene oxide with controllable reduction level. Carbon, 62, 157–164.

 

Shon,  H.  K.,  Phuntsho,  S.,  Chaudhary,  D.  S.,  Vigneswaran,  S.,  &  Cho,  J.  (2013). 

Nanofiltration for water and wastewater treatment–a mini review. Drinking Water; Engineering and 

Science, 6, 47–53.

 

Sima, C., Grigoriu, C., & Antohe, S. (2010). Comparison of the dye-sensitized solar cells  

performances  based  on  transparent  conductive  ITO  and  FTO.  Thin  Solid Films, 519(2), 

595–597.

 

Song, J., Yin, Z., Yang, Z., Amaladass, P., Wu, S., Ye, J., et al. (2011). Enhancement of 

photogenerated electron transport in dye-sensitized solar cells with introduction of  a  reduced  

graphene  oxide-TiO2  junction.  Chemistry  -  A  European  Journal, 17(39), 10832–10837.

 

Song, M. Y., Chaudhari, K. N., Park, J., Yang, D., Kim, J. H., Kim, M., et al. (2012). High 

efficient Pt counter electrode prepared by homogeneous deposition method for dye-sensitized solar 

cell. Applied Energy, 100, 132–137.

 

Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach,

E. A., et al. (2006). Graphene-based composite materials. Nature, 442, 282–286.

 

Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., et al. 

(2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. 

Carbon, 45, 1558–1565.

 

Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., et al. (2014). 

Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy 

methods. Journal of Electron Spectroscopy and

Related Phenomena, 195, 145–154.

 

Su, C.-Y., Lu, A.-Y., Xu, Y., Chen, F.-R., Khlobystov, A. N., & Li, L.-J. (2011). High-

quality thin graphene films from fast electrochemical exfoliation. ACS Nano, 5(3), 2332–2339.

 

Su, J., & Guo, L. (2015). High aspect ratio TiO2 nanowires tailored in concentrated HCl 

hydrothermal condition for photoelectrochemical water splitting. RSC Advances, 5(65), 53012–53018.

 

Sun,  P.,  Zhang,  X.,  Wang,  C.,  Wei,  Y.,  Wang,  L.,  &  Liu,  Y.  (2013).  Rutile  TiO2 

nanowire  array  infiltrated  with  anatase  nanoparticles  as  photoanode  for  dye- sensitized   

solar   cells:   Enhanced   cell   performance   via   the   rutile-anatase heterojunction. Journal 

of Materials Chemistry A, 1, 3309–3314.

 

Suriani, A. B., Muhamad, S., Mohamad Saad, P. S., Md Nor, R., Mohd Siran, Y., Rejab,

S. A. M., et al. (2011). Effect of temperature on the growth of vertically aligned carbon nanotubes 

from palm oil. Defect and Diffusion Forum, 312–315(3), 900– 905.

 

Suriani, A. B., Nor, R. M., & Rusop, M. (2010). Vertically aligned carbon nanotubes synthesized 

from waste cooking palm oil. Journal of the Ceramic Society of Japan, 65–66(0), 963–968.

 

Suriani, A. B., Norhafizah, J., Mohamed, A., Mamat, M. H., Malek, M. F., & Ahmad,

M. K. (2016). Scaled-up prototype of carbon nanotube production system utilizing waste   cooking   

palm   oil   precursor   and   its   nanocomposite   application   as supercapacitor electrodes. 

Journal of Materials Science: Materials in Electronics, 27(11), 11599–11605.

 

Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Mamat, M. H., Malek, M. F., Ahmad,

M. K., et al. (2017). Enhanced photovoltaic performance using reduced graphene oxide  assisted  by  

triple-tail  surfactant  as  an  efficient  and  low-cost  counter electrode for dye-sensitized 

solar cells. Optik - International Journal for Light and Electron Optics, 139, 291–298.

 

Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Mamat, M. H., Malek,

M. F., et al. (2017). Electrical enhancement of radiation-vulcanized natural rubber latex added 

with reduced graphene oxide additives for supercapacitor electrodes. Journal of Materials Science, 

52, 6611–6622.

 

Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Sahajwalla, V., & Joshi, R. K. 

(2016). Highly conductive electrodes of graphene oxide/natural rubber latex-based electrodes by 

using a hyper-branched surfactant. Materials & Design, 99, 174–181.

 

Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Zainol, I., & Masrom, A. K. (2015). A facile 

one-step method for graphene oxide/natural rubber latex nanocomposite

production for supercapacitor applications. Materials Letters, 161, 665–668.

 

Tamilselvan, V., Yuvaraj, D., Kumar, R. R., & Rao, K. N. (2012). Growth of rutile TiO2   nanorods  

on  TiO2   seed  layer  deposited  by  electron  beam  evaporation. Applied Surface Science, 

258(10), 4283–4287.

 

Tao, B., Miao, R., Wu, W., & Miao, F. (2017). Electrochemical exfoliation of graphene flake  

embedded  in  SiNWs  as  counter  electrode  for  dye-sensitized  solar  cells. NANO: Brief Reports 

and Reviews, 12(12), 1–8.

 

Tao, J., Hong, M., Zhang, M., Chen, X., & Sun, Z. (2016). Effects of growth substrate on  the  

morphologies  of  TiO2   hierarchical  nanoarrays  and  their  optical  and photocatalytic 

properties. Journal of Materials Science: Materials in Electronics, 27(2), 2103–2107.

 

Thamaraiselvan,  C.,  &  Noel,  M.  (2014).  Membrane  processes  for  dye  wastewater treatment; 

Recent progress in fouling control. Critical Reviews in Environmental Science and Technology, 

45(10), 1007–1040.

 

Thema, F. T., Moloto, M. J., Dikio, E. D., Nyangiwe, N. N., Kotsedi, L., Maaza, M., et al.  (2013). 

 Synthesis  and  characterization  of  graphene  thin  films  by  chemical reduction  of  

exfoliated  and  intercalated  graphite  oxide.  Journal  of  Chemistry, 2013, Article ID 150536.

 

Thürmer, M. B., Poletto, P., Marcolin, M., Duarte, J., & Zeni, M. (2012). Effect of non- solvents  

used  in  the  coagulation  bath  on  morphology  of  PVDF  membranes. Materials Research, 15(6), 

884–890.

 

Thuyavan, Y. L., Anantharaman, N., Arthanareeswaran, G., & Ismail, A. F. (2016). Impact of solvents 

and process conditions on the formation of polyethersulfone membranes and its fouling behavior in 

lake water filtration. Journal of Chemical Technology & Biotechnology, 91(10), 2568–2581.

 

Tiwana, P., Docampo, P., Johnston, M. B., Snaith, H. J., & Herz, L. M. (2011). Electron mobility 

and injection dynamics in mesoporous ZnO, SnO2, and TiO2  films used in dye-sensitized solar cells. 

ACS Nano, 5(6), 5158–5166.

 

Tsai,  C.-H.,  Chen,  C.-H.,  Hsiao,  Y.-C.,  &  Chuang,  P.-Y.  (2014).  Investigation  of 

graphene nanosheets as counter electrodes for efficient dye-sensitized solar cells. Organic 

Electronics, 17, 57–65.

 

Tsai, J. K., Hsu, W. D., Wu, T. C., Meen, T. H., & Chong, W. J. (2013). Effect of compressed  TiO2  

 nanoparticle  thin  film  thickness  on  the  performance  of  dye- sensitized solar cells. 

Nanoscale Research Letters, 8(459), 1–6.

 

Ullattil,  S.  G.,  &  Periyat,  P.  (2017).  Microwave-power  induced  green  synthesis  of 

randomly  oriented  mesoporous  anatase  TiO2   nanoparticles  for  efficient  dye

sensitized solar cells. Solar Energy, 147, 99–105.

 

Ullattil, S. G., Thelappurath, A. V., Tadka, S. N., Kavil, J., Vijayan, B. K., & Periyat,

P.  (2017).  A  Sol-solvothermal  processed  ‘Black  TiO2’  as  photoanode  material indye 

sensitized solar cells. Solar Energy, 155, 490–495.

 

Umar, A. A., Nafisah, S., Md Saad, S. K., Tee Tan, S., Balouch, A., Mat Salleh, M., et al. (2014). 

Poriferous microtablet of anatase TiO2  growth on an ITO surface for high-efficiency dye-sensitized 

solar cells. Solar Energy Materials & Solar Cells, 122, 174–182.

 

Velten, J., Mozer, A. J., Li, D., Officer, D., Wallace, G., Baughman, R., et al. (2012). Carbon 

nanotube/graphene nanocomposite as efficient counter electrodes in dye- sensitized solar cells. 

Nanotechnology, 23, 1–6.

 

Venkatachalam,  S.,  Hayashi,  H.,  Ebina,  T.,  &  Nanjo,  H.  (2013).  Preparation  and 

characterization   of   nanostructured   TiO2     thin   films   by   hydrothermal   and 

anodization  methods.  In  Optoelectronics-advanced  materials  and  devices  (pp. 116–136). 

Croatia: InTech.

 

Waeselmann, N. (2012). Structural transformations in complex perovskite-type relaxor and 

relaxor-based ferroelectrics at high pressures and temperatures.  (Doctoral Dissertation pp. 33). 

Universität Hamburg, Germany.

 

Wan,  L.,  Wang,  S.,  Wang,  X.,  Dong,  B.,  Xu,  Z.,  Zhang,  X.,  et  al.  (2011).  Room- 

temperature  fabrication  of  graphene  ?lms  on  variable  substrates  and  its  use  as counter 

electrodes for dye-sensitized solar cells.  Solid State Sciences, 13, 468– 475.

 

Wan, L., Zhang, Q., Wang, S., Wang, X., Guo, Z., Dong, B., et al. (2015). A two-step reduction 

method for synthesizing graphene nanocomposites with a low loading of  well-dispersed  platinum  

nanoparticles  for  use  as  counter  electrodes  in  dye- sensitized solar cells. Journal of 

Materials Science, 50(12), 4412–4421.

 

Wang,  B.,  Qi,  H.,  Wang,  H.,  Cui,  Y., Zhao,  J., Guo,  J.,  et  al.  (2015). Morphology, 

structure and optical properties in TiO2  nanostructured films annealed at various temperatures. 

Optical Materials Express, 5(11), 1410–1418.

 

Wang, D., Zhu, X., Fang, Y., Sun, J., Zhang, C., & Zhang, X. (2017). Simultaneously composition and 

interface control for ZnO-based dye-sensitized solar cells with highly enhanced efficiency. 

Nano-Structures & Nano-Objects, 10, 1–8.

 

Wang, H., Bai, Y., Wu, Q., Zhou, W., Zhang, H., Li, J., et al. (2011). Rutile TiO2 nano- branched  

arrays  on  FTO  for  dye-sensitized  solar  cells.  Physical  Chemistry Chemical Physics, 13, 

7008–7013.

 

Wang, H., Wang, Y., Cao, X., Feng, M., & Lan, G. (2009). Vibrational properties of

graphene  and  graphene  layers.  Journal  of  Raman  Spectroscopy,  40(12),  1791– 1796.

 

Wang, J.-F., Zhang, J.-J., & He, D.-N. (2018). Flower-like TiO2-B particles wrapped by graphene 

with different contents as an anode material for lithium-ion batteries. Nano-Structures & 

Nano-Objects, 15, 216–223.

 

Wang, J., Qu, S., Zhong, Z., Wang, S., Liu, K., & Hu, A. (2014). Fabrication of TiO2 

nanoparticles/nanorod composite arrays via a two-step method for efficient dye- sensitized solar 

cells. Progress in Natural Science: Materials International, 24(6), 588–592.

 

Wang,  L.-J.,  Li,  L.,  Yu,  J.,  Wu,  Y.,  He,  H.,  Ouyang,  X.,  et  al.  (2014).  Large-area 

graphene  coating  via  superhydrophilic-assisted  electro-hydrodynamic  spraying deposition. 

Carbon, 79, 294–301.

 

Wang, X., Zhang, L., Sun, D., An, Q., & Chen, H. (2008). Effect of coagulation bath temperature  on 

 formation  mechanism  of  poly  (vinylidene  fluoride)  membrane. Journal of Applied Polymer 

Science, 110, 1656–1663.

 

Wang, X., Zhi, L., & Müllen, K. (2008). Transparent, conductive graphene electrodes for 

dye-sensitized solar cells. Nano Letters, 8(1), 323–327.

 

Wang, Z.-S., Yanagida, M., Sayama, K., & Sugihara, H. (2006). Electronic-insulating coating of 

CaCO3 on TiO2 electrode in dye-sensitized solar cells: Improvement of electron lifetime and 

efficiency. Chemistry of Materials, 18, 2912–2916.

 

Wang, Z., Wu, A., Ciacchi, L. C., & Wei, G. (2018). Recent advances in nanoporous membranes for 

water purification. Nanomaterials, 8(65), 1–19.

 

Wang, Z., Yu, H., Xia, J., Zhang, F., Li, F., Xia, Y., & Li, Y. (2012). Novel GO-blended PVDF 

ultrafiltration membranes. Desalination, 299, 50–54.

 

Wienke, J., Kroon, J. M., Sommeling, P. M., Kinderman, R., Spath, M., Roosmalen, et al. (1997). 

Effect of TiO2-electrode properties on the efficiency of nanocrystalline dye-sensitized  solar  

cells  (nc-DSC)  (Vol.  33).  Netherlands  Energy  Research Foundation ECN.

 

Wu, C., Wang, Z., Wang, L., Williams, T., & Huang, J. (2012). Sustainable processing of  waste  

plastics  to  produce  high  yield  hydrogen-rich  synthesis  gas  and  high quality carbon 

nanotubes. RSC Advances, 2, 4045–4047.

 

Wu, W., Liao, J., Chen, H., Yu, X., Su, C., & Kuang, D. (2012). Dye-sensitized solar cells  based  

on  a  double  layered  TiO2   photoanode  consisting  of  hierarchical nanowire    arrays    and   

 nanoparticles    with    greatly   improved    photovoltaic performance. Journal of Materials 

Chemistry, 22, 18057–18062.

 

Xie, Y., Zhou, X., Mi, H., Ma, J., Yang, J., & Cheng, J. (2018). High efficiency ZnO- based        

dye-sensitized        solar        cells        with        a        1H,1H,2H,2H- 

perfluorodecyltriethoxysilane     chain     barrier     for     cutting     on     interfacial 

recombination. Applied Surface Science, 434, 1144–1152.

 

Xu, K., Shen, Y., Zhang, Z., Cao, M., Gu, F., & Linjun Wang. (2016). The influence of different 

modified graphene on property of DSSCs. Applied Surface Science, 362, 477–482.

 

Xu,  Z.,  Wu,  T.,  Shi,  J.,  Teng,  K.,  Wang,  W.,  Ma,  M.,  et  al.  (2016).  Photocatalytic 

antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2  for water 

treatment. Journal of Membrane Science, 520, 281–293.

 

Xu,  Z.,  Zhang,  J.,  Shan,  M.,  Li,  Y.,  Li,  B.,  Niu,  J.,  et  al.  (2014).  Organosilane- 

functionalized graphene oxide for enhanced antifouling and mechanical properties of  polyvinylidene 

 fluoride  ultrafiltration  membranes.  Journal  of  Membrane Science, 458, 1–13.

 

Yan, J., Wu, G., Guan, N., Li, L., Li, Z., & Cao, X. (2013). Understanding the effect of 

surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile. Physical 

Chemistry Chemical Physics, 15(26), 10978.

 

Yang, S.-C., Yang, D.-J., Kim, J., Hong, J.-M., Kim, H.-G., Kim, I.-D., et al. (2008).

Hollow TiO2 hemispheres obtained by colloidal templating for application in dye- sensitized solar 

cells. Advance Materials, 20, 1059–1064.

 

Yaqoob, U., Uddin, A. I., & Chung, G.-S. (2016). A high-performance flexible NO2 sensor based on 

WO3  NPs decorated on MWCNTs and RGO hybrids on PI/PET substrates. Sensors & Actuators B: Chemical, 

224, 738–746.

 

Yasin, A., Guo, F., & Demopoulos, G. P. (2016). Aqueous , screen-printable paste for fabrication of 

mesoporous composite anatase-rutile TiO2  nanoparticle thin films for (photo)electrochemical 

devices. ACS Sustainable Chemistry & Engineering, 4(4), 2173–2181.

 

Ye, M., Liu, H.-Y., Lin, C., & Lin, Z. (2013). Hierarchical rutile TiO2  flower cluster- based high 

efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates. Nano 

Micro Small, 9(2), 312–321.

 

Yeh, M.-H., Lin, L.-Y., Sun, C.-L., Leu, Y.-A., Tsai, J.-T., Yeh, C.-Y., et al. (2014).

Multiwalled carbon nanotube@reduced graphene oxide nanoribbon as the counter

electrode for dye-sensitized solar cells. The Journal of Physical Chemistry C, 118,

16626–16634.

 

Yu, P., Lowe, S. E., Simon, G. P., & Zhong, Y. L. (2015). Electrochemical exfoliation of graphite 

and production of functional graphene functional graphene. Current Opinion in Colloid & Interface 

Science, 20(5–6), 329–338.

 

Yue, G., Wu, J., Xiao, Y., Huang, M., Lin, J., Fan, L., et al. (2013). Platinum/graphene hybrid 

film as a counter electrode for dye-sensitized solar cells. Electrochimica Acta, 92, 64–70.

 

Yun, D.-J., Ra, H., Kim, J.-M., Oh, E., Lee, J., Jeong, M.-H., et al. (2018). Multi-walled carbon 

nanotube forests covered with atomic-layer-deposited ruthenium layers for high-performance   

counter   electrodes   of   dye-sensitized   solar   cells.   Organic Electronics, 65, 349–356.

 

Yusoff,  I.  I.,  Rohani,  R.,  Zaman,  N.  K.,  Junaidi,  M.  U.  M.,  Mohammad,  A.  W.,  & 

Zainal, Z. (2018). Durable pressure filtration membranes based on polyaniline– polyimide P84 

blends. Polymer Engineering and Science, 1–11.

 

Zahid,   M.,   Rashid,   A.,   Akram,   S.,   Rehan,   Z.   A.,   &   Razzaq,   W.   (2018).   A 

comprehensive   review   on   polymeric  nano-composite   membranes   for   water treatment. 

Journal of Membrane Science & Technology, 8(1), 1–20.

 

Zeng,  G.,  Ye,  Z.,  He,  Y.,  Yang,  X.,  Ma,  J.,  Shi,  H.,  et  al.  (2017).  Application  of 

dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from 

wastewater. Chemical Engineering Journal, 323, 572–583.

 

Zhang,  D.,  Yoshida,  T.,  Oekermann,  T.,  Furuta,  K.,  &  Minoura,  H.  (2006).  Room- 

temperature  synthesis  of  porous  nanoparticulate  TiO2   films  for  flexible  dye- sensitized 

solar cells. Advanced Functional Materials, 16(9), 1228–1234.

 

Zhang, P., Gong, J., Zeng, G., Deng, C., Yang, H., Liu, H., et al. (2017). Cross-linking to prepare 

composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. 

Chemical Engineering Journal, 322, 657– 666.

 

Zhang, Q., Liu, Y., Duan, Y., Fu, N., Liu, Q., Fang, Y., et al. (2014). Mn3O4/graphene composite  

as  counter  electrode  in  dye-sensitized  solar  cells.  RSC  Advances,  4, 15091–15097.

 

Zhang, Y., Xu, J., Sun, Z., Li, C., & Pan, C. (2011). Preparation of graphene and TiO2 layer  by  

layer  composite  with  highly  photocatalytic  efficiency.  Progress  in Natural Science: 

Materials International, 21(6), 467–471.

 

Zhao, C., Xu, X., Chen, J., & Yang, F. (2014). Optimization of preparation conditions

of  poly(vinylidene  fluoride)/graphene  oxide  microfiltration  membranes  by  the

Taguchi experimental design. Desalination, 334(1), 17–22.

 

Zhao, D., Peng, T., Lu, L., Cai, P., Jiang, P., & Bian, Z. (2008). Effect of annealing temperature 

on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 

nanoparticles. Journal of Physical Chemistry C, 112, 8486–8494.

 

Zhao,  J.,  Liu,  L.,  &  Li,  F.  (2015).  Fabrication  and  Reduction.  In  SpringerBriefs  in 

Physics (1?? Ed.) Graphene oxide: Physics and applications (pp. 1–14). New York: Springer US.

 

Zhao,  J.,  Wu, J.,  Zheng,  M.,  Huo,  J.,  &  Tu,  Y.  (2015).  Improving the  photovoltaic 

performance   of   dye-sensitized   solar   cell   by   graphene/titania   photoanode. 

Electrochimica Acta, 156, 261–266.

 

Zhao,  P.,  Cheng,  P.,  Wang,  B.,  Yao,  S.,  Sun,  P.,  Liu,  F.,  et  al.  (2014).  Bilayered 

photoanode  from  rutile  TiO2   nanorods  and  hierarchical  anatase  TiO2   hollow spheres:  A  

candidate  for  enhanced  efficiency  dye  sensitized  solar  cells.  RSC Advances, 4(110), 

64737–64743.

 

Zhao, Y., Xu, Z., Shan, M., Min, C., Zhou, B., Li, Y., et al. (2013). Effect of graphite oxide and 

multi-walled carbon nanotubes on the microstructure and performance of PVDF membranes. Separation 

and Purification Technology, 103, 78–83.

 

Zheng,  H.,  Neo,  C.  Y.,  &  Ouyang,  J.  (2013).  Highly efficient  iodide/triiodide  dye- 

sensitized solar cells with gel-coated reduce graphene oxide/single-walled carbon nanotube 

composites as the counter electrode exhibiting an open-circuit voltage of

0.90 V. Applied Materials & Interfaces, 5(3), 6657–6664.

 

Zhou,  J.,  Song,  B.,  Zhao,  G.,  Dong,  W.,  &  Han,  G.  (2012).  TiO2   nanorod  arrays 

sensitized  with  CdS  quantum  dots  for  solar  cell  applications:  effects  of  rod geometry  

on  photoelectrochemical  performance.  Applied  Physics  A:  Materials Science and Processing, 

107, 321–331.

 

Zhou, M., Tang, J., Cheng, Q., Xu, G., Cui, P., & Qin, L. C. (2013). Few-layer graphene obtained  

by electrochemical  exfoliation  of  graphite  cathode.  Chemical  Physics Letters, 572, 61–65.

 

Zhou, W., Liu, X., Cui, J., Liu, D., Li, J., Jiang, H., et al. (2011). Control synthesis of rutile  

 TiO2    microspheres,   nanoflowers,   nanotrees   and   nanobelts   via   acid- hydrothermal   

method    and   their   optical   properties.    Crystal   Engineering Communication, 13, 

4557–4563.

 

Zhu,   M.,   Li,   X.,   Liu,   W.,   &   Cui,   Y.   (2014).   An   investigation   on   the

photoelectrochemical properties of dye-sensitized solar cells based on graphene-TiO2  composite photoanodes. Journal of Power Sources, 262, 349–355.

 

Zhu, P., Nair, A. S., Shengjie, P., Shengyuan, Y., & Ramakrishna, S. (2012). Facile fabrication   

of   TiO2−graphene   composite   with   enhanced   photovoltaic   and photocatalytic properties by 

electrospinning. ACS Applied Materials & Interfaces, 4, 581–585.

 

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., et al. (2010). Graphene and 

graphene oxide: Synthesis, properties, and applications. Advance Materials, 22, 3906–3924.

 

Zhu,  Z.,  Wang,  L.,  Xu,  Y.,  Li,  Q.,  Jiang,  J.,  &  Wang,  X.  (2017).  Preparation  and 

characteristics  of  graphene  oxide-blending  PVDF  nanohybrid  membranes  and their applications 

for hazardous dye adsorption and rejection. Journal of Colloid and Interface Science, 504, 429–439.

 

Zinadini, S., Zinatizadeh, A. A., Rahimi, M., Vatanpour, V., & Zangeneh, H. (2014). Preparation of 

a novel antifouling mixed matrix PES membrane by embedding

graphene oxide nanoplates. Journal of Membrane Science, 453, 292–301.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.