UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This study aimed to fabricate graphene oxide (GO)/titanium dioxide (TiO2) hybridbased
material for dye-sensitized solar cells (DSSCs) and membrane separation
applications. The electrochemical exfoliation assisted by customized triple-tail sodium
1, 4-bis (neopentyloxy)-3-(neopentyloxycarbonyl)-1, 4-dioxobutane-2-sulphonate
(TC14) and commercially available single-tail sodium dodecyl sulphate (SDS)
surfactants were used to synthesize GO with water-based electrolyte and N, Ndimethylacetamide
(DMAc) as solvents. The chemical reduction process utilizing
hydrazine hydrate was then performed to produce reduced GO (rGO) which further
hybridized with multi-walled carbon nanotubes (MWCNTs). The fabrication of DSSCs
counter electrode (CE) was done by spraying deposition method on fluorine-doped tin
oxide (FTO) as substrate and also coated by thin platinum (Pt). Meanwhile, different
variety of TiO2 nanostructures as DSSCs photoanode were synthesized by
hydrothermal growth and squeegee methods with different recepi and synthesis time.
On the other hand, the DMAc-based GO was used to fabricate nanofiltration (NF)
membrane utilizing polyvinylidene fluoride (PVDF) as the main polymer material by
using phase inversion method. The DSSCs and NF membrane samples were
characterized using solar simulator and dye rejection test, respectively. The DSSCs
finding showed that the highest energy conversion efficiency (1.559%) was achieved
by TiO2 NRs-NFs/TC14-rGO/TiO2 NPs as photoanode and TC14-rGO_MWCNTs/Pt
as CE with the value of open circuit voltage, short circuit density, and fill factor were
0.747 V, 3.275 mA/cm2, and 53.5, respectively. Meanwhile, the NF membrane finding
showed that PVDF/SDS-GO/TiO2 presents the highest dye flux (10.148 L/m2h) and
high dye rejection efficiency (~92.76%). In conclusion, the synthesized GO showed a
potential to be applied as electrode thin films and also membrane materials. Implication
of this study is a novel, simpler, low-cost, and less harsh chemical for the GO synthesis
to fabricate CE and photoanode film for DSSCs and also NF membrane. |
References |
Abdelkader, A. M., Cooper, A. J., Dryfe, R. A. W., & Kinloch, I. A. (2015). How to get between the sheets: A review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale, 7, 6944–6956.
Aboutalebi, S. H., Chidembo, A. T., Salari, M., Konstantinov, K., Wexler, D., Liu, H. K., et al. (2011). Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy & Environmental Science, 4(5), 1855–1865.
Ahmad, A. L., Ideris, N., Ooi, B. S., Low, S. C., & Ismail, A. (2014). Influence of polymer concentration on PVDF membrane fabrication for immunoassay analysis. Journal of Applied Sciences, 14(12), 1299–1303.
Ahmad, M. K., & Kenji, M. (2013). Effect of anatase TiO2 overlayer on the photovoltaic properties of rutile phase nanostructured dye-sensitized solar cell. Micro and Nanoelectronics, 2, 262–264.
Ahmad, M. K., Mohan, V. M., & Murakami, K. (2015). Hydrothermal growth of bilayered rutile-phased TiO2 nanorods/micro-size TiO2 flower in highly acidic solution for dye-sensitized solar cell. Journal of Sol-Gel Science and Technology, 73, 655–659.
Ahmad, M. K., Mokhtar, S. M., Soon, C. F., Nafarizal, N., Suriani, A. B., Mohamed, A., et al. (2016). Raman investigation of rutile-phased TiO2 nanorods/nanoflowers with various reaction times using one step hydrothermal method. Journal of Materials Science: Materials in Electronics, 27(8), 7920–7926.
Ahmad, M. K., & Murakami, K. (2011). Application of titanium dioxide nanorods in DSC using hydrothermal method. Advanced Materials Research, 222, 24–27.
Ahmad, M. K., & Murakami, K. (2012). Low temperature and normal pressure growth of rutile-phased TiO2 nanorods/nanoflowers for DSC application prepared by hydrothermal method. Journal of Advanced Research in Physics, 3(2), 1–3.
Ahmad, M. K., & Murakami, K. (2015). Rutile-phased TiO2 nanorods/nanoflowers based dye-sensitized solar cell. Applied Mechanics and Materials, 773–774, 725– 728.
Ahmad, M. K., Soon, C. F., Nafarizal, N., Suriani, A. B., Mohamed, A., Mamat, M. H., et al. (2016). Effect of heat treatment to the rutile based dye sensitized solar cell. Optik - International Journal for Light and Electron Optics, 127(8), 4076–4079.
Ahmed Al-She’Irey, A. Y., Md Saad, S. K., Umar, A. A., Rahman, M. Y. A., & Salleh, M. M. (2016). (001) faceted-Ga-TiO2 microtablet synthesis and its organic perovskite sensitized solar cells characterization. Journal of Alloys and Compounds, 674(001), 470–476.
Ahn, K., Lee, H., Jeong, Y., Kim, J., Jeong, S., & Cho, C. (2011). Effects of TiO2 nanorod length and post-annealing on the electrical properties of TiO2 nanobarbed fiber structures. Journal of Nanoscience and Nanotechnology, 11(8), 7155–7158.
Al-gharabli, S., Mavukkandy, M. O., Kujawa, J., Nunes, S. P., & Arafat, H. A. (2017). Activation of PVDF membranes through facile hydroxylation of the polymeric dope. Journal of Materials Research, 32(22), 4219–4231.
Ali, I., Bamaga, O. A., Gzara, L., Bassyouni, M., Abdel-Aziz, M. H., Soliman, M. F., et al. (2018). Assessment of blend PVDF membranes, and the effect of polymer concentration and blend composition. Membranes, 8(13), 1–19.
Ambrosi, A., & Pumera, M. (2016). Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications. Chemistry - A European Journal, 22, 153–159.
Aouaj, M. A., Diaz, R., Belayachi, A., Rueda, F., & Abd-lefdil, M. (2009). Comparative study of ITO and FTO thin films grown by spray pyrolysis. Materials Research Bulletin, 44, 1458–1461.
Aprile, C., Maretti, L., Alvaro, M., Scaiano, J. C., & Garcia, H. (2008). Nanomaterials for alternative energy sources. Dalton Transactions, 40, 5465–5470.
Azmina, M. S., Suriani, A. B., Falina, A. N., Salina, M., Rosly, J., & Rusop, M. (2012). Preparation of palm oil based carbon nanotubes at various ferrocene concentration. Nanomaterials: Synthesis and Characterization, 364, 408–411.
Azmina, M. S., Suriani, A. B., Falina, A. N., Salina, M., & Rusop, M. (2012). Temperature effects on the production of carbon nanotubes from palm oil by thermal chemical vapor deposition method. Nanomaterials: Synthesis and Characterization, 364, 359–362.
Bajpai, R., Roy, S., Kumar, P., Bajpai, P., Kulshrestha, N., Ra, J., et al. (2011). Graphene supported platinum nanoparticle counter-electrode for enhanced performance of dye-sensitized solar cells. Applied Materials & Interfaces, 3(10), 3884–3889.
Balachandran, U., & Eror, N. G. (1982). Raman spectra of titanium dioxide. Journal of Solid State Chemistry, 42, 276–282. Bi, H., Zhao, W., Sun, S., Cui, H., Lin, T., Huang, F., et al. (2013). Graphene ?lms decorated with metal sul?de nanoparticles for use as counter electrodes of dye- sensitized solar cells. Carbon, 61, 116–123.
Bohara, B. B., Batra, A. K., Arun, K. J., Aggarwal, M. D., & III, C. F. (2017). Fabrication and characterization of polyvinylidene fluoride trifluoroethylene/samarium oxide (Sm2O3) nanocomposite film. Advanced Science, Engineering and Medicine, 9, 1–6.
Bokali?, M., & Topi?, M. (2015). Spatially resolved characterization in thin-film photovoltaics. Springer.
Bokobza, L., & Zhang, J. (2012). Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. EXPRESS Polymer Letters, 6(7), 601–608.
Buonomenna, M. G., Choi, S.-H., Galiano, F., & Drioli, E. (2011). Membranes prepared via phase inversion. In Basile, A. & Gallucci, F., Membrane reactors: Preparation, optimization and selection (pp. 475–490). United Kingdom: John Wiley & Sons, Ltd.
Buonomenna, M. G., Macchi, P., Davoli, M., & Drioli, E. (2007). Poly(vinylidene fluoride) membranes by phase inversion: The role the casting and coagulation conditions play in their morphology, crystalline structure and properties. European Polymer Journal, 43, 1557–1572.
Calogero, G., Bartolotta, A., Marco, G. Di, Carlo, A. Di, & Bonaccorso, F. (2015). Vegetable-based dye-sensitized solar cells. Chemical Society Reviews, 44, 3244– 3294.
Cao, X., Ma, J., Shi, X., & Ren, Z. (2006). Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Applied Surface Science, 253, 2003–2010.
Cao, Y., Li, Z., Wang, Y., Zhang, T., Li, Y., Liu, X., et al. (2016). Influence of TiO2 nanorod arrays on the bilayered photoanode for dye-sensitized solar cells. Journal of Electronic Materials, 45(10), 4989–4998.
Chang, L. H., Hsieh, C. K., Hsiao, M. C., Chiang, J. C., Liu, P. I., Ho, K. K., et al. (2013). A graphene-multi-walled carbon nanotube hybrid supported on fluorinated tin oxide as a counter electrode of dye-sensitized solar cells. Journal of Power Sources, 222, 518–525.
Chen, C.-M., Hsu, Y.-C., & Cherng, S.-J. (2011). Effects of annealing conditions on the properties of TiO2/ITO-based photoanode and the photovoltaic performance of dye-sensitized solar cells. Journal of Alloys and Compounds, 509(3), 872–877.
Chen, D., Feng, H., & Li, J. (2012). Graphene oxide: Preparation, functionalization, and electrochemical applications. Chemical Reviews, 112(11), 6027–6053.
Chen, H.-Y., Liao, J.-Y., Lei, B.-X., Kuang, D.-B., Fang, Y., & Su, C.-Y. (2012). Highly catalytic carbon nanotube/Pt nanohybrid-based transparent counter electrode for efficient dye-sensitized solar cells. Chemistry an Asian Journal, 7(8), 1–9.
Chen, L.-C., Hsu, C.-H., Chan, P.-S., Zhang, X., & Huang, C.-J. (2014). Improving the performance of dye-sensitized solar cells with TiO2/graphene/TiO2 sandwich structure. Nanoscale Research Letters, 9, 1–7.
Chiba, Y., Islam, A., Komiya, R., Koide, N., & Han, L. (2006). Conversion efficiency of 10.8% by a dye-sensitized solar cell using a TiO2 electrode with high haze. Applied Physics Letter, 88(223505), 223505.
Choi, W., Lahiri, I., Seelaboyina, R., & Kang, Y. S. (2010). Synthesis of graphene and its applications: A review. Critical Reviews in Solid State and Materials Sciences, 35, 52–71.
Chou, J., Huang, C., Lin, Y., Chu, C., Liao, Y., Tai, L., et al. (2016). The influence of different annealing temperatures on graphene modified TiO2 for dye-sensitized solar cell. IEEE Transactionns on Nanotechnology, 15(2), 164–170.
Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chemical Society Reviews, 43, 291–312.
Coros, M., Pogacean, F., Rosu, M.-C., Socaci, C., Borodi, G., Magerusan, L., et al. (2016). Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods. RSC Advances, 6, 2651–2661.
Costa, S., Borowiak-Palen, E., Kruszynska, M., Bachmatiuk, A., & Kalenczuk, R. J. (2008). Characterization of carbon nanotubes by Raman spectroscopy. Materials Science-Poland, 26(2), 432–441.
Cruz, R., Pacheco, D. A. T., & Mendes, A. (2012). Reduced graphene oxide films as transparent counter-electrodes for dye-sensitized solar cells. Solar Energy, 86(2), 716–724.
Dahlan, D., Md Saad, S. K., Berli, A. U., Bajili, A., & Umar, A. A. (2017). Synthesis of two-dimensional nanowall of Cu-Doped TiO2 and its application as photoanode in DSSCs. Physica E: Low-Dimensional Systems and Nanostructures, 91, 185– 189.
Dawood, S., & Sen, T. K. (2014). Review on dye removal from its aqueous solution into alternative cost effective and non-conventional adsorbents. Journal of Chemical and Process Engineering, 1(104), 1–7.
Demir, E., Savk, A., Sen, B., & Sen, F. (2017). A novel monodisperse metal nanoparticles anchored graphene oxide as counter electrode for dye-sensitized solar cells. Nano-Structures & Nano-Objects, 12, 41–45.
Demir, E., Sen, B., & Sen, F. (2017). Highly efficient Pt nanoparticles and f-MWCNT nanocomposites based counter electrodes for dye-sensitized solar cells. Nano- Structures & Nano-Objects, 11, 39–45.
Dobrza?ski, L. A., Prokopowicz, M. P., Dryga?a, A., Wierzbicka, A., Lukaszkowicz, K., & Szindler, M. (2017). Carbon nanomaterials application as a counter electrode for dye-sensitized solar cells. Archives of Metallurgy and Materials, 62(1), 27–32.
Dong, H., Wu, Z., Lu, F., Gao, Y., El-shafei, A., Jiao, B., et al. (2014). Optics–electrics highways: Plasmonic silver nanowires@TiO2 core–shell nanocomposites for enhanced dye-sensitized solar cells performance. Nano Energy, 10, 181–191.
Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., & Saito, R. (2010). Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Letters, 10, 751–758.
Du, P., Song, L., Xiong, J., Li, N., Wang, L., Xi, Z., et al. (2013). Dye-sensitized solar cells based on anatase TiO2/multi-walled carbon nanotubes composite nanofibers photoanode. Electrochimica Acta, 87, 651–656.
Eda, G., & Chhowalla, M. (2009). Graphene-based composite thin films for electronics. Nano Letters, 9(2), 814–818.
Ekanayaka, T. K., Hong, S.-H., Shen, T.-Z., & Song, J.-K. (2017). Effect of solvents on photonic crystallinity in graphene oxide dispersions. Carbon, 123, 283–289.
Elashmawi, I. S., & Gaabour, L. H. (2015). Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with Multi-walled Carbon Nanotubes. Results in Physics, 5, 105–110.
Esch, T. R., Gadaczek, I., & Bredow, T. (2014). Surface structures and thermodynamics of low-index of rutile, brookite and anatase – A comparative DFT study. Applied Surface Science, 288, 275–287.
Faisal, A. Q. D. (2015). Synthesis and characteristics study of TiO2 nanowires and nanoflowers on FTO/glass and glass substrates via hydrothermal technique. Journal of Materials Science: Materials in Electronics, 26, 317–321.
Fang, X., Ma, T., Guan, G., Akiyama, M., Kida, T., & Abe, E. (2004). Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye- sensitized solar cell. Journal of Electroanalytical Chemistry, 570, 257–263.
Fazli, F. I. M., Ahmad, M. K., Soon, C. F., Nafarizal, N., Suriani, A. B., Mohamed, A., et al. (2017). Dye-sensitized solar cell using pure anatase TiO2 annealed at different temperatures. Optik - International Journal for Light and Electron Optics, 140, 1063–1068.
Gee, C.-M., Tseng, C.-C., Wu, F.-Y., Chang, H.-P., Li, L.-J., Hsieh, Y.-P., et al. (2013). Flexible transparent electrodes made of electrochemically exfoliated graphene sheets from low-cost graphite pieces. Displays, 34, 315–319.
Ghaffar, A., Zhang, L., Zhu, X., & Chen, B. (2018). Porous PVdF/GO nanofibrous membranes for selective separation and recycling of charged organic dyes from water. Environmental Science & Technology, 52(7), 4265–4274.
Goh, P. S., Ismail, A. F., & Ng, B. C. (2017). Raman spectroscopy. In Hilal, N., Ismail, A. F., Matsuura, T., & Oatley-Radcliffe, D., Membrane characterization (pp. 31– 44). Amsterdam, Netherland: Elsevier.
Gong, H. H., Park, S. H., Lee, S.-S., & Hong, S. C. (2014). Facile and scalable fabrication of transparent and high performance Pt/reduced graphene oxide hybrid counter electrode for dye-sensitized solar cells. International Journal of Precision Engineering and Manufacturing, 15(6), 1193–1199.
Gong, J., Liang, J., & Sumathy, K. (2012). Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 16(8), 5848–5860.
Green, M. A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E. D. (2014). Solar cell efficiency tables (version 44). Progress in Photovoltaics: Research and Applications, 22, 701–710.
Gu, X. Q., Zhao, Y. L., & Qiang, Y. H. (2012). Influence of annealing temperature on performance of dye-sensitized TiO2 nanorod solar cells. Journal of Materials Science: Materials in Electronics, 23(7), 1373–1377.
Guai, G. H., Song, Q. L., Guo, C. X., Lu, Z. S., Chen, T., Ng, C. M., et al. (2012). Graphene-Pt\ITO counter electrode to significantly reduce Pt loading and enhance charge transfer for high performance dye-sensitized solar cell. Solar Energy, 86(7), 2041–2048.
Hafez, H., Lan, Z., Li, Q., & Wu, J. (2010). High efficiency dye-sensitized solar cell based on novel TiO2 nanorod/nanoparticle bilayer electrode. Nanotechnology, Science and Applications, 3(1), 45–51.
Hamed, N. K. A., Khalid, N. S., Fazli, F. I. M., Napi, M. L. M., Nayan, N., & Ahmad, M. K. (2016). Influence of hydrochloric acid volume on the growth of titanium dioxide (TiO2) nanostructures by hydrothermal method. Sains Malaysiana, 45(11), 1669–1673.
Hara, K. and Mori S. (2011). Dye-sensitized solar cells. In Luque, A. & Hegedus, S. (2?? Eds.), Handbook of photovoltaic science and engineering (pp. 642–645). United Kingdom: John Wiley & Sons, Ltd.
Hasan, M. M., Haseeb, A. S. M. A., Saidur, R., & Masjuki, H. H. (2008). Effects of annealing treatment on optical properties of anatase TiO2 thin films. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 2(4), 410–414.
Homem, N. C., Yamaguchi, N. U., Vieira, M. F., Amorim, M. T. S. P., & Bergamasco, R. (2017). Surface modification of microfiltration membrane with GO nanosheets for dyes removal from aqueous solutions. Chemical Engineering Transactions, 60, 259–264.
Hou, D., Liu, Q., Cheng, H., Li, K., Wang, D., & Zhang, H. (2016). Chrysanthemum extract assisted green reduction of graphene oxide. Materials Chemistry and Physics, 183, 76–82.
Hsiao, P.-T., Lu, M.-D., Tung, Y.-L., & Teng, H. (2010). Influence of hydrothermal pressure during crystallization on the structure and electron-conveying ability of TiO2 colloids for dye-sensitized solar cells. Journal of Physical Chemistry C, 114, 15625–15632.
Hu, C., Zhou, R., Fan, C., & Zhou, X. (2016). Influence of reducing reagent combination in graphene oxide reduction. Micro & Nano Letters, 11(4), 215–220.
Hu, J., Cheng, J., Tong, S., Zhao, L., Duan, J., & Yang, Y. (2016). Dye-sensitized solar cells based on P25 nanoparticles/TiO2 nanotube arrays/hollow TiO2 boxes three- layer composite film. Journal of Materials Science: Materials in Electronics, 27(5), 5362–5370.
Hu, M., & Mi, B. (2013). Enabling graphene oxide nanosheets as water separation membranes. Environmental Science & Technology, 47(8), 3715–3723.
Hummers, W. S. J., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of American Chemical Society, 80(6), 1339–1339.
Hung, K.-H., Li, Y.-S., & Wang, H.-W. (2012). Dye-sensitized solar cells using graphene-based counter electrode. In IEEE International Conference on Nanotechnology (IEEE-NANO) (pp. 1–12).
Hwang, S., Batmunkh, M., Nine, M. J., Chung, H., & Jeong, H. (2015). Dye-sensitized solar cell counter electrodes based on carbon nanotubes. Chemical Physics and Physical Chemistry, 16(1), 53–65.
Hwang, Y. J., Hahn, C., Liu, B., & Yang, P. (2012). Photoelectrochemical properties of TiO2 nanowire arrays: A study of the dependence on length and atomic layer deposition coating. ACS Nano, 6(6), 5060–5069.
Ilyas, A. M., Gondal, M. A., Baig, U., Akhtar, S., & Yamani, Z. H. (2016). Photovoltaic performance and photocatalytic activity of facile synthesized graphene decorated TiO2 monohybrid using nanosecond pulsed ablation in liquid technique. Solar Energy, 137, 246–255.
Ito, S. (2011). Investigation of dyes for dye-sensitized solar cells: Ruthenium-complex dyes, metal-free dyes, metal-complex porphyrin dyes and natural dyes. In Solar cells-dye-sensitized devices. Intech.
Jena, A., Mohanty, S. P., Kumar, P., Naduvath, J., Gondane, V., Lekha, P., et al. (2012). Dye sensitized solar cells: A review. Transactions of the Indian Ceramic Society, 71(1), 1–16.
Jiang, C. Y., Sun, X. W., Lo, G. Q., Kwong, D. L., & Wang, J. X. (2007). Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Applied Physics Letter, 90(26), 3–6.
Johra, F. T., Lee, J.-W., & Jung, W.-G. (2014). Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry, 20(5), 2883–2887.
Jusman, Y., Ng, S. C., & Osman, N. A. A. (2014). Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX. The Scientific World Journal, 2014, 289817, 11 pages.
Kakiage, K., Aoyama, Y., Yano, T., Oya, K., Fujisawa, J., & Hanaya, M. (2015). Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl- anchor and carboxy-anchor dyes. Chemistry Communication, 51(88), 15894– 15897.
Kalyanasundaram, K., Bertoz, M., Bisquert, J., Angelis, F. De, Desilvestro, H., Fabregat-santiago, F., et al. (2010). Dye-sensitized Solar Cells. (K. Kalyanasundaram, Ed.) (First). Lausanne: CRC Press, Taylor and Francis Group, LLC.
Kang, J. H., Kim, T., Choi, J., Park, J., Kim, Y. S., Chang, M. S., et al. (2016). The hidden second oxidation step of Hummers method. Chemistry of Materials, 28(3), 756–764.
Karisma, D., Febrianto, G., & Mangindaan, D. (2017). Removal of dyes from textile wastewater by using nanofiltration polyetherimide membrane. In The International Conference on Eco Engineering Development 2017 (pp. 8–14).
Karthick, S. N., Hemalatha, K. V, Raj, C. J., Kim, H.-J., & Yi, M. (2012). Titanium dioxide paste preparation for dye sensitized solar cell using hydrothermal technique. Journal of Ceramic Processing Research, 13, 136–139.
Kavan, L., Yum, J.-H., & Grätzel, M. (2011). Graphene nanoplatelets outperforming platinum as the electrocatalyst in Co-bipyridine-mediated dye-sensitized solar cells. Nano Letters, 11, 5501–5506.
Kavan, L., Yum, J.-H., Nazeeruddin, M. K., & Grätzel, M. (2011). Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells. ACS Nano, 5(11), 9171–9178.
Keshavarzi, R., Mirkhani, V., Moghadam, M., Tangestaninejad, S., & Mohammadpoor-Baltork, I. (2015). Performance enhancement of dye-sensitized solar cells based on TiO2 thick mesoporous photoanodes by morphological manipulation. Langmuir, 31(42), 11659–11670.
Kim, C. W., Suh, S. P., Choi, M. J., Kang, Y. S., & Kang, Y. S. (2013). Fabrication of SrTiO3-TiO2 heterojunction photoanode with enlarged pore diameter for dye- sensitized solar cells. Journal of Materials Chemistry A, 1, 11820–11827.
Kim, H.-M., Lee, M. H., Lee, H.-S., Wi, J.-S., Lim, K., & Kim, K.-B. (2009). Method of improving the quality of nanopatterning in atomic image projection electron- beam lithography. Journal of Vacuum Science & Technology B, 27(6), 2553–2557.
Kim, J., Cote, L. J., Kim, F., Yuan, W., Shull, K. R., & Huang, J. (2010). Graphene oxide sheets at interfaces. Journal of American Chemical Society, 132, 8180– 8186.
Kim, J. F., Jung, J. T., Wang, H., Drioli, E., & Lee, Y. (2017). Effect of solvents on membrane fabrication via thermally induced phase separation (TIPS): Thermodynamic and kinetic perspectives. In Comprehensive Membrane Science and Engineering II (Vol. 1, pp. 386–417). Elsevier Ltd.
Kim, S.-B., Park, J.-Y., Kim, C.-S., Okuyama, K., Lee, S.-E., Jang, H.-D., et al. (2015). Effects of graphene in dye-sensitized solar cells based on nitrogen-doped TiO2 composite. The Journal of Physical Chemistry C, 119(29), 16552–16559.
Kong, H. X. (2013). Hybrids of carbon nanotubes and graphene/graphene oxide. Current Opinion in Solid State & Materials Science, 17(1), 31–37.
Kosyachenko, L. (2011). Solar cells-dye-sensitized devices. Croatia: InTech.
Kroon, J. M., Bakker, N. J., Smit, H. J. P., Liska, P., Thampi, K. R., Wang, P., et al. (2007). Nanocrystalline dye-sensitized solar cells having maximum performance. Progress in Photovoltaics: Research and Applications, 15, 1–18.
Kumar, A., Madaria, A. R., & Zhou, C. (2010). Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye- sensitized solar cells. Journal of Physical Chemistry C, 114, 7787–7792.
Kumar, A., & Pandey, G. (2018). Different methods used for the synthesis of TiO2 based nanomaterials: A review. American Journal of Nano Research and Applications, 6(1), 1–10.
Kumaran, R., Alagar, M., Kumar, S. D., Subramanian, V., & Dinakaran, K. (2015). Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thin films. Applied Physics Letter, 107, 113107-1–5.
Kymakis, E., Stratakis, E., Stylianakis, M. M., Koudoumas, E., & Fotakis, C. (2011). Spin coated graphene ?lms as the transparent electrode in organic photovoltaic devices. Thin Solid Films, 520, 1238–1241.
Ladewig, B., & Al-Shaeli, M. N. Z. (2017). Fundamentals of Membrane Processes. In Fundamental of Membrane Bioreactors (pp. 13–38). Singapore: Springer.
Lalia, B. S., Kochkodan, V., Hashaikeh, R., & Hilal, N. (2013). A review on membrane fabrication: Structure, properties and performance relationship. Desalination, 326, 77–95.
Lan, T., Qiu, H., Xie, F., Yang, J., & Wei, M. (2015). Rutile TiO2 mesocrystals/reduced graphene oxide with high-rate and long-term performance for lithium-ion batteries. Materials for Energy and Catalysis, 5, 1–6.
Lee, B. H., Park, S. H., Back, H., & Lee, K. (2011). Novel film-casting method for high-performance flexible polymer electrodes. Advanced Functional Materials, 21, 487–493.
Lee, K. H., Lee, B., Hwang, S.-J., Lee, J.-U., Cheong, H., Kwon, O.-S., et al. (2014). Large scale production of highly conductive reduced graphene oxide sheets by a solvent-free low temperature reduction. Carbon, 69, 327–335.
Lehman, J. H., Terrones, M., Mansfield, E., Hurst, K. E., & Meunier, V. (2011). Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 49(8), 2581–2602.
Lei, J., Li, H., Zhang, J., & Anpo, M. (2016). Mixed-phase TiO2 nanomaterials as efficient photocatalysts. In Low dimensional and nanostructured materials and devices. Switzerland: Springer.
Li, X., Zhang, H., Wang, P., Li, G., Zhao, S., Wang, J., & Chen, L. (2014). Saturable absorption and modulation characteristics of laser with graphene oxide spin coated on ITO substrate. Journal of Nanomaterials, 2014, 921896.
Li, Z.-Q., Chen, W.-C., Guo, F.-L., Mo, L.-E., Hu, L.-H., & Dai, S.-Y. (2015). Mesoporous TiO2 yolk-shell microspheres for dye-sensitized solar cells with a high efficiency exceeding 11%. Scientific Reports, 5, 1–8.
Li, Z.-Y., Akhtar, M. S., Kuk, J. H., Kong, B.-S., & Yang, O.-B. (2012). Graphene application as a counter electrode material for dye-sensitized solar cell. Materials Letters, 86, 96–99.
Liao, J.-Y., He, J.-W., Xu, H., Kuang, D.-B., & Su, C.-Y. (2012). Effect of TiO2 morphology on photovoltaic performance of dye-sensitized solar cells: Nanoparticles, nanofibers, hierarchical spheres and ellipsoid spheres. Journal of Materials Chemistry, 22, 7910–7918.
Liao, M. Y., Fang, L., Xu, C. L., Wu, F., Huang, Q. L., & Saleem, M. (2014). Effect of seed layer on the growth of rutile TiO2 nanorod arrays and their performance in dye-sensitized solar cells. Materials Science in Semiconductor Processing, 24, 1– 8.
Liu, B., & Aydil, E. S. (2009). Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of American Chemical Society, 131, 3985–3990.
Liu, F., Hashim, N. A., Liu, Y., Abed, M. R. M., & Li, K. (2011). Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 375, 1–27.
Liu, J., Fu, X., Cao, D.-P., Mao, L., Wang, J., Mu, D., et al. (2015). Stacked graphene– TiO2 photoanode via electrospray deposition for highly efficient dye-sensitized solar cells. Organic Electronics, 23, 158–163.
Liu, J., Hua, L., Li, S., & Yu, M. (2015). Graphene dip coatings: An effective anticorrosion barrier on aluminium. Applied Surface Science, 327, 241–245.
Liu, J., Poh, C. K., Zhan, D., Lai, L., Lim, S. H., Wang, L., et al. (2013). Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy, 2(3), 377–386.
Liu, L., Zhang, Y., Zhang, B., & Feng, Y. (2017). A detailed investigation on the performance of dye-sensitized solar cells based on reduced graphene oxide-doped TiO2 photoanode. Journal of Materials Science, 52(13), 8070–8083.
Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., & Chen, J. (2008). One-step ionic-liquid- assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Advanced Functional Materials, 18, 1518–1525.
Luo, Z., Poyraz, A. S., Kuo, C., Miao, R., Meng, Y., Chen, S., et al. (2015). Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chemistry of Materials, 27(1), 6–17.
Madaeni, S. S., & Taheri, A. H. (2011). Effect of casting solution on morphology and performance of PVDF microfiltration membranes. Chemical Engineering Technology, 34(8), 1328–1334.
Makertihartha, I. G. B. N., Rizki, Z., Zunita, M., & Dharmawijaya, P. T. (2017). Dyes removal from textile based nanofiltration. International Seminar on Fundamental and Application of Chemical Engineering, 110006, 1–8.
Mani, V., Chen, S.-M., & Lou, B.-S. (2013). Three dimensional graphene oxide-carbon nanotubes and graphene-carbon nanotubes hybrids. International Journal of Electrochemical Science, 8, 11641–11660.
Mao, M., Wang, J.-B., Xiao, Z.-F., Dai, S.-Y., & Song, Q.-H. (2012). New 2,6-modified BODIPY sensitizers for dye-sensitized solar cells. Dyes and Pigments, 94(2), 224– 232.
Marchezi, P. E., Sonai, G. G., Hirata, M. K., Schiavon, M. A., & Nogueira, A. F. (2016). Understanding the role of reduced graphene oxide in the electrolyte of dye sensitized solar cells. The Journal of Physical Chemistry C, 120(41), 23368– 23376. 9
Mathew, S., Yella, A., Gao, P., Humphry-baker, R., Curchod, B. F. E., Ashari-astani, N., et al. (2014). Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 6, 242–247.
Mayabadi, A. H., Waman, V. S., Funde, A. M., Pathan, H. M., & Jadkar, S. R. (2015). Effect of annealing on optical and structural properties of rutile TiO2 nanoarrays. Journal of Nano Research, 34, 23–27.
Mehmood, U., Malaibari, Z., Rabani, F. A., Rehman, A. U., Ahmad, S. H. A., Atieh, M. A., et al. (2016). Photovoltaic improvement and charge recombination reduction by aluminum oxide impregnated MWCNTs/TiO2 based photoanode for dye-sensitized solar cells. Electrochimica Acta, 203, 162–170.
Mehmood, U., Rahman, S., Harrabi, K., Hussein, I. A., & Reddy, B. V. S. (2014). Recent advances in dye sensitized solar cells. Advances in Materials Science and Engineering, 2014, 1–12.
Meier, R. J. (2005). Vibrational spectroscopy: A ‘vanishing’ discipline? Chemical Society Reviews, 34, 743–752.
Meng, L., Li, C., & Santos, M. P. dos. (2011). Effect of annealing temperature on TiO2 nanorod films prepared by dc reactive magnetron sputtering for dye-sensitized solar cells. Journal of Inorganic and Organometallic Polymers and Materials, 21, 770–776.
Meng, N., Priestley, R. C. E., Zhang, Y., Wang, H., & Zhang, X. (2016). The effect of reduction degree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes. Journal of Membrane Science, 501, 169–178.
Meng, X., Shin, D.-W., Yu, S. M., Jung, J. H., Kim, H. I., Lee, H. M., et al. (2011). Growth of hierarchical TiO2 nanostructures on anatase nanofibers and their application in photocatalytic activity. Crystal Engineering Communication, 13, 3021–3029.
Meng, X., Shin, D.-W., Yu, S. M., Park, M.-H., Yang, C., Lee, J. H., et al. (2014). Formation mechanism of rutile TiO2 rods on fluorine doped tin oxide glass. Journal of Nanoscience and Nanotechnology, 14(11), 8839–8844.
Méricq, J.-P., Mendret, J., Brosillon, S., & Faur, C. (2015). High performance PVDF- TiO2 membranes for water treatment. Chemical Engineering Science, 123, 283– 291.
Mikhailov, S. (2011). Synthesis and fabrication. In S. Mikhailov (1?? Ed.), Physics and applications of graphene-experiments (pp. 1–72). Rijeka, Croatia: InTech.
Mohamed, A., Anas, A. K., Bakar, S. A., Ardyani, T., Zin, W. M. W., Ibrahim, S., et al. (2015). Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups. Journal of Colloid and Interface Science, 455, 179–187.
Mohamed, A., Anas, A. K., Bakar, S. A., Aziz, A. A., Sagisaka, M., Brown, P., et al. (2014). Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites. Colloid Polymer Science, 292, 3013–3023.
Mohamed, A., Ardyani, T., Bakar, S. A., Brown, P., Hollamby, M., Sagisaka, M., et al. (2016). Graphene-philic surfactants for nanocomposites in latex technology. Advances in Colloid and Interface Science, 230, 54–69.
Mohamed, A., Trickett, K., Chin, S. Y., Cummings, S., Sagisaka, M., Hudson, L., et al. (2010). Universal surfactant for water, oils, and CO2. Langmuir Article, 26(22), 13861–13866.
Mokhtar, N. M., Lau, W. J., Ng, B. C., Ismail, A. F., & Veerasamy, D. (2015). Preparation and characterization of PVDF membranes incorporated with different additives for dyeing solution treatment using membrane distillation. Desalination and Water Treatment, 56(8), 1999–2012.
Mokhtar, S. M., Ahmad, M. K., Soon, C. F., Nafarizal, N., Faridah, A. B., Suriani, A. B., et al. (2018). Fabrication and characterization of rutile-phased titanium dioxide (TiO2) nanorods array with various reaction times using one step hydrothermal method. Optik - International Journal for Light and Electron Optics, 154, 510– 515.
Muaz, A. K. M., Hashim, U., Ibrahim, F., Thong, K. L., Mokhtar, M. S., & Liu, W.-W. (2015). Effect of annealing temperatures on the morphology, optical and electrical properties of TiO2 thin films synthesized by the sol–gel method and deposited on Al/TiO2/SiO2/p-Si. Microsystem Technology, 22(4), 871–881.
Muruganandi, G., Saravanan, M., Vinitha, G., Raj, M. B. J., & Girisun, T. C. S. (2018). Barium borate nanorod decorated reduced graphene oxide for optical power limiting applications. Optical Materials, 75, 612–618.
Nagavolu, C., Susmitha, K., Raghavender, M., Giribabu, L., Rao, K. B. S., Smith, C. T. G., et al. (2016). Pt-free spray coated reduced graphene oxide counter electrodes for dye sensitized solar cells. Solar Energy, 137, 143–147.
Nasib, A. M., Hatim, I., Jullok, N., & Alamery, H. R. (2017). Morphological properties of poly(vinylidene fluoride-co-tetrafluoroethylene membrane): Effect of solvents and polymer concentrations. Malaysian Journal of Analytical Sciences, 21(2), 356–364.
Nawi, N. I. M., Bilad, M. R., & Nordin, N. A. H. M. (2018). Effect of dope solution temperature on the membrane structure and membrane distillation performance. IOP Conference Series: Earth and Environmental Science, 140, 0–7.
Ngang, H. P., Ooi, B. S., Ahmad, A. L., & Lai, S. O. (2012). Preparation of PVDF– TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV- cleaning properties. Chemical Engineering Journal, 197, 359–367.
Nikooe, N., & Saljoughi, E. (2017). Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution. Applied Surface Science, 413, 41–49.
Novoselov, K. S., Geim, A. K., Morozov, S. V, Jiang, D., Zhang, Y., Dubonos, A. V, et al. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666–669.
Nurhafizah, M. D. (2017a). Synthesis of graphene oxide using electrochemical exfoliation method for electrode materials application: The effect of different type of surfactants on physical properties of graphene oxide sample synthesized via electrochemical exfoliation method. (Doctoral Dissertation pp. 225–249). Universiti Pendidikan Sultan Idris, Malaysia.
Nurhafizah, M. D. (2017b). Synthesis of graphene oxide using electrochemical exfoliation method for electrode materials application: The effect of synthesis time on physical properties of graphene oxide sample synthesized via electrochemical exfoliation method. (Doctoral Dissertation pp. 141–159). Universiti Pendidikan Sultan Idris, Malaysia.
Nurhafizah, M. D. (2017c). Synthesis of graphene oxide using electrochemical exfoliation method for electrode materials application: The effect of applied voltage on physical properties of graphene oxide sample synthesized via electrochemical exfoliation method. (Doctoral Dissertation pp. 176–199). Universiti Pendidikan Sultan Idris, Malaysia.
Nurhafizah, M. D., Suriani, A. B., Alfarisa, S., Mohamed, A., Isa, I., Kamari, A., et al. (2015). The synthesis of graphene oxide via electrochemical exfoliation method. Advanced Materials Research, 1109, 55–59.
O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737–740.
Pan, Y., Hou, Z., Yang, H., & Liu, Y. (2015). Hierarchical architecture of nanographene-coated rice-like manganese dioxide nanorods/graphene for enhanced electrocatalytic activity toward hydrogen peroxide reduction. Materials Science in Semiconductor Processing, 40, 176–182.
Paredes, J. I., Villar-Rodil, S., Martínez-Alonso, A., & Tascon, J. M. D. (2008). Graphene oxide dispersions in organic solvents. Langmuir, 24, 10560–10564.
Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4, 217–224.
Parvathi, C., Maruthavanan, T., Sivamani, S., & Prakash, C. (2011). Removal of dyes from textile wet processing industry: A review. Chemical Processing, 319–323.
Parvez, K., Li, R., Puniredd, S. R., Hernandez, Y., Hinkel, F., Wang, S., et al. (2013). Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano, 7(4), 3598–3606.
Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., et al. (2014). Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society, 136, 6083–6091.
Pham, V. H., Cuong, T. V., Hur, S. H., Shin, E. W., Kim, J. S., Chung, J. S., et al. 2010). Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon, 48(7), 1945–1951.
Popoola, I. K., Gondal, M. A., Alghamdi, J. M., & Qahtan, T. F. (2018). Photofabrication of highly transparent platinum counter electrodes at ambient temperature for bifacial dye sensitized solar cells. Scientific Reports, 8(1), 12864.
Prakash, T. (2012). Review on nanostructured semiconductors for dye sensitized solar cells. Electronic Materials Letters, 8(3), 231–243.
Qin, D., Bi, Y., Feng, X., Wang, W., Barber, G. D., Wang, T., et al. (2015). Hydrothermal growth and photoelectrochemistry of highly oriented, crystalline anatase TiO2 nanorods on transparent conducting electrodes. Chemistry of Materials, 27, 4180–4183.
Qiu, L., Zhang, H., Wang, W., Chen, Y., & Wang, R. (2014). Effects of hydrazine hydrate treatment on the performance of reduced graphene oxide film as counter electrode in dye-sensitized solar cells. Applied Surface Science, 319, 339–343.
Quintana, M., Edvinsson, T., Hagfeldt, A., & Boschloo, G. (2007). Comparison of dye- sensitized ZnO and TiO2 solar cells: Studies of charge transport and carrier lifetime. Journal of Physical Chemistry C, 111, 1035–1041.
Ramasamy, E., Lee, W. J., Lee, D. Y., & Song, J. S. (2008). Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I3-) reduction in dye-sensitized solar cells. Electrochemistry Communications, 10, 1087–1089.
Razzaq, H., Nawaz, H., Siddiqa, A., Siddiq, M., & Qaisar, S. (2016). A brief review on nanocomposites based on PVDF with nanostructured TiO2 as filler. Journal of Nanotechnology & Nanoscience, 1(1), 29–35.
Ren, P.-G., Yan, D.-X., Ji, X., Chen, T., & Li, Z.-M. (2011). Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology, 22, 1–8.
Rezvani, F., Parvazian, E., & Hosseini, S. A. (2016). Dye-sensitized solar cells based on composite TiO2 nanoparticle–nanorod single and bi-layer photoelectrodes. Bulletin of Materials Science, 39(6), 1397–1402.
Sadhu, S., & Poddar, P. (2014). Template-free fabrication of highly-oriented single- crystalline 1D-rutile TiO2-MWCNT composite for enhanced photoelectrochemical activity. Journal of Physical Chemistry C, 118(33), 19363– 19373.
Safarpour, M., Vatanpour, V., Khataee, A., & Esmaeili, M. (2015). Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2. Separation and Purification Technology, 154, 96–107.
Sarkar, S., Mondal, A., Dey, K., & Ray, R. (2016). Defect driven tailoring of colossal dielectricity of reduced graphene oxide. Materials Research Bulletin, 74, 465– 471.
Selman, A. M., & Hassan, Z. (2014). Effect of annealing treatment on growth of rutile TiO2 nanorods prepared by chemical bath deposition method on silicon substrate. Applied Mechanics and Materials, 624, 129–133.
Shao, J.-J., Lv, W., Guo, Q., Zhang, C., Xu, Q., Yang, Q.-H., & Kang, F. (2012). Hybridization of graphene oxide and carbon nanotubes at the liquid/air interface. Chemistry Communication, 48, 3706–3709.
Shen, Y., Yang, S., Zhou, P., Sun, Q., Wang, P., Wan, L., et al. (2013). Evolution of the band-gap and optical properties of graphene oxide with controllable reduction level. Carbon, 62, 157–164.
Shon, H. K., Phuntsho, S., Chaudhary, D. S., Vigneswaran, S., & Cho, J. (2013). Nanofiltration for water and wastewater treatment–a mini review. Drinking Water; Engineering and Science, 6, 47–53.
Sima, C., Grigoriu, C., & Antohe, S. (2010). Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Thin Solid Films, 519(2), 595–597.
Song, J., Yin, Z., Yang, Z., Amaladass, P., Wu, S., Ye, J., et al. (2011). Enhancement of photogenerated electron transport in dye-sensitized solar cells with introduction of a reduced graphene oxide-TiO2 junction. Chemistry - A European Journal, 17(39), 10832–10837.
Song, M. Y., Chaudhari, K. N., Park, J., Yang, D., Kim, J. H., Kim, M., et al. (2012). High efficient Pt counter electrode prepared by homogeneous deposition method for dye-sensitized solar cell. Applied Energy, 100, 132–137.
Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., et al. (2006). Graphene-based composite materials. Nature, 442, 282–286.
Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., et al. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558–1565.
Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., et al. (2014). Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena, 195, 145–154.
Su, C.-Y., Lu, A.-Y., Xu, Y., Chen, F.-R., Khlobystov, A. N., & Li, L.-J. (2011). High- quality thin graphene films from fast electrochemical exfoliation. ACS Nano, 5(3), 2332–2339.
Su, J., & Guo, L. (2015). High aspect ratio TiO2 nanowires tailored in concentrated HCl hydrothermal condition for photoelectrochemical water splitting. RSC Advances, 5(65), 53012–53018.
Sun, P., Zhang, X., Wang, C., Wei, Y., Wang, L., & Liu, Y. (2013). Rutile TiO2 nanowire array infiltrated with anatase nanoparticles as photoanode for dye- sensitized solar cells: Enhanced cell performance via the rutile-anatase heterojunction. Journal of Materials Chemistry A, 1, 3309–3314.
Suriani, A. B., Muhamad, S., Mohamad Saad, P. S., Md Nor, R., Mohd Siran, Y., Rejab, S. A. M., et al. (2011). Effect of temperature on the growth of vertically aligned carbon nanotubes from palm oil. Defect and Diffusion Forum, 312–315(3), 900– 905.
Suriani, A. B., Nor, R. M., & Rusop, M. (2010). Vertically aligned carbon nanotubes synthesized from waste cooking palm oil. Journal of the Ceramic Society of Japan, 65–66(0), 963–968.
Suriani, A. B., Norhafizah, J., Mohamed, A., Mamat, M. H., Malek, M. F., & Ahmad, M. K. (2016). Scaled-up prototype of carbon nanotube production system utilizing waste cooking palm oil precursor and its nanocomposite application as supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 27(11), 11599–11605.
Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Mamat, M. H., Malek, M. F., Ahmad, M. K., et al. (2017). Enhanced photovoltaic performance using reduced graphene oxide assisted by triple-tail surfactant as an efficient and low-cost counter electrode for dye-sensitized solar cells. Optik - International Journal for Light and Electron Optics, 139, 291–298.
Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Mamat, M. H., Malek, M. F., et al. (2017). Electrical enhancement of radiation-vulcanized natural rubber latex added with reduced graphene oxide additives for supercapacitor electrodes. Journal of Materials Science, 52, 6611–6622.
Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Sahajwalla, V., & Joshi, R. K. (2016). Highly conductive electrodes of graphene oxide/natural rubber latex-based electrodes by using a hyper-branched surfactant. Materials & Design, 99, 174–181.
Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Zainol, I., & Masrom, A. K. (2015). A facile one-step method for graphene oxide/natural rubber latex nanocomposite production for supercapacitor applications. Materials Letters, 161, 665–668.
Tamilselvan, V., Yuvaraj, D., Kumar, R. R., & Rao, K. N. (2012). Growth of rutile TiO2 nanorods on TiO2 seed layer deposited by electron beam evaporation. Applied Surface Science, 258(10), 4283–4287.
Tao, B., Miao, R., Wu, W., & Miao, F. (2017). Electrochemical exfoliation of graphene flake embedded in SiNWs as counter electrode for dye-sensitized solar cells. NANO: Brief Reports and Reviews, 12(12), 1–8.
Tao, J., Hong, M., Zhang, M., Chen, X., & Sun, Z. (2016). Effects of growth substrate on the morphologies of TiO2 hierarchical nanoarrays and their optical and photocatalytic properties. Journal of Materials Science: Materials in Electronics, 27(2), 2103–2107.
Thamaraiselvan, C., & Noel, M. (2014). Membrane processes for dye wastewater treatment; Recent progress in fouling control. Critical Reviews in Environmental Science and Technology, 45(10), 1007–1040.
Thema, F. T., Moloto, M. J., Dikio, E. D., Nyangiwe, N. N., Kotsedi, L., Maaza, M., et al. (2013). Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide. Journal of Chemistry, 2013, Article ID 150536.
Thürmer, M. B., Poletto, P., Marcolin, M., Duarte, J., & Zeni, M. (2012). Effect of non- solvents used in the coagulation bath on morphology of PVDF membranes. Materials Research, 15(6), 884–890.
Thuyavan, Y. L., Anantharaman, N., Arthanareeswaran, G., & Ismail, A. F. (2016). Impact of solvents and process conditions on the formation of polyethersulfone membranes and its fouling behavior in lake water filtration. Journal of Chemical Technology & Biotechnology, 91(10), 2568–2581.
Tiwana, P., Docampo, P., Johnston, M. B., Snaith, H. J., & Herz, L. M. (2011). Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano, 5(6), 5158–5166.
Tsai, C.-H., Chen, C.-H., Hsiao, Y.-C., & Chuang, P.-Y. (2014). Investigation of graphene nanosheets as counter electrodes for efficient dye-sensitized solar cells. Organic Electronics, 17, 57–65.
Tsai, J. K., Hsu, W. D., Wu, T. C., Meen, T. H., & Chong, W. J. (2013). Effect of compressed TiO2 nanoparticle thin film thickness on the performance of dye- sensitized solar cells. Nanoscale Research Letters, 8(459), 1–6.
Ullattil, S. G., & Periyat, P. (2017). Microwave-power induced green synthesis of randomly oriented mesoporous anatase TiO2 nanoparticles for efficient dye sensitized solar cells. Solar Energy, 147, 99–105.
Ullattil, S. G., Thelappurath, A. V., Tadka, S. N., Kavil, J., Vijayan, B. K., & Periyat, P. (2017). A Sol-solvothermal processed ‘Black TiO2’ as photoanode material indye sensitized solar cells. Solar Energy, 155, 490–495.
Umar, A. A., Nafisah, S., Md Saad, S. K., Tee Tan, S., Balouch, A., Mat Salleh, M., et al. (2014). Poriferous microtablet of anatase TiO2 growth on an ITO surface for high-efficiency dye-sensitized solar cells. Solar Energy Materials & Solar Cells, 122, 174–182.
Velten, J., Mozer, A. J., Li, D., Officer, D., Wallace, G., Baughman, R., et al. (2012). Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye- sensitized solar cells. Nanotechnology, 23, 1–6.
Venkatachalam, S., Hayashi, H., Ebina, T., & Nanjo, H. (2013). Preparation and characterization of nanostructured TiO2 thin films by hydrothermal and anodization methods. In Optoelectronics-advanced materials and devices (pp. 116–136). Croatia: InTech.
Waeselmann, N. (2012). Structural transformations in complex perovskite-type relaxor and relaxor-based ferroelectrics at high pressures and temperatures. (Doctoral Dissertation pp. 33). Universität Hamburg, Germany.
Wan, L., Wang, S., Wang, X., Dong, B., Xu, Z., Zhang, X., et al. (2011). Room- temperature fabrication of graphene ?lms on variable substrates and its use as counter electrodes for dye-sensitized solar cells. Solid State Sciences, 13, 468– 475.
Wan, L., Zhang, Q., Wang, S., Wang, X., Guo, Z., Dong, B., et al. (2015). A two-step reduction method for synthesizing graphene nanocomposites with a low loading of well-dispersed platinum nanoparticles for use as counter electrodes in dye- sensitized solar cells. Journal of Materials Science, 50(12), 4412–4421.
Wang, B., Qi, H., Wang, H., Cui, Y., Zhao, J., Guo, J., et al. (2015). Morphology, structure and optical properties in TiO2 nanostructured films annealed at various temperatures. Optical Materials Express, 5(11), 1410–1418.
Wang, D., Zhu, X., Fang, Y., Sun, J., Zhang, C., & Zhang, X. (2017). Simultaneously composition and interface control for ZnO-based dye-sensitized solar cells with highly enhanced efficiency. Nano-Structures & Nano-Objects, 10, 1–8.
Wang, H., Bai, Y., Wu, Q., Zhou, W., Zhang, H., Li, J., et al. (2011). Rutile TiO2 nano- branched arrays on FTO for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 13, 7008–7013.
Wang, H., Wang, Y., Cao, X., Feng, M., & Lan, G. (2009). Vibrational properties of graphene and graphene layers. Journal of Raman Spectroscopy, 40(12), 1791– 1796.
Wang, J.-F., Zhang, J.-J., & He, D.-N. (2018). Flower-like TiO2-B particles wrapped by graphene with different contents as an anode material for lithium-ion batteries. Nano-Structures & Nano-Objects, 15, 216–223.
Wang, J., Qu, S., Zhong, Z., Wang, S., Liu, K., & Hu, A. (2014). Fabrication of TiO2 nanoparticles/nanorod composite arrays via a two-step method for efficient dye- sensitized solar cells. Progress in Natural Science: Materials International, 24(6), 588–592.
Wang, L.-J., Li, L., Yu, J., Wu, Y., He, H., Ouyang, X., et al. (2014). Large-area graphene coating via superhydrophilic-assisted electro-hydrodynamic spraying deposition. Carbon, 79, 294–301.
Wang, X., Zhang, L., Sun, D., An, Q., & Chen, H. (2008). Effect of coagulation bath temperature on formation mechanism of poly (vinylidene fluoride) membrane. Journal of Applied Polymer Science, 110, 1656–1663.
Wang, X., Zhi, L., & Müllen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8(1), 323–327.
Wang, Z.-S., Yanagida, M., Sayama, K., & Sugihara, H. (2006). Electronic-insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: Improvement of electron lifetime and efficiency. Chemistry of Materials, 18, 2912–2916.
Wang, Z., Wu, A., Ciacchi, L. C., & Wei, G. (2018). Recent advances in nanoporous membranes for water purification. Nanomaterials, 8(65), 1–19.
Wang, Z., Yu, H., Xia, J., Zhang, F., Li, F., Xia, Y., & Li, Y. (2012). Novel GO-blended PVDF ultrafiltration membranes. Desalination, 299, 50–54.
Wienke, J., Kroon, J. M., Sommeling, P. M., Kinderman, R., Spath, M., Roosmalen, et al. (1997). Effect of TiO2-electrode properties on the efficiency of nanocrystalline dye-sensitized solar cells (nc-DSC) (Vol. 33). Netherlands Energy Research Foundation ECN.
Wu, C., Wang, Z., Wang, L., Williams, T., & Huang, J. (2012). Sustainable processing of waste plastics to produce high yield hydrogen-rich synthesis gas and high quality carbon nanotubes. RSC Advances, 2, 4045–4047.
Wu, W., Liao, J., Chen, H., Yu, X., Su, C., & Kuang, D. (2012). Dye-sensitized solar cells based on a double layered TiO2 photoanode consisting of hierarchical nanowire arrays and nanoparticles with greatly improved photovoltaic performance. Journal of Materials Chemistry, 22, 18057–18062.
Xie, Y., Zhou, X., Mi, H., Ma, J., Yang, J., & Cheng, J. (2018). High efficiency ZnO- based dye-sensitized solar cells with a 1H,1H,2H,2H- perfluorodecyltriethoxysilane chain barrier for cutting on interfacial recombination. Applied Surface Science, 434, 1144–1152.
Xu, K., Shen, Y., Zhang, Z., Cao, M., Gu, F., & Linjun Wang. (2016). The influence of different modified graphene on property of DSSCs. Applied Surface Science, 362, 477–482.
Xu, Z., Wu, T., Shi, J., Teng, K., Wang, W., Ma, M., et al. (2016). Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. Journal of Membrane Science, 520, 281–293.
Xu, Z., Zhang, J., Shan, M., Li, Y., Li, B., Niu, J., et al. (2014). Organosilane- functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. Journal of Membrane Science, 458, 1–13.
Yan, J., Wu, G., Guan, N., Li, L., Li, Z., & Cao, X. (2013). Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile. Physical Chemistry Chemical Physics, 15(26), 10978.
Yang, S.-C., Yang, D.-J., Kim, J., Hong, J.-M., Kim, H.-G., Kim, I.-D., et al. (2008). Hollow TiO2 hemispheres obtained by colloidal templating for application in dye- sensitized solar cells. Advance Materials, 20, 1059–1064.
Yaqoob, U., Uddin, A. I., & Chung, G.-S. (2016). A high-performance flexible NO2 sensor based on WO3 NPs decorated on MWCNTs and RGO hybrids on PI/PET substrates. Sensors & Actuators B: Chemical, 224, 738–746.
Yasin, A., Guo, F., & Demopoulos, G. P. (2016). Aqueous , screen-printable paste for fabrication of mesoporous composite anatase-rutile TiO2 nanoparticle thin films for (photo)electrochemical devices. ACS Sustainable Chemistry & Engineering, 4(4), 2173–2181.
Ye, M., Liu, H.-Y., Lin, C., & Lin, Z. (2013). Hierarchical rutile TiO2 flower cluster- based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates. Nano Micro Small, 9(2), 312–321.
Yeh, M.-H., Lin, L.-Y., Sun, C.-L., Leu, Y.-A., Tsai, J.-T., Yeh, C.-Y., et al. (2014). Multiwalled carbon nanotube@reduced graphene oxide nanoribbon as the counter electrode for dye-sensitized solar cells. The Journal of Physical Chemistry C, 118, 16626–16634.
Yu, P., Lowe, S. E., Simon, G. P., & Zhong, Y. L. (2015). Electrochemical exfoliation of graphite and production of functional graphene functional graphene. Current Opinion in Colloid & Interface Science, 20(5–6), 329–338.
Yue, G., Wu, J., Xiao, Y., Huang, M., Lin, J., Fan, L., et al. (2013). Platinum/graphene hybrid film as a counter electrode for dye-sensitized solar cells. Electrochimica Acta, 92, 64–70.
Yun, D.-J., Ra, H., Kim, J.-M., Oh, E., Lee, J., Jeong, M.-H., et al. (2018). Multi-walled carbon nanotube forests covered with atomic-layer-deposited ruthenium layers for high-performance counter electrodes of dye-sensitized solar cells. Organic Electronics, 65, 349–356.
Yusoff, I. I., Rohani, R., Zaman, N. K., Junaidi, M. U. M., Mohammad, A. W., & Zainal, Z. (2018). Durable pressure filtration membranes based on polyaniline– polyimide P84 blends. Polymer Engineering and Science, 1–11.
Zahid, M., Rashid, A., Akram, S., Rehan, Z. A., & Razzaq, W. (2018). A comprehensive review on polymeric nano-composite membranes for water treatment. Journal of Membrane Science & Technology, 8(1), 1–20.
Zeng, G., Ye, Z., He, Y., Yang, X., Ma, J., Shi, H., et al. (2017). Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater. Chemical Engineering Journal, 323, 572–583.
Zhang, D., Yoshida, T., Oekermann, T., Furuta, K., & Minoura, H. (2006). Room- temperature synthesis of porous nanoparticulate TiO2 films for flexible dye- sensitized solar cells. Advanced Functional Materials, 16(9), 1228–1234.
Zhang, P., Gong, J., Zeng, G., Deng, C., Yang, H., Liu, H., et al. (2017). Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chemical Engineering Journal, 322, 657– 666.
Zhang, Q., Liu, Y., Duan, Y., Fu, N., Liu, Q., Fang, Y., et al. (2014). Mn3O4/graphene composite as counter electrode in dye-sensitized solar cells. RSC Advances, 4, 15091–15097.
Zhang, Y., Xu, J., Sun, Z., Li, C., & Pan, C. (2011). Preparation of graphene and TiO2 layer by layer composite with highly photocatalytic efficiency. Progress in Natural Science: Materials International, 21(6), 467–471.
Zhao, C., Xu, X., Chen, J., & Yang, F. (2014). Optimization of preparation conditions of poly(vinylidene fluoride)/graphene oxide microfiltration membranes by the Taguchi experimental design. Desalination, 334(1), 17–22.
Zhao, D., Peng, T., Lu, L., Cai, P., Jiang, P., & Bian, Z. (2008). Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles. Journal of Physical Chemistry C, 112, 8486–8494.
Zhao, J., Liu, L., & Li, F. (2015). Fabrication and Reduction. In SpringerBriefs in Physics (1?? Ed.) Graphene oxide: Physics and applications (pp. 1–14). New York: Springer US.
Zhao, J., Wu, J., Zheng, M., Huo, J., & Tu, Y. (2015). Improving the photovoltaic performance of dye-sensitized solar cell by graphene/titania photoanode. Electrochimica Acta, 156, 261–266.
Zhao, P., Cheng, P., Wang, B., Yao, S., Sun, P., Liu, F., et al. (2014). Bilayered photoanode from rutile TiO2 nanorods and hierarchical anatase TiO2 hollow spheres: A candidate for enhanced efficiency dye sensitized solar cells. RSC Advances, 4(110), 64737–64743.
Zhao, Y., Xu, Z., Shan, M., Min, C., Zhou, B., Li, Y., et al. (2013). Effect of graphite oxide and multi-walled carbon nanotubes on the microstructure and performance of PVDF membranes. Separation and Purification Technology, 103, 78–83.
Zheng, H., Neo, C. Y., & Ouyang, J. (2013). Highly efficient iodide/triiodide dye- sensitized solar cells with gel-coated reduce graphene oxide/single-walled carbon nanotube composites as the counter electrode exhibiting an open-circuit voltage of 0.90 V. Applied Materials & Interfaces, 5(3), 6657–6664.
Zhou, J., Song, B., Zhao, G., Dong, W., & Han, G. (2012). TiO2 nanorod arrays sensitized with CdS quantum dots for solar cell applications: effects of rod geometry on photoelectrochemical performance. Applied Physics A: Materials Science and Processing, 107, 321–331.
Zhou, M., Tang, J., Cheng, Q., Xu, G., Cui, P., & Qin, L. C. (2013). Few-layer graphene obtained by electrochemical exfoliation of graphite cathode. Chemical Physics Letters, 572, 61–65.
Zhou, W., Liu, X., Cui, J., Liu, D., Li, J., Jiang, H., et al. (2011). Control synthesis of rutile TiO2 microspheres, nanoflowers, nanotrees and nanobelts via acid- hydrothermal method and their optical properties. Crystal Engineering Communication, 13, 4557–4563.
Zhu, M., Li, X., Liu, W., & Cui, Y. (2014). An investigation on the photoelectrochemical properties of dye-sensitized solar cells based on graphene-TiO2 composite photoanodes. Journal of Power Sources, 262, 349–355.
Zhu, P., Nair, A. S., Shengjie, P., Shengyuan, Y., & Ramakrishna, S. (2012). Facile fabrication of TiO2−graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS Applied Materials & Interfaces, 4, 581–585.
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., et al. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advance Materials, 22, 3906–3924.
Zhu, Z., Wang, L., Xu, Y., Li, Q., Jiang, J., & Wang, X. (2017). Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection. Journal of Colloid and Interface Science, 504, 429–439.
Zinadini, S., Zinatizadeh, A. A., Rahimi, M., Vatanpour, V., & Zangeneh, H. (2014). Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. Journal of Membrane Science, 453, 292–301.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |