UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :RA Public aspects of medicine
Main Author :Ali, Mohammed Assim Mohammed
Title :Benchmarking methodology for multiclass classification models based on multi criteria decision analysis
Place of Production :Tanjong Malim
Publisher :Fakulti Seni, Komputeran dan Industri Kreatif
Year of Publication :2019
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
The purpose of this research was to develop a benchmarking methodology for aiding medical organizations’ administrations in benchmarking and ranking available multiclass classification models to select the best one. Medical organizations have been facing difficulties in evaluating and comparing classification models. Experimental and case study research methods were adopted in this study. The new benchmarking methodology was proposed based on two stages. In first stage, a Decision Matrix (DM) was constructed based on the crossover of two groups of multi-evaluation criteria and 22 multiclass classification models. The matrix was evaluated using secondary datasets consisting of 72 samples of acute leukemia, including 5327 gens. In the second stage, multi-criteria decision-making techniques, namely, Best and Worst method (BWM) and Vlse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR) were used to benchmark and ranked the multiclass classification models. The BWM was applied to calculate the weights of evaluation criteria, whereas VIKOR was used to benchmark and rank the multi-class classification models. VIKOR was utilized in two decision-making contexts, namely individual and group contexts. In group decision making, internal and external group aggregations are applied. For validating the proposed methodology, an objective method was used. The results showed that (1) the integration of BWM and VIKOR was effective for solving the benchmarking/selection problems of multi-class classification models. (2) The ranks of multi-class classification models obtained from internal and external VIKOR group decision making were almost the same, where, Bayes. Naïve Byes Updateable, Bayes Net, Decision Stump were the first three classification models respectively and Trees. LMT was the last one. (3) In the objective validation, the ranking results of internal and external VIKOR group decision making were valid. Clearly, as a conclusion, the proposed methodology can be used for evaluation and benchmarking different multiclass classification models for various applications. The implications of this study will benefit medical organizations by enabling them to make the right decisions regarding the use of multi-class classification models for acute leukemia and the implications also benefit medical classification software developers who work in industrial companies and institutions in developing classification models.

References

Abdullateef, B. N., Elias, N. F., Mohamed, H., Zaidan, A., & Zaidan, B. (2016a). An

evaluation and selection problems of OSS-LMS packages. SpringerPlus, 5(1), 248.

 

Abdullateef,  B.  N.,  Elias,  N.  F.,  Mohamed,  H.,  Zaidan,  A.  A.,  &  Zaidan,  B.  B. 

(2016b).   An   evaluation   and   selection   problems   of   OSS-LMS   packages. SpringerPlus, 

5(1), 248. doi:10.1186/s40064-016-1828-y

 

Aboutorab,  H.,  Saberi,  M.,  Asadabadi,  M.  R.,  Hussain,  O.,  &  Chang,  E.  (2018). ZBWM:  

The  Z-number  extension  of  Best  Worst  Method  and  its  application for supplier development. 

Expert Systems with Applications, 107, 115-125.

 

Adunlin,  G.,  Diaby,  V.,  &  Xiao,  H.  (2015).  Application  of  multicriteria  decision 

analysis in health care: a systematic review and bibliometric analysis. Health Expectations, 18(6), 

1894-1905.

 

Agaian,  S.,  Madhukar,  M.,  &  Chronopoulos,  A.  T.  (2014).  Automated  Screening System  for  

Acute  Myelogenous  Leukemia  Detection  in  Blood  Microscopic Images.           IEEE           

Systems           Journal,           8(3),           995-1004.

doi:10.1109/JSYST.2014.2308452

 

Al-Sahaf,  H.,  Song,  A.,  &  Zhang,  M.  (2013,  20-23  June  2013).  Hybridisation  of Genetic   

Programming   and   Nearest   Neighbour   for   classification.   Paper presented at the 2013 IEEE 

Congress on Evolutionary Computation.

 

Aruldoss,  M.,  Lakshmi,  T.  M.,  &  Venkatesan,  V.  P.  (2013).  A  Survey  on  Multi Criteria 

Decision Making Methods and Its Applications. American Journal of Information Systems, 1(1), 31-43.

 

Ashour, O. M., & Okudan, G. E. (2010). Fuzzy AHP and utility theory based patient sorting  in  

emergency  departments.  International  Journal  of  Collaborative Enterprise, 1(3-4), 332-358.

 

Awang, M. K., Makhtar, M., & Rahman, M. N. A. (2017). Improving Accuracy and Performance   of   

Customer   Churn   Prediction   Using   Feature   Reduction Algorithms.   Journal   of   

Telecommunication,   Electronic   and   Computer Engineering (JTEC), 9(2-3), 127-130.

 

Azadeh, A., Asadzadeh, S. M., & Tanhaeean, M. (2017). A consensus-based AHP for improved assessment 

of resilience engineering in maintenance organizations. Journal   of   Loss   Prevention   in   the 

  Process   Industries,   47,   151-160.

doi:https://doi.org/10.1016/j.jlp.2017.02.028

 

Azeez, D., Ali, M. A. M., Gan, K. B., & Saiboon, I. (2013). Comparison of adaptive neuro-fuzzy   

inference   system   and   artificial   neutral   networks   model   to categorize patients in the 

emergency department. SpringerPlus, 2(1), 416.

 

Bagasjvara, R. G., Candradewi, I., Hartati, S., & Harjoko, A. (2016, 27-28 Oct. 2016). Automated  

detection  and  classification  techniques  of  Acute  leukemia  using image  processing:  A  

review.  Paper  presented  at  the  2016  2nd  International Conference on Science and 

Technology-Computer (ICST).

 

Baltussen, R., & Niessen, L. (2006). Priority setting of health interventions: the need for 

multi-criteria decision analysis. Cost effectiveness and resource allocation,

4(1), 1.

 

Begum, S., Chakraborty, D., & Sarkar, R. (2015, 12-14 Dec. 2015). Data

Classification Using Feature Selection and kNN Machine Learning Approach.

Paper presented at the 2015 International Conference on Computational

Intelligence and Communication Networks (CICN).

 

Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani, M., & Ignatius, J. (2012).

A state-of the-art survey of TOPSIS applications. Expert Systems with

Applications, 39(17), 13051-13069.

doi:https://doi.org/10.1016/j.eswa.2012.05.056

 

Belton, V., & Stewart, T. (2002). Multiple criteria decision analysis: an integrated

approachKluwer Academic Publishers: Boston.

 

Bhattacharjee, R., & Saini, L. M. (2015a, 24-26 Sept. 2015). Detection of Acute

Lymphoblastic Leukemia using watershed transformation technique. Paper

presented at the 2015 International Conference on Signal Processing,

Computing and Control (ISPCC).

 

Bhattacharjee, R., & Saini, L. M. (2015b, 15-17 Oct. 2015). Robust technique for the

detection of Acute Lymphoblastic Leukemia. Paper presented at the 2015 IEEE

Power, Communication and Information Technology Conference (PCITC).

 

bin Othman, M. F., & Yau, T. M. S. (2007). Comparison of different classification

techniques using WEKA for breast cancer. Paper presented at the 3rd Kuala

Lumpur International Conference on Biomedical Engineering 2006.

 

Bor. S., Wang, Y. F., Li, J. L., Li, C. C., Weng, P. F., Hsu, S. C., ... & Liu, J. H.

(2018). Clinically validated machine learning algorithm for detecting residual

diseases with multicolor flow cytometry analysis in acute myeloid leukemia

and myelodysplastic syndrome. EBioMedicine, 37, 91-100.

 

Cadenas, J. M., Garrido, M. C., & Martínez, R. (2012, 10-15 June 2012). A tool to

manage low quality datasets. Paper presented at the 2012 IEEE International

Conference on Fuzzy Systems.

 

Cai, Y.-D., Feng, K.-Y., Lu, W.-C., & Chou, K.-C. (2006). Using LogitBoost

classifier to predict protein structural classes. Journal of Theoretical Biology,

238(1), 172-176. doi:https://doi.org/10.1016/j.jtbi.2005.05.034

 

Campanella, G., & Ribeiro, R. A. (2011). A framework for dynamic multiple-criteria

decision making. Decision Support Systems, 52(1), 52-60.

doi:https://doi.org/10.1016/j.dss.2011.05.003

 

Campos, L. M. d., Cano, A., Castellano, J. G., & Moral, S. (2011, 22-24 Nov. 2011).

Bayesian networks classifiers for gene-expression data. Paper presented at the

2011 11th International Conference on Intelligent Systems Design and

Applications.

 

Cao, J., Zhang, L., Wang, B., Li, F., & Yang, J. (2015). A fast gene selection method

for multi-cancer classification using multiple support vector data description.

Journal of Biomedical Informatics, 53, 381-389.

doi:http://dx.doi.org/10.1016/j.jbi.2014.12.009

 

Cavallini, C., Giorgetti, A., Citti, P., & Nicolaie, F. (2013). Integral aided method for

material selection based on quality function deployment and comprehensive

VIKOR algorithm. Materials & Design, 47, 27-34.

doi:https://doi.org/10.1016/j.matdes.2012.12.009

 

Chakraborty, S. (2009). Simultaneous cancer classification and gene selection with

Bayesian nearest neighbor method: An integrated approach. Computational

Statistics & Data Analysis, 53(4), 1462-1474.

 

Chandra, B., & Gupta, M. (2011). Robust approach for estimating probabilities in

Naïve–Bayes Classifier for gene expression data. Expert Systems with

Applications, 38(3), 1293-1298.

doi:http://dx.doi.org/10.1016/j.eswa.2010.06.076

 

Chen, T. C., Hsieh, Y. C., You, P. S., & Lee, Y. C. (2010, 9-11 July 2010). Feature

selection and classification by using grid computing based evolutionary

approach for the microarray data. Paper presented at the 2010 3rd

International Conference on Computer Science and Information Technology.

 

Chen, X., & Jian, C. (2014, 19-21 Aug. 2014). A tumor classification model using

least square regression. Paper presented at the 2014 10th International

Conference on Natural Computation (ICNC).

 

Chetty, G., White, M., & Akther, F. (2015). Smart phone based data mining for

human activity recognition. Procedia Computer Science, 46, 1181-1187.

 

Chiang*, J. H., & Ho, S. H. (2008). A Combination of Rough-Based Feature

Selection and RBF Neural Network for Classification Using Gene Expression

Data. IEEE Transactions on NanoBioscience, 7(1), 91-99.

doi:10.1109/TNB.2008.2000142

 

Chiu, W.-Y., Tzeng, G.-H., & Li, H.-L. (2013). A new hybrid MCDM model

combining DANP with VIKOR to improve e-store business. Knowledge-

Based Systems, 37, 48-61. doi:https://doi.org/10.1016/j.knosys.2012.06.017

 

Chokkalingam, S. P., & Komathy, K. (2013, 23-24 Aug. 2013). Comparison of

different classifier in WEKA for rheumatoid arthritis. Paper presented at the

2013 International Conference on Human Computer Interactions (ICHCI).

 

Chou, S.-Y., Chang, Y.-H., & Shen, C.-Y. (2008). A fuzzy simple additive weighting

system under group decision-making for facility location selection with

objective/subjective attributes. European Journal of Operational Research,

189(1), 132-145. doi:https://doi.org/10.1016/j.ejor.2007.05.006

 

Chunbao, Z., Liming, W., & Yanchun, L. (2010, 20-22 Aug. 2010). A hybrid

algorithm of minimum spanning tree and nearest neighbor for classifying

human cancers. Paper presented at the 2010 3rd International Conference on

Advanced Computer Theory and Engineering(ICACTE).

 

Cornet, E., Perol, J. P., & Troussard, X. (2008). Performance evaluation and relevance

of the CellaVision (TM) DM96 system in routine analysis and in patients with

malignant hematological diseases. International Journal of Laboratory

Hematology, 30(6), 536-542. doi:10.1111/j.1751-553X.2007.00996.x

 

Cui, Y., Zheng, C.-H., Yang, J., & Sha, W. (2013). Sparse maximum margin

discriminant analysis for feature extraction and gene selection on gene

expression data. Computers in Biology and Medicine, 43(7), 933-941.

doi:http://dx.doi.org/10.1016/j.compbiomed.2013.04.018

 

Daqqa, K. A. S. A., Maghari, A. Y. A., & Sarraj, W. F. M. A. (2017, 17-18 May

2017). Prediction and diagnosis of leukemia using classification algorithms.

Paper presented at the 2017 8th International Conference on Information

Technology (ICIT).

 

Dash, S. (2013, 4-6 Dec. 2013). Hill-climber based fuzzy-rough feature extraction

with an application to cancer classification. Paper presented at the 13th

International Conference on Hybrid Intelligent Systems (HIS 2013).

 

De Paz, J. F., Bajo, J., López, V. F., & Corchado, J. M. (2013). Biomedic

Organizations: An intelligent dynamic architecture for KDD. Information

Sciences, 224, 49-61. doi:http://dx.doi.org/10.1016/j.ins.2012.10.031

 

Deegalla, S., & Boström, H. (2009, 13-15 Dec. 2009). Improving Fusion of

Dimensionality Reduction Methods for Nearest Neighbor Classification. Paper

presented at the 2009 International Conference on Machine Learning and

Applications.

 

Dehghan Khalilabad, N., & Hassanpour, H. (2017). Employing image processing

techniques for cancer detection using microarray images. Computers in

Biology and Medicine, 81, 139-147.

doi:https://doi.org/10.1016/j.compbiomed.2016.12.012

 

Desai, A., & Rai, S. (2013). Analysis of Machine Learning Algorithms using Weka.

 

Dwivedi, S., Kasliwal, P., & Soni, S. (2016, 18-19 March 2016). Comprehensive

study of data analytics tools (RapidMiner, Weka, R tool, Knime). Paper

presented at the 2016 Symposium on Colossal Data Analysis and Networking

(CDAN).

 

El-Nasser, A. A., Shaheen, M., & El-Deeb, H. (2014, 27-29 Aug. 2014). Enhanced

leukemia cancer classifier algorithm. Paper presented at the 2014 Science and

Information Conference.

 

Enaizan, O., Zaidan, A., Alwi, N. M., Zaidan, B., Alsalem, M., Albahri, O., &

Albahri, A. (2018). Electronic medical record systems: Decision support

examination framework for individual, security and privacy concerns using

multi-perspective analysis. Health and Technology, 1-28.

 

Escalante, H. J., Montes-y-Gómez, M., González, J. A., Gómez-Gil, P., Altamirano,

L., Reyes, C. A., . . . Rosales, A. (2012). Acute leukemia classification by

ensemble particle swarm model selection. Artificial Intelligence in Medicine,

55(3), 163-175. doi:http://dx.doi.org/10.1016/j.artmed.2012.03.005

 

Fan, Y., Hua-Zhen, W., & Hong, M. (2008, 12-15 July 2008). A novel classification

method of microarray with reliability and confidence. Paper presented at the

2008 International Conference on Machine Learning and Cybernetics.

 

Ganesh Kumar, P., Aruldoss Albert Victoire, T., Renukadevi, P., & Devaraj, D.

(2012). Design of fuzzy expert system for microarray data classification using

a novel Genetic Swarm Algorithm. Expert Systems with Applications, 39(2),

1811-1821. doi:http://dx.doi.org/10.1016/j.eswa.2011.08.069

 

Garro, B. A., Rodríguez, K., & Vazquez, R. A. (2017, 5-8 June 2017). Designing

artificial neural networks using differential evolution for classifying DNA

microarrays. Paper presented at the 2017 IEEE Congress on Evolutionary

Computation (CEC).

 

Gates, C., McNutt, J. J., Kadane, J. B., & Kellner, M. I. (2006, 26-29 June 2006).

Scan Detection on Very Large Networks Using Logistic Regression Modeling.

Paper presented at the 11th IEEE Symposium on Computers and

Communications (ISCC'06).

 

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., .

. . Caligiuri, M. A. (1999). Molecular classification of cancer: class discovery

and class prediction by gene expression monitoring. science, 286(5439), 531-

537.

 

Goutam, D., & Sailaja, S. (2015, 20-20 March 2015). Classification of acute

myelogenous leukemia in blood microscopic images using supervised

classifier. Paper presented at the 2015 IEEE International Conference on

Engineering and Technology (ICETECH).

 

Gul, M., Celik, E., Aydin, N., Taskin Gumus, A., & Guneri, A. F. (2016). A state of

the art literature review of VIKOR and its fuzzy extensions on applications.

Applied Soft Computing, 46, 60-89.

doi:https://doi.org/10.1016/j.asoc.2016.04.040

 

Guo, S., & Zhao, H. (2017a). Fuzzy best-worst multi-criteria decision-making method

and its applications. Knowledge-Based Systems, 121(Supplement C), 23-31.

doi:https://doi.org/10.1016/j.knosys.2017.01.010

 

Guo, S., & Zhao, H. (2017b). Fuzzy best-worst multi-criteria decision-making method

and its applications. Knowledge-Based Systems, 121, 23-31.

doi:https://doi.org/10.1016/j.knosys.2017.01.010

 

Gupta, H. (2018). Evaluating service quality of airline industry using hybrid best

worst method and VIKOR. Journal of Air Transport Management, 68, 35-47.

doi:https://doi.org/10.1016/j.jairtraman.2017.06.001

 

Gupta, H., & Barua, M. K. (2017). Supplier selection among SMEs on the basis of

their green innovation ability using BWM and fuzzy TOPSIS. Journal of

Cleaner Production, 152, 242-258.

doi:https://doi.org/10.1016/j.jclepro.2017.03.125

 

Hasan, A., & Md. Akhtaruzzaman, A. (2012, 27-28 Feb. 2012). High dimensional

microarray data classification using correlation based feature selection. Paper

presented at the 2012 International Conference on Biomedical Engineering

(ICoBE).

 

He, Y., & Hui, S. C. (2009). Exploring ant-based algorithms for gene expression data

analysis. Artificial Intelligence in Medicine, 47(2), 105-119.

doi:http://dx.doi.org/10.1016/j.artmed.2009.03.004

 

Horng, J.-T., Wu, L.-C., Liu, B.-J., Kuo, J.-L., Kuo, W.-H., & Zhang, J.-J. (2009). An

expert system to classify microarray gene expression data using gene selection

by decision tree. Expert Systems with Applications, 36(5), 9072-9081.

doi:https://doi.org/10.1016/j.eswa.2008.12.037

 

Hossin, M., & Sulaiman, M. (2015). A review on evaluation metrics for data

classification evaluations. International Journal of Data Mining & Knowledge

Management Process, 5(2), 1.

 

Huang, H. L., Chen, Y. H., Koeberl, D. D., & Ho, S. Y. (2007, 1-5 April 2007).

Boosting Evolutionary Support Vector Machine for Designing Tumor

Classifiers from Microarray Data. Paper presented at the 2007 IEEE

Symposium on Computational Intelligence and Bioinformatics and

Computational Biology.

 

Huang, P. H., & Moh, T.-t. (2017). A non-linear non-weight method for multi-criteria

decision making. Annals of Operations Research, 248(1), 239-251.

doi:10.1007/s10479-016-2208-2

 

Hussain, M., Al-Haiqi, A., Zaidan, A. A., Zaidan, B. B., Kiah, M. L. M., Anuar, N.

B., & Abdulnabi, M. (2015). The landscape of research on smartphone

medical apps: Coherent taxonomy, motivations, open challenges and

recommendations. Computer Methods and Programs in Biomedicine, 122(3),

393-408. doi:https://doi.org/10.1016/j.cmpb.2015.08.015

 

Hwang, C., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and

Applications: a State-of-the-art Survey.Lecture Notes in Economics and

Mathematical Systems: Springer.

 

Jablonsky, J. (2014). MS Excel based Software Support Tools for Decision Problems

with Multiple Criteria. Procedia Economics and Finance, 12(Supplement C),

251-258. doi:https://doi.org/10.1016/S2212-5671(14)00342-6

 

Jadhav, A., & Sonar, R. (2009). Analytic hierarchy process (AHP), weighted scoring

method (WSM), and hybrid knowledge based system (HKBS) for software

selection: a comparative study. Paper presented at the 2009 Second

International Conference on Emerging Trends in Engineering & Technology.

 

Jahan, A., Mustapha, F., Ismail, M. Y., Sapuan, S. M., & Bahraminasab, M. (2011). A

comprehensive VIKOR method for material selection. Materials & Design,

32(3), 1215-1221. doi:https://doi.org/10.1016/j.matdes.2010.10.015

 

Jones, D. E., Ghandehari, H., & Facelli, J. C. (2016). A review of the applications of

data mining and machine learning for the prediction of biomedical properties

of nanoparticles. Computer Methods and Programs in Biomedicine, 132, 93-

103.

 

Jumaah, F., Zadain, A., Zaidan, B., Hamzah, A., & Bahbibi, R. (2018). Decision-

Making Solution based Multi-Measurement Design Parameter for

Optimization of GPS Receiver Tracking Channels in Static and Dynamic

Real-Time Positioning Multipath Environment. Measurement.

 

Kalid, N., Zaidan, A., Zaidan, B., Salman, O. H., Hashim, M., Albahri, O., & Albahri,

A. (2018a). Based on Real Time Remote Health Monitoring Systems: A New

Approach for Prioritization “Large Scales Data” Patients with Chronic Heart

Diseases Using Body Sensors and Communication Technology. Journal of

Medical Systems, 42(4), 69.

 

Kalid, N., Zaidan, A. A., Zaidan, B. B., Salman, O. H., Hashim, M., Albahri, O. S., &

Albahri, A. S. (2018b). Based on Real Time Remote Health Monitoring

Systems: A New Approach for Prioritization “Large Scales Data” Patients

with Chronic Heart Diseases Using Body Sensors and Communication

Technology. Journal of Medical Systems, 42(4), 69. doi:10.1007/s10916-018-

0916-7

 

Kang, K., & Michalak, J. (2018). Enhanced version of AdaBoostM1 with J48 Tree

learning method.

 

Karahalios, H. (2017). The application of the AHP-TOPSIS for evaluating ballast

water treatment systems by ship operators. Transportation Research Part D:

Transport and Environment, 52(Part A), 172-184.

doi:https://doi.org/10.1016/j.trd.2017.03.001

 

Kaur, S., Sehra, S. K., & Sehra, S. S. (2016, 20-21 May 2016). A framework for

software quality model selection using TOPSIS. Paper presented at the 2016

IEEE International Conference on Recent Trends in Electronics, Information

& Communication Technology (RTEICT).

 

Kawade, D. R., & Oza, K. S. (2015). SMS spam classification using WEKA.

International Journal of Electronics Communication and Computer

Technology, 5, 43-47.

 

Kaya, ?., Çolak, M., & Terzi, F. (2018). Use of MCDM techniques for energy policy

and decision?making problems: A review. International Journal of Energy

Research, 42(7), 2344-2372.

 

Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: preferences

and value trade-offs: Cambridge university press.

 

Kim, S. (2009, 24-26 April 2009). Spectral Methods for Cancer Classification Using

Microarray Data. Paper presented at the 2009 International Joint Conference

on Computational Sciences and Optimization.

 

Koklu, M., Kahramanli, H., & Allahverdi, N. (1991). Applications of rule based

classification techniques for thoracic surgery. Paper presented at the the

MakeLearn and TIIM Joint International Conference on Managing Intellectual

Capital and Innovation for Sustainable and Inclusive Society: Managing

Intellectual Capital and Innovation, ToKnowPress, Bari, Italy.

 

Kornyshova, E., & Salinesi, C. (2007, 1-5 April 2007). MCDM Techniques Selection

Approaches: State of the Art. Paper presented at the 2007 IEEE Symposium

on Computational Intelligence in Multi-Criteria Decision-Making.

 

Kotsiantis, S. B. (2005). Logitboost of simple bayesian classifier. Informatica, 29(1).

 

Krappe, S., Benz, M., Wittenberg, T., Haferlach, T., & Munzenmayer, C. (2015).

Automated classification of bone marrow cells in microscopic images for

diagnosis of leukemia: A comparison of two classification schemes with

respect to the segmentation quality. In L. M. Hadjiiski & G. D. Tourassi

(Eds.), Medical Imaging 2015: Computer-Aided Diagnosis (Vol. 9414).

 

Krappe, S., Wittenberg, T., Haferlach, T., & Munzenmayer, C. (2015). Automated

morphological analysis of bone marrow cells in microscopic images for

diagnosis of leukemia: nucleus-plasma separation and cell classification using

a hierarchical tree model of hematopoesis. In G. D. Tourassi & S. G. Armato

(Eds.), Medical Imaging 2016: Computer-Aided Diagnosis (Vol. 9785).

 

Kumar, M., & Kumar Rath, S. (2015). Classification of microarray using MapReduce

based proximal support vector machine classifier. Knowledge-Based Systems,

89, 584-602. doi:https://doi.org/10.1016/j.knosys.2015.09.005

 

Labati, R. D., Piuri, V., Scotti, F., & Ieee. (2011). ALL-IDB: THE ACUTE

LYMPHOBLASTIC LEUKEMIA IMAGE DATABASE FOR IMAGE

PROCESSING 2011 18th Ieee International Conference on Image

Processing.

 

Laosai, J., & Chamnongthai, K. (2014, 19-21 March 2014). Acute leukemia

classification by using SVM and K-Means clustering. Paper presented at the

2014 International Electrical Engineering Congress (iEECON).

 

Lei, X., & Chen, Y. (2012, 27-30 May 2012). Multiclass Classification of Microarray

Data Samples with Flexible Neural Tree. Paper presented at the 2012 Spring

Congress on Engineering and Technology.

 

Li, J.-T., & Jia, Y.-M. (2010). An Improved Elastic Net for Cancer Classification and

Gene Selection. Acta Automatica Sinica, 36(7), 976-981.

doi:http://dx.doi.org/10.1016/S1874-1029(09)60042-2

 

Liou, J. J. H., Tsai, C.-Y., Lin, R.-H., & Tzeng, G.-H. (2011). A modified VIKOR

multiple-criteria decision method for improving domestic airlines service

quality. Journal of Air Transport Management, 17(2), 57-61.

doi:https://doi.org/10.1016/j.jairtraman.2010.03.004

 

Lira, M. M., de Aquino, R. R., Ferreira, A. A., Carvalho, M. A., Neto, O. N., &

Santos, G. S. (2007). Combining multiple artificial neural networks using

random committee to decide upon electrical disturbance classification. Paper

presented at the Neural Networks, 2007. IJCNN 2007. International Joint

Conference on.

 

Lo, H.-W., Liou, J. J. H., Wang, H.-S., & Tsai, Y.-S. (2018). An integrated model for

solving problems in green supplier selection and order allocation. Journal of

Cleaner Production, 190, 339-352.

doi:https://doi.org/10.1016/j.jclepro.2018.04.105

 

Lu, H., Yang, L., Yan, K., Xue, Y., & Gao, Z. (2017). A cost-sensitive rotation forest

algorithm for gene expression data classification. Neurocomputing, 228, 270-

276. doi:https://doi.org/10.1016/j.neucom.2016.09.077

 

Lu, X., Peng, X., Liu, P., Deng, Y., Feng, B., & Liao, B. (2012, 18-20 Aug. 2012). A

novel feature selection method based on CFS in cancer recognition. Paper

presented at the 2012 IEEE 6th International Conference on Systems Biology

(ISB).

 

Ludwig, S. A., Jakobovic, D., & Picek, S. (2015, 2-5 Aug. 2015). Analyzing gene

expression data: Fuzzy decision tree algorithm applied to the classification of

cancer data. Paper presented at the 2015 IEEE International Conference on

Fuzzy Systems (FUZZ-IEEE).

 

Lutz, R. W. (2006). Logitboost with trees applied to the wcci 2006 performance

prediction challenge datasets. Paper presented at the The 2006 IEEE

International Joint Conference on Neural Network Proceedings.

 

Madhloom, H. T., Kareem, S. A., & Ariffin, H. (2012, 26-28 Nov. 2012). A Robust

Feature Extraction and Selection Method for the Recognition of Lymphocytes

versus Acute Lymphoblastic Leukemia. Paper presented at the 2012

International Conference on Advanced Computer Science Applications and

Technologies (ACSAT).

 

Mahjouri, M., Ishak, M. B., Torabian, A., Abd Manaf, L., Halimoon, N., & Ghoddusi,

J. (2017). Optimal selection of Iron and Steel wastewater treatment technology

using integrated multi-criteria decision-making techniques and fuzzy logic.

Process Safety and Environmental Protection, 107(Supplement C), 54-68.

doi:https://doi.org/10.1016/j.psep.2017.01.016

 

Malczewski, J. (1999). GIS and multicriteria decision analysis: John Wiley & Sons.

 

Maulik, U., Mukhopadhyay, A., & Chakraborty, D. (2013). Gene-Expression-Based

Cancer Subtypes Prediction Through Feature Selection and Transductive

SVM. IEEE Transactions on Biomedical Engineering, 60(4), 1111-1117.

doi:10.1109/TBME.2012.2225622

 

Medineckien?, M., & Bjork, F. (2011). Owner preferences regarding renovation

measures - The demonstration of using multi-criteria decision making (Vol.

17).

 

MeeraGandhi, G. (2010). Machine learning approach for attack prediction and

classification using supervised learning algorithms. Int. J. Comput. Sci.

Commun, 1(2).

 

Mills, A. F. (2016). A simple yet effective decision support policy for mass-casualty

triage. European Journal of Operational Research, 253(3), 734-745.

 

Mir, N. M., Khan, S., Butt, M. A., & Zaman, M. (2016). An experimental evaluation

of bayesian classifiers applied to intrusion detection. Indian Journal of Science

and Technology, 9(12).

 

Mishra, S., Majhi, B., Sa, P. K., & Sharma, L. (2017). Gray level co-occurrence

matrix and random forest based acute lymphoblastic leukemia detection.

Biomedical Signal Processing and Control, 33, 272-280.

doi:https://doi.org/10.1016/j.bspc.2016.11.021

 

Mohapatra, P., & Chakravarty, S. (2015, 15-17 Oct. 2015). Modified PSO based

feature selection for Microarray data classification. Paper presented at the

2015 IEEE Power, Communication and Information Technology Conference

(PCITC).

 

Mohapatra, P., Chakravarty, S., & Dash, P. K. (2016). Microarray medical data

classification using kernel ridge regression and modified cat swarm

optimization based gene selection system. Swarm and Evolutionary

Computation, 28, 144-160. doi:http://dx.doi.org/10.1016/j.swevo.2016.02.002

 

Mohapatra, S., Patra, D., & Satpathi, S. (2010, 27-29 Dec. 2010). Image analysis of

blood microscopic images for acute leukemia detection. Paper presented at the

2010 International Conference on Industrial Electronics, Control and Robotics.

 

Mohapatra, S., Samanta, S. S., Patra, D., & Satpathi, S. (2011, 24-25 Feb. 2011).

Fuzzy Based Blood Image Segmentation for Automated Leukemia Detection.

Paper presented at the 2011 International Conference on Devices and

Communications (ICDeCom).

 

Nafari, J., Arab, A., & Ghaffari, S. (2017). Through the Looking Glass: Analysis of

Factors Influencing Iranian Student’s Study Abroad Motivations and

Destination Choice. SAGE Open, 7(2), 2158244017716711.

doi:10.1177/2158244017716711

 

Nasir, A. S. A., Mashor, M. Y., & Hassan, R. (2012, 17-19 Dec. 2012). Leukemia

screening based on fuzzy ARTMAP and simplified fuzzy ARTMAP neural

networks. Paper presented at the 2012 IEEE-EMBS Conference on Biomedical

Engineering and Sciences.

 

Nazlibilek, S., Karacor, D., Ercan, T., Sazli, M. H., Kalender, O., & Ege, Y. (2014).

Automatic segmentation, counting, size determination and classification of

white blood cells. Measurement, 55, 58-65.

doi:https://doi.org/10.1016/j.measurement.2014.04.008

 

Nguyen, T., & Nahavandi, S. (2016). Modified AHP for Gene Selection and Cancer

Classification Using Type-2 Fuzzy Logic. IEEE Transactions on Fuzzy

Systems, 24(2), 273-287. doi:10.1109/TFUZZ.2015.2453153

 

Nilsson, H., Nordström, E.-M., & Öhman, K. (2016). Decision support for

participatory forest planning using AHP and TOPSIS. Forests, 7(5), 100.

 

Oliveira, M., Fontes, D. B., & Pereira, T. (2014). Multicriteria decision making: a

case study in the automobile industry. Annals of Management Science, 3(1),

109.

 

Önüt, S., & Soner, S. (2008). Transshipment site selection using the AHP and

TOPSIS approaches under fuzzy environment. Waste Management, 28(9),

1552-1559. doi:https://doi.org/10.1016/j.wasman.2007.05.019

 

Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A

comparative analysis of VIKOR and TOPSIS. European Journal of

Operational Research, 156(2), 445-455.

 

Opricovic, S., & Tzeng, G.-H. (2007). Extended VIKOR method in comparison with

outranking methods. European Journal of Operational Research, 178(2), 514-

529. doi:https://doi.org/10.1016/j.ejor.2006.01.020

 

Ou Yang, Y.-P., Shieh, H.-M., & Tzeng, G.-H. (2013). A VIKOR technique based on

DEMATEL and ANP for information security risk control assessment.

Information Sciences, 232, 482-500.

doi:https://doi.org/10.1016/j.ins.2011.09.012

 

P, P. K., Vadakkepat, P., & Poh, L. A. (2011). Fuzzy-rough discriminative feature

selection and classification algorithm, with application to microarray and

image datasets. Applied Soft Computing, 11(4), 3429-3440.

doi:http://dx.doi.org/10.1016/j.asoc.2011.01.013

 

Pamu?ar, D., Petrovi?, I., & ?irovi?, G. (2018). Modification of the Best–Worst and

MABAC methods: A novel approach based on interval-valued fuzzy-rough

numbers. Expert Systems with Applications, 91, 89-106.

doi:https://doi.org/10.1016/j.eswa.2017.08.042

 

Panda, M., Abraham, A., & Patra, M. R. (2010). Discriminative multinomial naive

bayes for network intrusion detection. Paper presented at the Information

Assurance and Security (IAS), 2010 Sixth International Conference on.

 

Pandey, A. K., Rajpoot, D. S., & Rajpoot, D. S. (2016, 26-28 Dec. 2016). A

comparative study of classification techniques by utilizing WEKA. Paper

presented at the 2016 International Conference on Signal Processing and

Communication (ICSC).

 

Patil, B. M., Toshniwal, D., & Joshi, R. C. (2009, 6-7 March 2009). Predicting Burn

Patient Survivability Using Decision Tree In WEKA Environment. Paper

presented at the 2009 IEEE International Advance Computing Conference.

 

Rajpurohit, S., Patil, S., Choudhary, N., Gavasane, S., & Kosamkar, P. (2018,

September). Identification of Acute Lymphoblastic Leukemia in Microscopic

Blood Image Using Image Processing and Machine Learning Algorithms.

In 2018 International Conference on Advances in Computing,

Communications and Informatics (ICACCI) (pp. 2359-2363). IEEE.

 

Paul, S., & Maji, P. (2010, 13-14 Dec. 2010). Rough set based gene selection

algorithm for microarray sample classification. Paper presented at the 2010

International Conference on Methods and Models in Computer Science

(ICM2CS-2010).

 

Petrovic-Lazarevic, S., & Abraham, A. (2004). Hybrid fuzzy-linear programming

approach for multi criteria decision making problems. arXiv preprint

cs/0405019.

 

Putzu, L., Caocci, G., & Di Ruberto, C. (2014). Leucocyte classification for leukemia

detection using image processing techniques. Artificial Intelligence in

Medicine, 62(3), 179-191. doi:10.1016/j.artmed.2014.09.002

 

Qader, M. A., Zaidan, B. B., Zaidan, A. A., Ali, S. K., Kamaluddin, M. A., & Radzi,

W. B. (2017). A methodology for football players selection problem based on

multi-measurements criteria analysis. Measurement, 111, 38-50.

doi:https://doi.org/10.1016/j.measurement.2017.07.024

 

Qasem, M., & Nour, M. (2015, 26-29 April 2015). Improving Accuracy for

Classifying Selected Medical Datasets with Weighted Nearest Neighbors and

Fuzzy Nearest Neighbors Algorithms. Paper presented at the 2015

International Conference on Cloud Computing (ICCC).

 

Qizhong, Z. (2007, 23-27 May 2007). Gene Selection and Classification Using Nonlinear

Kernel Support Vector Machines Based on Gene Expression Data.

Paper presented at the 2007 IEEE/ICME International Conference on

Complex Medical Engineering.

 

Rajwa, B., Wallace, P. K., Griffiths, E. A., & Dundar, M. (2017). Automated

Assessment of Disease Progression in Acute Myeloid Leukemia by

Probabilistic Analysis of Flow Cytometry Data. IEEE Transactions on

Biomedical Engineering, 64(5), 1089-1098. doi:10.1109/TBME.2016.2590950

 

Rangra., K., & Bansal, D. K. L. (2014). Comparative Study of Data Mining Tools,

International Journal of Advanced Research in Computer Science and

Software Engineering. International Journal of Advanced Research in

Computer Science and Software Engineering, 4(6).

 

Rashid, S., & Maruf, G. M. (2011, 12-15 Nov. 2011). An adaptive feature reduction

algorithm for cancer classification using wavelet decomposition of serum

proteomic and DNA microarray data. Paper presented at the 2011 IEEE

International Conference on Bioinformatics and Biomedicine Workshops

(BIBMW).

 

Raviv, G., Shapira, A., & Fishbain, B. (2017). AHP-based analysis of the risk

potential of safety incidents: Case study of cranes in the construction industry.

Safety Science, 91(Supplement C), 298-309.

doi:https://doi.org/10.1016/j.ssci.2016.08.027

 

Rawat, J., Bhadauria, H. S., Singh, A., & Virmani, J. (2015, 11-13 March 2015).

Review of leukocyte classification techniques for microscopic blood images.

Paper presented at the 2015 2nd International Conference on Computing for

Sustainable Global Development (Indiacom).

 

Rawat, J., Singh, A., Bhadauria, H. S., & Virmani, J. (2015). Computer Aided

Diagnostic System for Detection of Leukemia Using Microscopic Images.

Procedia Computer Science, 70, 748-756.

doi:https://doi.org/10.1016/j.procs.2015.10.113

 

Ren, C.-X., Dai, D.-Q., & Yan, H. (2012). Robust classification using L 2,1 norm

based regression model. Pattern Recogn., 45(7), 2708-2718.

doi:10.1016/j.patcog.2012.01.003

 

Ren, J. (2018). Selection of sustainable prime mover for combined cooling, heat, and

power technologies under uncertainties: An interval multicriteria decisionmaking

approach. International Journal of Energy Research.

 

Rezaei, J. (2015a). Best-worst multi-criteria decision-making method. Omega, 53, 49-

57. doi:https://doi.org/10.1016/j.omega.2014.11.009

 

Rezaei, J. (2015b). Best-worst multi-criteria decision-making method. Omega,

53(Supplement C), 49-57. doi:https://doi.org/10.1016/j.omega.2014.11.009

 

Rezaei, J. (2016a). Best-worst multi-criteria decision-making method: Some

properties and a linear model. Omega, 64(Supplement C), 126-130.

doi:https://doi.org/10.1016/j.omega.2015.12.001

 

Rezaei, J. (2016b). Best-worst multi-criteria decision-making method: Some

properties and a linear model. Omega, 64, 126-130.

doi:https://doi.org/10.1016/j.omega.2015.12.001

 

Rezaei, J., van Roekel, W. S., & Tavasszy, L. (2018). Measuring the relative

importance of the logistics performance index indicators using Best Worst

Method. Transport Policy, 68, 158-169.

 

Rosa, J. L. D., Magpantay, A. E. A., Gonzaga, A. C., & Solano, G. A. (2014, 7-9 July

2014). Cluster center genes as candidate biomarkers for the classification of

Leukemia. Paper presented at the IISA 2014, The 5th International Conference

on Information, Intelligence, Systems and Applications.

 

Rota, P., Groeneveld-Krentz, S., & Reiter, M. (2015, 9-12 Nov. 2015). On automated

Flow Cytometric analysis for MRD estimation of Acute Lymphoblastic

Leukemia: A comparison among different approaches. Paper presented at the

2015 IEEE International Conference on Bioinformatics and Biomedicine

(BIBM).

 

Roy, A. (2015). A Classification Algorithm for High-dimensional Data. Procedia

Computer Science, 53, 345-355.

doi:http://dx.doi.org/10.1016/j.procs.2015.07.311

 

Roy, A., Mackin, P. D., & Mukhopadhyay, S. (2013). Methods for pattern selection,

class-specific feature selection and classification for automated learning.

Neural Networks, 41, 113-129.

doi:https://doi.org/10.1016/j.neunet.2012.12.007

 

Remya, R. S., Vijayan, V., Sabeena, K., & Hariharan, S. (2018, July). Computer

Aided Method for the Detection of Structural Abnormalities in Acute

Lymphocytic Leukemia from the G-Banded Karyotypes. In 2018 International

CET Conference on Control, Communication, and Computing (IC4)(pp. 346-

351). IEEE.

 

Saengsiri, P., Meesad, P., Wichian, S. N., & Herwig, U. (2011, 17-19 May 2011).

Classification models based-on incremental learning algorithm and feature

selection on gene expression data. Paper presented at the The 8th Electrical

Engineering/ Electronics, Computer, Telecommunications and Information

Technology (ECTI) Association of Thailand - Conference 2011.

 

Salem, H., Attiya, G., & El-Fishawy, N. (2015, 29-30 Dec. 2015). Gene expression

profiles based Human cancer diseases classification. Paper presented at the

2015 11th International Computer Engineering Conference (ICENCO).

 

Salimi, N., & Rezaei, J. (2018). Evaluating firms’ R&D performance using best worst

method. Evaluation and program planning, 66, 147-155.

 

Salman, O., Zaidan, A., Zaidan, B., Naserkalid, & Hashim, M. (2017). Novel

methodology for triage and prioritizing using “big data” patients with chronic

heart diseases through telemedicine environmental. International Journal of

Information Technology & Decision Making, 16(05), 1211-1245.

 

Saritha, M., Prakash, B. B., Sukesh, K., & Shrinivas, B. (2016, 3-5 March 2016).

Detection of blood cancer in microscopic images of human blood samples: A

review. Paper presented at the 2016 International Conference on Electrical,

Electronics, and Optimization Techniques (ICEEOT).

 

Serrai, W., Abdelli, A., Mokdad, L., & Hammal, Y. (2016, 27-30 June 2016). An

efficient approach for Web service selection. Paper presented at the 2016 IEEE

Symposium on Computers and Communication (ISCC).

 

Serrai, W., Abdelli, A., Mokdad, L., & Hammal, Y. (2017). Towards an efficient and

a more accurate web service selection using MCDM methods. Journal of

Computational Science, 22, 253-267.

doi:https://doi.org/10.1016/j.jocs.2017.05.024

 

Sexton, J., & Laake, P. (2008). LogitBoost with errors-in-variables. Computational

Statistics & Data Analysis, 52(5), 2549-2559.

 

Shafique, S., & Tehsin, S. (2018). Computer-Aided Diagnosis of Acute

Lymphoblastic Leukemia. Computational and Mathematical Methods in

Medicine. doi:10.1155/2018/6125289

 

Soni, F., Sahu, L., Getnet, M. E., & Reta, B. Y. (2018, May). Supervised Method for

Acute Lymphoblastic Leukemia Segmentation and Classification Using Image

Processing. In 2018 2nd International Conference on Trends in Electronics

and Informatics (ICOEI) (pp. 1075-1079). IEEE.

 

Shankar, V., Deshpande, M. M., Chaitra, N., & Aditi, S. (2016, 24-24 Oct. 2016).

Automatic detection of acute lymphoblasitc leukemia using image processing.

Paper presented at the 2016 IEEE International Conference on Advances in

Computer Applications (ICACA).

 

Sharma, R., Singh, S. N., & Khatri, S. (2016, 12-13 Feb. 2016). Medical Data Mining

Using Different Classification and Clustering Techniques: A Critical Survey.

Paper presented at the 2016 Second International Conference on

Computational Intelligence & Communication Technology (CICT).

 

Sheela, Y. J., & Krishnaveni, S. H. (2017, 20-21 April 2017). A comparative analysis

of various classification trees. Paper presented at the 2017 International

Conference on Circuit ,Power and Computing Technologies (ICCPCT).

 

Shi, T. W., Moorthy, K., Mohamad, M. S., Deris, S., Omatu, S., & Yoshioka, M.

(2014, 7-8 Nov. 2014). Random Forest and Gene Ontology for functional

analysis of microarray data. Paper presented at the 2014 IEEE 7th

International Workshop on Computational Intelligence and Applications

(IWCIA).

 

Shih, H.-S., Shyur, H.-J., & Lee, E. S. (2007). An extension of TOPSIS for group

decision making. Mathematical and Computer Modelling, 45(7), 801-813.

doi:https://doi.org/10.1016/j.mcm.2006.03.023

 

Shojaei, P., Haeri, S. A. S., & Mohammadi, S. (2018). Airports evaluation and

ranking model using Taguchi loss function, best-worst method and VIKOR

technique. Journal of Air Transport Management, 68, 4-13.

 

Shojaei, P., Seyed Haeri, S. A., & Mohammadi, S. (2018). Airports evaluation and

ranking model using Taguchi loss function, best-worst method and VIKOR

technique. Journal of Air Transport Management, 68, 4-13.

doi:https://doi.org/10.1016/j.jairtraman.2017.05.006

 

Shrivastava, P., & Shukla, M. (2015, 8-10 Oct. 2015). Comparative analysis of

bagging, stacking and random subspace algorithms. Paper presented at the

2015 International Conference on Green Computing and Internet of Things

(ICGCIoT).

 

Singh, A. (2014). Major MCDM Techniques and their application-A Review (Vol. 4).

 

Singh, G., Bathla, G., & Kaur, S. (2016, 29-30 April 2016). A review to detect

leukemia cancer in medical images. Paper presented at the 2016 International

Conference on Computing, Communication and Automation (ICCCA).

 

Singhal, V., & Singh, P. (2014, Feb. 28 2014-March 2 2014). Local Binary Pattern

for automatic detection of Acute Lymphoblastic Leukemia. Paper presented at

the 2014 Twentieth National Conference on Communications (NCC).

 

Snousy, M. B. A., El-Deeb, H. M., Badran, K., & Khlil, I. A. A. (2011). Suite of

decision tree-based classification algorithms on cancer gene expression data.

Egyptian Informatics Journal, 12(2), 73-82.

doi:http://dx.doi.org/10.1016/j.eij.2011.04.003

 

Soares, C., Montgomery, L., Rouse, K., & Gilbert, J. E. (2008, 11-13 Dec. 2008).

Automating Microarray Classification Using General Regression Neural

Networks. Paper presented at the 2008 Seventh International Conference on

Machine Learning and Applications.

 

Sofuoglu, M. A., & Orak, S. (2017). A Novel Hybrid Multi Criteria Decision Making

Model: Application to Turning Operations. International Journal of Intelligent

Systems and Applications in Engineering, 5(3), 124-131.

 

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures

for classification tasks. Information Processing & Management, 45(4), 427-

437. doi:https://doi.org/10.1016/j.ipm.2009.03.002

 

Srisukkham, W., Zhang, L., Neoh, S. C., Todryk, S., & Lim, C. P. (2017). Intelligent

leukemia diagnosis with bare-bones PSO based feature optimization. Applied

Soft Computing, 56, 405-419. doi:https://doi.org/10.1016/j.asoc.2017.03.024

 

Subramanian, S., Srinivasan, V. B., & Ramasa, C. (2012). Study on classification

algorithms for network intrusion systems. Journal of Communication and

Computer, 9(11), 1242-1246.

 

Sultana, M., Haider, A., & Uddin, M. S. (2016, 22-24 Sept. 2016). Analysis of data

mining techniques for heart disease prediction. Paper presented at the 2016

3rd International Conference on Electrical Engineering and Information

Communication Technology (ICEEICT).

 

Supardi, N. Z., Mashor, M. Y., Harun, N. H., Bakri, F. A., & Hassan, R. (2012, 23-25

March 2012). Classification of blasts in acute leukemia blood samples using knearest

neighbour. Paper presented at the 2012 IEEE 8th International

Colloquium on Signal Processing and its Applications.

 

Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2017). Using the

Analytic Hierarchy Process to identify parameter weights for developing a

water quality index. Ecological Indicators, 75(Supplement C), 220-233.

doi:https://doi.org/10.1016/j.ecolind.2016.12.043

 

Tai, W. L., Hu, R. M., Hsiao, H. C. W., Chen, R. M., & Tsai, J. J. P. (2011, 5-7 Dec.

2011). Blood Cell Image Classification Based on Hierarchical SVM. Paper

presented at the 2011 IEEE International Symposium on Multimedia.

 

Tavana, M., & Hatami-Marbini, A. (2011). A group AHP-TOPSIS framework for

human spaceflight mission planning at NASA. Expert Systems with

Applications, 38(11), 13588-13603.

doi:https://doi.org/10.1016/j.eswa.2011.04.108

 

Tenório, J. M., Hummel, A. D., Cohrs, F. M., Sdepanian, V. L., Pisa, I. T., & de

Fátima Marin, H. (2011). Artificial intelligence techniques applied to the

development of a decision–support system for diagnosing celiac disease.

International Journal of Medical Informatics, 80(11), 793-802.

doi:https://doi.org/10.1016/j.ijmedinf.2011.08.001

 

Thokala, P., Devlin, N., Marsh, K., Baltussen, R., Boysen, M., Kalo, Z., . . . Watkins,

J. (2016). Multiple Criteria Decision Analysis for Health Care Decision

Making—An Introduction: Report 1 of the ISPOR MCDA Emerging Good

Practices Task Force. Value in health, 19(1), 1-13.

 

Tian, Z.-p., Wang, J.-q., & Zhang, H.-y. (2018). An integrated approach for failure

mode and effects analysis based on fuzzy best-worst, relative entropy, and

VIKOR methods. Applied Soft Computing.

doi:https://doi.org/10.1016/j.asoc.2018.03.037

 

Torkaman, A., Charkari, N. M., Aghaeipour, M., & Hajati, E. (2009, 24-26 June

2009). A recommender system for detection of leukemia based on cooperative

game. Paper presented at the 2009 17th Mediterranean Conference on Control

and Automation.

 

Tran, V. N., Ismail, W., Hassan, R., & Yoshitaka, A. (2016, July 31 2016-Aug. 4

2016). An automated method for the nuclei and cytoplasm of Acute Myeloid

Leukemia detection in blood smear images. Paper presented at the 2016 World

Automation Congress (WAC).

 

Trentesaux, D., Pach, C., Bekrar, A., Sallez, Y., Berger, T., Bonte, T., . . . Barbosa, J.

(2013). Benchmarking flexible job-shop scheduling and control systems.

Control Engineering Practice, 21(9), 1204-1225.

doi:https://doi.org/10.1016/j.conengprac.2013.05.004

 

Verma, A., & Mehta, S. (2017, 12-13 Jan. 2017). A comparative study of ensemble

learning methods for classification in bioinformatics. Paper presented at the

2017 7th International Conference on Cloud Computing, Data Science &

Engineering - Confluence.

 

Wahbeh, A. H., Al-Radaideh., Q. A., Al-Kabi., M. N., & Al-Shawakfa., a. E. M.

(2011). A comparison study between data mining tools over some

classification methods. International Journal of Advanced Computer Science

and Applications,, Special Issue on Artificial Intelligence, 18-26.

 

Wahhab, H. T. A. (2015). Classification of acute leukemia using image processing

and machine learning techniques. University of Malaya.

 

Wan Ahmad, W. N. K., Rezaei, J., Sadaghiani, S., & Tavasszy, L. A. (2017).

Evaluation of the external forces affecting the sustainability of oil and gas

supply chain using Best Worst Method. Journal of Cleaner Production, 153,

242-252. doi:https://doi.org/10.1016/j.jclepro.2017.03.166

 

Wang, H.-Q., Wong, H.-S., Huang, D.-S., & Shu, J. (2007). Extracting gene

regulation information for cancer classification. Pattern Recognition, 40(12),

3379-3392. doi:http://dx.doi.org/10.1016/j.patcog.2007.04.007

 

Wang, H.-Q., Wong, H.-S., Zhu, H., & Yip, T. T. C. (2009). A neural network-based

biomarker association information extraction approach for cancer

classification. Journal of Biomedical Informatics, 42(4), 654-666.

doi:http://dx.doi.org/10.1016/j.jbi.2008.12.010

 

Wang, S.-L., Li, X., Zhang, S., Gui, J., & Huang, D.-S. (2010). Tumor classification

by combining PNN classifier ensemble with neighborhood rough set based

gene reduction. Computers in Biology and Medicine, 40(2), 179-189.

doi:http://dx.doi.org/10.1016/j.compbiomed.2009.11.014

 

Wang, X., & Wang, S. (2016). Enhanced algorithm for high-dimensional data

classification. Applied Soft Computing, 40, 1-9.

doi:http://dx.doi.org/10.1016/j.asoc.2015.10.051

 

Wang, Z., & Palade, V. (2007, 14-17 Oct. 2007). A Comprehensive Fuzzy-Based

Framework for Cancer Microarray Data Gene Expression Analysis. Paper

presented at the 2007 IEEE 7th International Symposium on BioInformatics

and BioEngineering.

 

Whaiduzzaman, M., Gani, A., Anuar, N. B., Shiraz, M., Haque, M. N., & Haque, I. T.

(2014). Cloud service selection using multicriteria decision analysis. The

Scientific World Journal, 2014.

 

Yang, Q., Zhang, Z., You, X., & Chen, T. (2016). Evaluation and Classification of

Overseas Talents in China Based on the BWM for Intuitionistic Relations.

Symmetry, 8(11), 137.

 

Yas, Q. M., Zaidan, A., Zaidan, B., Rahmatullah, B., & Karim, H. A. (2017).

Comprehensive Insights into Evaluation and Benchmarking of Real-time Skin

Detectors: Review, Open Issues & Challenges, and Recommended Solutions.

Measurement.

 

Yas, Q. M., Zaidan, A. A., Zaidan, B. B., Rahmatullah, B., & Abdul Karim, H.

(2018). Comprehensive insights into evaluation and benchmarking of realtime

skin detectors: Review, open issues & challenges, and recommended

solutions. Measurement, 114, 243-260.

doi:https://doi.org/10.1016/j.measurement.2017.09.027

 

Yongqiang, D., Bin, H., Yun, S., Chengsheng, M., Jing, C., Xiaowei, Z., . . . Hanshu,

C. (2015, 9-12 Nov. 2015). Feature selection of high-dimensional biomedical

data using improved SFLA for disease diagnosis. Paper presented at the 2015

IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

 

Yusen, Z., & Liangyun, R. (2010, 23-26 Sept. 2010). Two feature selections for

analysis of microarray data. Paper presented at the 2010 IEEE Fifth

International Conference on Bio-Inspired Computing: Theories and

Applications (BIC-TA).

 

Zaidan, A., Zaidan, B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., & Abdulnabi, M.

(2015). Evaluation and selection of open-source EMR software packages

based on integrated AHP and TOPSIS. Journal of Biomedical Informatics, 53,

390-404.

 

Zaidan, A., Zaidan, B., Albahri, O., Alsalem, M., Albahri, A., Yas, Q. M., & Hashim,

M. (2018). A review on smartphone skin cancer diagnosis apps in evaluation

and benchmarking: coherent taxonomy, open issues and recommendation

pathway solution. Health and Technology, 1-16.

 

Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., Albahri, A. S., Yas, Q.

M., & Hashim, M. (2018). A review on smartphone skin cancer diagnosis apps

in evaluation and benchmarking: coherent taxonomy, open issues and

recommendation pathway solution. Health and Technology.

doi:10.1007/s12553-018-0223-9

 

Zaidan, A. A., Zaidan, B. B., Hussain, M., Haiqi, A., Mat Kiah, M. L., & Abdulnabi,

M. (2015). Multi-criteria analysis for OS-EMR software selection problem: A

comparative study. Decision Support Systems, 78(Supplement C), 15-27.

doi:https://doi.org/10.1016/j.dss.2015.07.002

 

Zaidan, B., & Zaidan, A. (2017). Software and hardware FPGA-based digital

watermarking and steganography approaches: Toward new methodology for

evaluation and benchmarking using multi-criteria decision-making techniques.

Journal of Circuits, Systems and Computers, 26(07), 1750116.

 

Zaidan, B., Zaidan, A., Abdul Karim, H., & Ahmad, N. (2017). A new approach

based on multi-dimensional evaluation and benchmarking for data hiding

techniques. International Journal of Information Technology & Decision

Making, 1-42.

 

Zaidan, B. B., & Zaidan, A. A. (2017). Software and Hardware FPGA-Based Digital

Watermarking and Steganography Approaches: Toward New Methodology for

Evaluation and Benchmarking Using Multi-Criteria Decision-Making

Techniques. Journal of Circuits, Systems and Computers, 26(07), 1750116.

doi:10.1142/s021812661750116x

 

Zaidan, B. B., Zaidan, A. A., Karim, H. A., & Ahmad, N. N. (2017). A new digital

watermarking evaluation and benchmarking methodology using an external

group of evaluators and multi-criteria analysis based on ‘large-scale data’.

Software: Practice and Experience, 47(10), 1365-1392. doi:10.1002/spe.2465

 

Zavadskas, E. K., Kaklauskas, A., Turskis, Z., Tamo, J., #353, aitien, & #279. (2009).

Multi-Attribute Decision-Making Model by Applying Grey Numbers.

Informatica, 20(2), 305-320.

 

Zhang, C., Gao, W., Song, J., & Jiang, J. (2016, 14-16 Feb. 2016). An imbalanced

data classification algorithm of improved autoencoder neural network. Paper

presented at the 2016 Eighth International Conference on Advanced

Computational Intelligence (ICACI).

 

Zhang, L., Qian, L., Ding, C., Zhou, W., & Li, F. (2015). Similarity-balanced

discriminant neighbor embedding and its application to cancer classification

based on gene expression data. Computers in Biology and Medicine, 64, 236-

245. doi:http://dx.doi.org/10.1016/j.compbiomed.2015.07.008

 

Zhang, L., & Xiaojuan, H. (2015, 12-17 July 2015). Multiple SVM-RFE for multiclass

gene selection on DNA Microarray data. Paper presented at the 2015

International Joint Conference on Neural Networks (IJCNN).

 

Zhao, H., Guo, S., & Zhao, H. (2017). Comprehensive benefit evaluation of ecoindustrial

parks by employing the best-worst method based on circular

economy and sustainability. Environment, Development and Sustainability, 1-

25.

 

Zhiyong, Y., Jingcheng, L., & Zhang, T. (2016, 15-18 Dec. 2016). Extreme Large

Margin Distribution Machine and its applications for biomedical datasets.

Paper presented at the 2016 IEEE International Conference on Bioinformatics

and Biomedicine (BIBM).

 

Zhou, C., Wan, L., & Liang, Y. (2010). A hybrid algorithm of minimum spanning tree

and nearest neighbor for classifying human cancers. Paper presented at the

Advanced Computer Theory and Engineering (ICACTE), 2010 3rd

International Conference on.

 

Zionts, S. (1979). MCDM-If not a Roman Numeral, then what? Interfaces, 9(4), 94-

101.

 

Zupan, B., & Demsar, J. (2008). Open-source tools for data mining. Clinics in

Laboratory Medicine, 28(1), 37-54.

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.