UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :RD Surgery
Main Author :Arkan, Algarahi Alhussein
Title :Epoxy/fish scales hydroxyapatite (FsHAp) composites toughened by liquid natural rubber for biomedical applications
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2019
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
The aims of this study were to improve the mechanical properties, thermal stability and biocompatibility of epoxy/fish scales hydroxyapatite (FsHAP) composite toughened with liquid natural rubber. The FsHAp was extracted from Tilapia fish scales using thermal method while liquid natural rubber was produced from poly(methyl methacrylate) grated natural rubber (MG30) via oxidative and photo degradation methods label as LMG30A and LMG30B, respectively. The analysis of liquid natural rubber was carried out using Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR) and gel permeation chromatography (GPC) have shown that no significant chemical structure change between both LMG30 (A and B) and MG30. GPC analysis exhibited that the average molecular weight of LMG30A (29,307Da) was lower than LMG30B (97,693Da). The fracture toughness of the epoxy was increased up to 23 fold (15.2 MPa.m1/2) when epoxy loading with 10 wt% FsHAp and toughened with 6 phr LMG30A, whereas impact strength and flexural test increased up to twice as compared to neat epoxy. The morphology was characterized using field emission scanning electron microscope (FESEM) showed uniform dispersion of rubber particles within the epoxy matrix with average diameter between 0.7 and 1.2 μm. Differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA) curves have showed the thermal stability of the epoxy/FsHAp/LMG30A composite higher as compared to neat epoxy. The epoxy/FsHAp/LMG30A composite was proven to be biocompatible through cytotoxicity test. In conclusion, the epoxy/FsHAp/LMG30A composite shown higher mechanical properties, thermal stability and biocompatibility as compared to neat epoxy. As an implication, the developed epoxy/FsHAp/LMG30A composite is potential to be used as medical device applications.

References

Abdul,  A.,  Yop,  K.,  Jin,  S.,  &  Hui,  D.  (2013).  Composites :  Part  B  Epoxy  clay 

nanocomposites  processing  ,  properties  and  applications :  A  review.  Composites Part B, 

45(1), 308–320. https://doi.org/10.1016/j.compositesb.2012.04.012

 

Abdullah,  I.  (1994).  Liquid  Natural  Rubber:  Preparation  and  Application.  Progress  in 

Pacific Polymer Science 3, 351–365. https://doi.org/10.1007/978-3-642-78759-1_30

 

Abraham, A., Ajith, S. D., & Divya, K. S. S. (2014). Management chemical synthesis of bone-like 

hydroxyapatite from cuttle, 4(1), 2–5.

 

Acrylonitrile,  C.  B.,  Xu,  S.,  Song,  X.,  &  Cai,  Y.  (2016).  Mechanical  Properties and     

 Morphologies      of      Liquid      Rubber/Epoxy      Blends      Compatibilized. 

https://doi.org/10.3390/ma9080640

 

Adam,   C.,   Lacoste,   J.,   &   Lemaire,   J.   (1991).   Photo-oxidation   of   polyisoprene. 

Polymer  Degradation  and  Stability,  32(1),  51–69.  https://doi.org/10.1016/0141- 

3910(91)90062-V

 

Ahmad, S. H. (2014). Thermal and flexural properties of room-temperature cured PMMA grafted natural 

rubber toughened epoxy layered silicate nanocomposite

 

Ahmad,   T.,   &   Mamat,   O.   (2013).   Studying   the   Effects   of   Adding   Silica   Sand 

Nanoparticles on Epoxy Based Composites, 2013.

 

Ahmad,  Z.,  Ansell,  M.  P.,  & Smedley,  D.  (2010).  Thermal  Properties  of  Epoxy-Based 

Adhesive Reinforced With Nano And Micro-Particles For In-Situ Timber Bonding, (02).

 

Ahmadi,  Z.  (2019).  Progress  in  Organic  Coatings  Epoxy  in  nanotechnology :  A  short 

review, 132(February), 445–448. https://doi.org/10.1016/j.porgcoat.2019.04.003

 

Ahmed, M. A., Kandil, U. F., Shaker, N. O., & Hashem, A. I. (2015). The overall effect of  reactive 

 rubber  nanoparticles  and  nano  clay  on  the  mechanical  properties  of epoxy   resin.   

Journal   of   Radiation   Research   and   Applied   Sciences,   1–13. 

https://doi.org/10.1016/j.jrras.2015.06.01

 

Abbey,   W.   (1983).   Deformation   and   fracture   behaviour   of   a   rubber-toughened epoxy 

:Failure criteria, 24(type C).

 

Akbari,  R.,  &  Hosain,  M.  (2013).  Toughening  of  dicyandiamide-cured  DGEBA-based epoxy 

resins by CTBN liquid rubber, 313–324. https://doi.org/10.1007/s13726-013- 0130-x

 

Allahverdi,  A.,  Ehsani,  M.,  Janpour,  H.,  &  Ahmadi,  S.  (2012).  Progress  in  Organic 

Coatings  The  effect  of  nanosilica  on  mechanical  ,  thermal  and  morphological properties   

of   epoxy   coating.   Progress   in   Organic   Coatings,   75(4),   543–548.

https://doi.org/10.1016/j.porgcoat.2012.05.013

 

Analyst, T., & Mcmahon, G. (2008). Detection of calcium phosphate crystals in the joint fluid of 

patients with osteoarthritis   analytical approaches and challenges, (i), 302– 318. 

https://doi.org/10.1039/b716791a

 

Arbor, A. (1991). Influence of particle size and particle size distribution on toughening 

mechanisms in rubber-modified epoxies, 26, 3828–3829.

 

Armentano,   I.,   Dottori,   M.,   Fortunati,   E.,   Mattioli,   S.,   &   Kenny,   J.   M.   

(2010). Biodegradable     polymer     matrix     nanocomposites     for     tissue     engineering 

: A     review.     Polymer     Degradation     and     Stability,     95(11),     2126–2146. 

https://doi.org/10.1016/j.polymdegradstab.2010.06.007

 

Arsad,  M.  S.  M.,  Lee,  P.  M.,  &  Lee,  K.  H.  (2011).  Synthesis  and  Characterization  of 

Hydroxyapatite     Nanoparticles     and     β-TCP     Particles.     2nd     International 

Conference       on       Biotechnology       and       Food       Science,       7,       184–188 

https://doi.org/10.4028/www.scientific.net/DDF.312-315.423

 

Ashcroft,  W.  R.  (1993).  Curing  agents  for  epoxy  resins.  Chemistry  and  Technology  of 

Epoxy Resins, 37–71. https://doi.org/10.1007/978-94-011-2932-9_2

 

Aswathi, K. P., Hanna, P., George, J. K., & Shameer, K. (2017). Effect of Natural Rubber Latex as 

admixtures in concrete, 2031–2034.

 

Auad, M. L., Frontini, P. M., Borrajo, J., & Aranguren, M. I. (2001). Liquid rubber modi ed vinyl 

ester resins : fracture and mechanical behavior, 42, 3723–3730.

 

Azhar, N.  H. A.,  Rasid,  H. M.,  & Yusoff, S.  F.  M. (2016). Chemical  modifications of liquid   

   natural      rubber.      AIP      Conference      Proceedings,      1784,      1–7. 

https://doi.org/10.1063/1.4966762

 

Azis, Y., Jamarun, N., Arief, S., & Nur, H. (2015). Facile Synthesis of Hydroxyapatite Particles 

from Cockle Shells ( Anadaragranosa ) by Hydrothermal Method.

 

Bac, N. V., Terlemezyan, L., & Mlhallov, M. (1993). Epoxidation of Natural Rubber in latex in the 

Presence of a Reducing Agent, 50, 845–849.

 

Baharvand,  H.,  & Rahimi,  A.  (2014).  Effect  of  Modified  Liquid  Rubber  on  Increasing 

Toughness of Epoxy Resins.

 

Bahrololoom,  M.  E.,  Javidi,  M.,  Javadpour,  S.,  &  Ma,  J.  (2009).  Characterisation  of 

natural hydroxyapatite extracted from bovine cortical bone ash, 10(2), 129–138.

 

Bakar,  A.  (2012).  Effect  of  Epoxidized  Natural  Rubber  on  Mechanical  Properties  of Epoxy 

Reinforced Kenaf Fibre Composites, 20(January 2011), 129–137.

 

Bano, N., Jikan, S. S., Basri, H., Adzila, S., Bakar, S. A., & Nuhu, A. H. (2017). Natural te 

Extracted From Bovine Bone, 9(2), 22–28.

 

Barbosa,  A.  Q.,  Silva,  L.  F.  M.,  Abenojar,  J.,  Figueiredo,  M.,  &  Öchsner,  A.  (2016). 

Toughness  of  a  brittle  epoxy resin  reinforced  with  micro  cork  particles:  Effect  of size, 

       amount        and        surface        treatment.        Composites        Part        B. 

https://doi.org/10.1016/j.compositesb.2016.10.072

 

Barcia, F. L., Amaral, T. P., & Soares, B. G. (2003). Synthesis and properties of epoxy resin   

modified   with   epoxy-terminated   liquid   polybutadiene,   44,   5811–5819. 

https://doi.org/10.1016/S0032-3861(03)00537-8

 

Barthel,    H.    (2007).    Effect    of    sub-micron    silica    fillers    on    the    

mechanical performances          of          epoxy-based          composites,          48,          

1596–1605. https://doi.org/10.1016/j.polymer.2007.01.053

 

Bascom, D. (1975). The Fracture of Epoxy- and Elastomer-Modified Epoxy Polymers in Bulk and as 

Adhesives, 19, 2545–2562.

 

Beisele,  C.,  &  Kultzow,  B.  (2001).  Experiences  with  new  hydrophobic  cycloaliphatic epoxy 

outdoor insulation systems. IEEE Electrical Insulation Magazine, 17(4), 33– 39. 

https://doi.org/10.1109/57.948982

 

Ben Saleh, a. B., Mohd Ishak, Z. a., Hashim,  a. S., & Kamil, W. a. (2009). Compatibility

, mechanical , thermal , and morphological properties of epoxy resin modified with 

carbonyl-terminated  butadiene  acrylonitrile  copolymer  liquid  rubber.  Journal  of Physical 

Science, 20(1), 1–12.

 

Bobby,  S.,  &  Samad,  M.  A.  (2019).  Chapter  5.  Epoxy  composites  in  biomedical 

engineering.  Materials  for  Biomedical  Engineering:  Thermoset  and  Thermoplastic Polymers. 

Elsevier Inc. https://doi.org/10.1016/B978-0-12-816874-5.00005-0

 

Brusentseva,  Filippov,  A.,  Fomin,  V.,  Smirnov,  S.  V.,  &  Veretennikova,  I.  (2015). 

Modification of Epoxy Resin with Silica Nanoparticles and Process Engineering of Composites  Based  

on  Them.  Mechanics  of  Composite  Materials,  51(4),  531–538. 

https://doi.org/10.1007/s11029-015-9523-6

 

Bucknall, C. B., & Smith, R. R. (1983.). Stress-whitening in High-impact Polystyrenes, 437–446.

 

Cai,  Y.,  Mei,  D.,  Jiang,  T.,  &  Yao,  J.  (2010).  Synthesis  of  oriented  hydroxyapatite 

crystals :  Effect  of  reaction  conditions  in  the  presence  or  absence  of  silk  sericin. 

Materials Letters, 64(24), 2676–2678. https://doi.org/10.1016/j.matlet.2010.08.071

 

Cardoso,  G.  B.  C.,  Tondon,  A.,  Maia,  L.  R.  B.,  Cunha,  M.  R.,  Zavaglia,  C.  A.  C.,  & 

Kaunas,  R.  R.  (2019).  Materials  Science  &  Engineering  C  In  vivo  approach  of calcium  de 

 fi  cient  hydroxyapatite  fi  ller  as  bone  induction  factor,  99(February), 999–1006. 

https://doi.org/10.1016/j.msec.2019.02.060

 

Centre, M. E. (1993). Dilatational bands in rubber-toughened polymers, 28, 6799–6808.

 

Chaikumpollert, O., Sae-heng, K., Wakisaka, O., & Mase, A. (2011). Low temperature

degradation   and  characterization  of  natural   rubber.   Polymer  Degradation  and 

Stability,96(11), 1989–1995. https://doi.org/10.1016/j.polymdegradstab.2011.08.010

 

Chandrasekar,   A.,   Sagadevan,   S.,   &   Dakshnamoorthy,   A.   (2013).   Synthesis   and 

characterization of nano-hydroxyapatite (n-HAP ) using the wet chemical technique, 8(32), 

1639–1645. https://doi.org/10.5897/IJPS2013.3990

 

Chen,   J,  Kinloch,   A.  J.,  Sprenger,   S.,   &  Taylor,   A.   C.   (2013).   The  mechanical 

properties    and    toughening    mechanisms    of    an    epoxy    polymer    modified with    

polysiloxane-based    core-shell    particles.    Polymer,    54(16),    4276–4289. 

https://doi.org/10.1016/j.polymer.2013.06.009

 

Chen,  Jingdi,  Wang,  Y.,  Chen,  X.,  Ren,  L.,  Lai,  C.,  He,  W.,  &  Zhang,  Q.  (2011).  A 

simple sol-gel technique for synthesis of nanostructured hydroxyapatite , tricalcium phosphate    

and    biphasic    powders.    Materials    Letters,    65(12),    1923–1926. 

https://doi.org/10.1016/j.matlet.2011.03.076

 

Chen, Li, Chai, S., Liu, K., Ning, N., Gao, J., Liu, Q., Fu, Q. (2012). Enhanced epoxy / silica  

composites  mechanical  properties  by  introducing  graphene  oxide  to  the interface.

 

Chen, Liang, Mccrate, J. M., Lee, J. C. M., & Li, H. (2011). The role of surface charge on the  

uptake  and  biocompatibility  of  hydroxyapatite  nanoparticles  with  osteoblast cells. 

Nanotechnology, 22(10). https://doi.org/10.1088/0957-4484/22/10/105708

 

Chen, Z., Liu, Y., Mao, L., Gong, L., Sun, W., & Feng, L. (2017). Effect of cation doping on the 

structure of hydroxyapatite and the mechanism of defluoridation.  Ceramics International. 

https://doi.org/10.1016/j.ceramint.2017.12.191

 

Cheng,  Q.,  Li,  J.,  Li,  S.,  &  Zhi,  K.  (2019).  Corrosion  resistance  and  antibacterial 

properties   of   hydroxyapatite   coating   induced   by   gentamicin-loaded   polymeric 

multilayers   on   magnesium   alloys.   Colloids   and   Surfaces   B:   Biointerfaces. 

https://doi.org/10.1016/j.colsurfb.2019.04.029

 

Chiang, C., Chang, R., & Chiu, Y. (2007). Thermal stability and degradation kinetics of novel 

organic / inorganic epoxy hybrid containing nitrogen / silicon / phosphorus by sol – gel method, 

453, 97–104. https://doi.org/10.1016/j.tca.2006.11.013

 

Chikhi, N., Fellahi, S., & Bakar, M. (2002). Modi ® cation of epoxy resin using reactive liquid ( 

ATBN ) rubber, 38, 251–264.

 

Cholake,  S.  T.,  Mada,  M.  R.,  Raman,  R.  K.  S.,  Bai,  Y.,  Zhao,  X.  L.,  Rizkalla,  S.,  

& Bandyopadhyay, S. (2014). Quantitative Analysis of Curing Mechanisms of Epoxy Resin  by Mid-  and 

 Near-  Fourier  Transform  Infra  Red  Spectroscopy,  64(3),  314– 321.

 

Chot, K., Yang, J., & Park, C. E. (1997). The effect of interfacial adhesion on toughening

behaviour of rubber modified poly( methyl methacrylate), 38(20), 5161–5167.

 

Chuayjuljit, S., Soatthiyanon, N., & Potiyaraj, P. (2006). Polymer blends of epoxy resin

Science,  102(1),  452–

459. https://doi.org/10.1002/app.24193

 

Cizravi,  J.  C.,  &  Subramaniam,  K.  (1999).  Thermal  and  mechanical  properties  of 

epoxidized natural rubber modified epoxy matrices, 895(October 1998), 889–895.

 

Comyn,  J.,  Horley,  C.  C.,  Oxley,  D.  P.,  Pritchard,  R.  G.,  &  Tegg,  J.  L.    (1981). 

The     Application     of      Inelastic     Electron      Tunnelling     Spectroscopy     to 

Epoxide       Adhesives.The       Journal       of       Adhesion,       12(3),       171–188. 

https://doi.org/10.1080/00218468108071199

 

Cunningham, D. J., Deorio, J. K., Nunley, J. A., Easley, M. E., & Adams, S. B. (2019). The Effect 

of Patient Characteristics on 1 to 2-Year and Minimum 5-Year Outcomes After Total Ankle 

Arthroplasty, 199–208.

 

Dadfar,  M.  R.,  &  Ghadami,  F.  (2013).  Effect  of  rubber  modification  on  fracture 

toughness properties of glass reinforced hot cured epoxy composites. Materials and Design, 47, 

16–20. https://doi.org/10.1016/j.matdes.2012.12.035

 

Danible  Reyx  and  Irine  Campistron.  (1997).  Controlled  degradation  in  tailor-made 

macromolecules  elaboration.  conirolled  chainaeavages  of  polydienes  by  oxidation and by 

metathesis, 247, 197–211.

 

Dodiuk, H., & Kenig, S. (1994). Low temperature curing epoxies for. Science, 19, 439– 467.

 

Domun, N., Hadavinia, H., Zhang, T., Liaghat, G., Vahid, S., Spacie, C., … Liaghat, G. (2017).  

Improving  the  fracture  toughness  properties  of  epoxy  using  graphene nanoplatelets  at  low  

filler  content  Improving  the  fracture  toughness  properties  of epoxy   using   graphene   

nanoplatelets   at   low   filler   content.   Nanocomposites, 0324(September), 1–12. 

https://doi.org/10.1080/20550324.2017.1365414

 

Dorigato,    A.,    Pegoretti,    A.,    &    Quaresimin,    M.    (2011).    Thermo-mechanical 

characterization of epoxy / clay nanocomposites as matrices for carbon / nanoclay / epoxy  

laminates.  Materials  Science  &  Engineering  A,  528(19–20),  6324–6333. 

https://doi.org/10.1016/j.msea.2011.04.042

 

Ebenezer,   V.,   Balakrishnan,   K.,   &   Sargunar,   R.   B.   (2015).   Nano   Hdroxyapatite 

Particulate Graft in Immediate Implant Placement - A Review of 10 Cases, 8, 421– 424.

 

Egan,  S.  S.  Æ.  D.  (2006).  The  interlaminar  toughness  of  carbon-fibre  reinforced plastic  

     composites       using       ‘hybrid-toughened       matrices,       5043–5046. 

https://doi.org/10.1007/s10853-006-0130-8

 

El-tantawy, F., Aal, N. A., El-daly, A. A., & Abdel-daiem, A. M. (2004). A new phantom model   and  

 attenuation   backing   from   epoxy   resin   nanosized   hydroxyapatite

carbon     black     and     multifunctional     agent     composites,     58,     3388–3394.

https://doi.org/10.1016/j.matlet.2004.03.039

 

Fabio, L., Nascimento, C., Monteiro, S. N., Henrique, L., Louro, L., Santos, F.,  Braga, F.

D. O. (2018). Charpy impact test of epoxy composites reinforced with untreated and mercerized 

mallow fibers 4–11. https://doi.org/10.1016/j.jmrt.2018.03.008

 

Fainleib,  A.,  Pires,  R.  V,  Lucas,  E.  F.,  &  Soares,  B.  G.  (2013).  Degradation  of  Non- 

vulcanized  Natural  Rubber  –  Renewable  Resource  for  Fine  Chemicals  Used  in Polymer 

Synthesis, 23, 441–450.

 

Fan, H. B., & Yuen, M. M. F. (2007). Material properties of the cross-linked epoxy resin compound   

 predicted    by    molecular    dynamics    simulation,    48,    2174–2178. 

https://doi.org/10.1016/j.polymer.2007.02.007

 

Fara,  A.  N.  K.  A.,  &  Abdullah,  H.  Z.  (2015).  Characterization  of  Derived  Natural 

Hydroxyapatite ( HAp ) Obtained From Different Types of Tilapia Fish Bones and, 020077. 

https://doi.org/10.1063/1.4919215

 

Fernández,   B.,   Arbelaiz,   A.,   Diaz,   E.,   &   Mondragon,   I.   (2004).   Influence   of 

Polyethersulfone  Modification  of  a  Tetrafunctional  Epoxy  Matrix  on  the  Fracture Behavior   

of   Composite   Laminates   Based   on   Woven   Carbon   Fibers,   25(5). 

https://doi.org/10.1002/pc.20041

 

Fihri,  A.,  Len,  C.,  Varma,  R.  S.,  &  Solhy,  A.  (2017).  Hydroxyapatite :  A  review  of 

syntheses  ,  structure  and  applications  in  heterogeneous  catalysis  q.  Coordination 

Chemistry Reviews, 347, 48–76. https://doi.org/10.1016/j.ccr.2017.06.009

 

Fisica,  C.  De,  Avanzada,  T.,  &  Nacional,  U.  (2009).  Preparation  and  properties  of  ( 

epoxy resin )/( nylon 6 , 6 oligomer ) blends, 3(2).

 

Fouad,  H.,  Elleithy,  R.,  &  Alothman,  O.  Y.  (2013).  Thermo-mechanical  ,  Wear  and 

fracture behavior of high-density polyethylene / hydroxyapatite nano composite for biomedical 

applications : effect of accelerated ageing. Journal of Materials Science & Technology, 29(6), 

573–581. https://doi.org/10.1016/j.jmst.2013.03.020

 

Feng,  X.  Q.,  Lauke,  B.,  &  Mai,  Y.  W.  (2008).  Effects  of  particle  size,  

particle/matrix interface  adhesion  and  particle  loading  on  mechanical  properties  of  

particulate- polymer    composites.    Composites    Part    B:    Engineering,    39(6),    

933–961. https://doi.org/10.1016/j.compositesb.2008.01.002

 

Fu,   T.   A.   O.,   &   Zhao,   J.   (2004).   Preparation   of   carbon   fiber   fabric   

reinforced hydroxyapatite / epoxy composite by RTM processing, 9, 1411–1413.

 

Gallagher,  J.  C.,  &  Harsha,  S.  (2013).  Prevention  and  treatment  of  postmenopausal 

osteoporosis.   Journal   of   Steroid   Biochemistry   and   Molecular   Biology,   1–16. 

https://doi.org/10.1016/j.jsbmb.2013.09.008

 

Gan,  L.,  & Ng,  S.  (1986).  Kinetic  studies  of  the  performic  acid  epoxidation  of  natural

rubber latex, 22(7), 573–576.

 

Gardette,   J.,   Lacoste,   J.,   Baba,   M.,   &   Bussie,   P.   (2005).   Characterization   of 

photodegradation  of  polybutadiene  and  polyisoprene :  chronology  of  crosslinking 

andchain-scission,88,182–18.https://doi.org/10.1016/j.polymdegradstab.2004.02.013

 

Garg,  A.  C.  (2006).  Failure  Mechanisms  in  Toughened  Epoxy  Resins  Review  A,

31(1988), 179–223.

 

Garg A.C., Mai Y.W., 1988, Failure mechanisms in toughened epoxy resins- A review, Composites 

science and technology, 31, 179.

 

Gazi,  R.  (2019).  Composite  organic  encapsulate  fi  lm  with  epoxy  and  benzoxazine,

116(January), 453–462. https://doi.org/10.1016/j.eurpolymj.2019.04.039

 

Ge,  X.,  Ren,  C.,  Lu,  X.,  Li,  Z.,  Chen,  G.,  Wang,  K.,   Qian,  B.  (2019).  

Surfactant-free electrochemical  synthesis  of  fluoridated  hydroxyapatite  nanorods  for  

biomedical applications. Ceramics International. https://doi.org/10.1016/j.ceramint.2019.05.292

 

Ghahremani, D., Mobasherpour,  I., Manafi, S.,  & Keramatpour, L. (2013). Potential of nano  

crystalline  calcium  hydroxyapatite  for  Tin  (  II  )  removal  from  aqueous solutions :   

Equilibria   and   kinetic   processes.   Arabian   journal   of   chemistry. 

https://doi.org/10.1016/j.arabjc.2012.10.006

 

Ghosh, P. K., Studies, E., & Halder, S. (2012). Influence of nanoparticle weight fraction on  

morphology  and  thermal  properties  of  epoxy/TiO2  nanocomposite.  Journal  of Reinforced, 

(September). https://doi.org/10.1177/0731684412455955

 

Giang,  L.  D.,  Thao,  D.  L.  M.,  Huong,  H.  T.,  &  Thu  Hiep,  L.  T.  (2016).  Synthesis  of 

hydroxyl   terminated   liquid   natural   rubber   by   oxidative   depolymerization   of 

deproteinized  natural  rubber.  Journal  of  Science  and  Technology,  54(3),  340–346. 

https://doi.org/10.15625/0866-708X/54/3/7240

 

Gillier-ritoit, S., Laguerre, A., Singh, R. P., & Polyme, L. (2002). Telechelic cis -1 , 4- 

Oligoisoprenes    through    the    Selective    Oxidolysis    of    Epoxidized    Monomer Units  

and  Polyisoprenic  Monomer  Units  in  cis  -1  ,  4-Polyisoprenes,  6,  4–8. 

https://doi.org/10.1002/app.11661

 

Gojny,  F.  H.  (2004).  SCIENCE  AND  Carbon  nanotube-reinforced  epoxy-composites : enhanced 

stiffness and fracture toughness at low nanotube content, 64, 2363–2371. 

https://doi.org/10.1016/j.compscitech.2004.04.002

 

Göktürk, E., & Erdal, H. (2017). Biomedical applications of polyglycolic acid ( PGA ) Poliglikolik  

Asit  ’  in  (  PGA  )  Biyomedikal  uygulamalar?,  21(6),  1237–1244. 

https://doi.org/10.16984/saufenbilder.283156

 

González, M. G., Cabanelas, J. C., & Baselga, J. (1988). Applications of FTIR on Epoxy resins – 

identification , monitoring the curing process , phase separation and water uptake,

 

Granito, R. N., Claudia, A., Renno, M., Yamamura, H., Almeida, M. C. De, Luiz, P., …

Ribeiro,  D.  A.  (2018).  Hydroxyapatite  from  fish  for  bone  tissue  engineering:  a

promising approach, (1).

 

Guo, X., Yan, H., Zhao,  S., Zhang,  L.,  Li, Y., & Liang, X. (2013). Effect of calcining 

temperature    on    particle    size    of    hydroxyapatite    synthesized    by    solid- state  

   reaction     at     room     temperature.     Advanced     powder     technology. 

https://doi.org/10.1016/j.apt.2013.03.002

 

Guo, Y., Zhao, P., Wang, X., Xu, D., Zhong, J., Yue, G., & Shuai, M. (2017). for epoxy polymer  and 

 the  effect  of  water  on  its  damage  indicating  ability,  17(1),  57–64. 

https://doi.org/10.1515/epoly-2016-0135

 

Haider, A., Haider, S., Han, S., & Kang, I. (2017). RSC Advances Recent advances in the synthesis , 

functionalization and biomedical applications of hydroxyapatite :, 7442– 7458. 

https://doi.org/10.1039/c6ra26124h

 

Hajian,  M.,  Reisi,  M.  R.,  &  Zanjanijam,  A.  R.  (2012).  Preparation  and  characteri zation 

    of     Polyvinylbutyral/Graphene     Nanocomposite,     (November     2014). 

https://doi.org/10.1007/s10965-012-9966-6

 

Hamzah, R., Bakar, M. A., Khairuddean, M., Mohammed, I. A., & Adnan, R. (2012). A Structural    

Study    of    Epoxidized    natural    rubber    (ENR-50)    and    Its    cyclic dithiocarbonate  

 derivative   using   NMR   spectroscopy  techniques,   10974–10993. 

https://doi.org/10.3390/molecules170910974

 

Harun,  F.,  &  Chan,  C.  H.  (2017).  Electronic  Applications  of  Polymer  Electrolytes  of 

Epoxidized Natural Rubber, (December). https://doi.org/10.1007/978-3-319-23663- 6

 

Heo,  S.  Y.,  Seol,  J.  W.,  &  Kim,  N.  S.  (2014).  Characterisation  and  assessment  of 

electrospun  Poly/hydroxyapatite  nanofibres  together  with  a  cell  adhesive  for  bone repair 

applications, 2014(1301001074), 498–501.

 

Hedrick, J. L., Yilgör, I., Wilkes, G. L., & Mc Grath, J. E. (1985). Chemical modification of 

matrix Resin networks with engineering thermoplastics. Polymer Bulletin, 13(3), 201-208.

 

Hisham, S. F., Ahmad, I., Daik, R., & Ramli, A. (2011). Blends of LNR with unsaturated polyester  

resin  from  recycled  PET:  Comparison  of  mechanical  properties  and morphological   analysis   

with   the   optimum   blend   by   commercial   resin.   Sains Malaysiana, 40(7), 729–735. 

https://doi.org/10.1111/j.1365-2699.2007.01732.x

 

Hong,  Z., Zhang, P., He, C., Qiu, X.,  &  Liu, A. (2005). Nano-composite of poly ( L - lactide    

)    and    surface    grafted    hydroxyapatite :    Mechanical    properties    and 

biocompatibility, 26, 6296–6304. https://doi.org/10.1016/j.biomaterials.2005.04.018

 

Hong, Z., Zhang, P., Liu, A., Chen, L., Chen, X., & Jing, X. (2006). Composites of poly ( lactide-  

 co   -glycolide   )   and   the   surface   modified   carbonated   hydroxyapatite

nanoparticles. https://doi.org/10.1002/jbm.a

 

Hooshmand, T., & Abrishamchian, A. (2014). Development of sol-gel-derived multi-wall carbon  

nanotube  /  hydroxyapatite  nanocomposite  powders  for  bone  substitution, (November 2015). 

https://doi.org/10.1177/0021998313475368

 

Hourston, D. J., Lane, J. M., & Macbeath, N. A. (1991). Toughening of Epoxy Resins with  

Thermoplastics  .  II  .  Tetrafunctional  Epoxy  Resin-Polyetherimide  Blends  *, 26(September 

1990), 19–20.

 

Husamelden, E., & Fan, H. (2019). Fluorinated functionalization of graphene oxide and its role as a 

reinforcement in epoxy composites.

 

Hull   D   (1996)   Influence   of   stress   intensity   and   crack   speed   on   fracture   

surface topography: mirror to mist to macroscopic bifurcation. J Mater Sci 31:4483–4492

 

Ibrahim,   S.,   Othman,   N.,   Sreekantan,   S.,   &   Tan,   K.   S.   (2018).   Preparation   

and Characterization     of     Low-Molecular-Weight     Natural     Rubber     Latex     via 

Photodegradation Catalyzed by Nano TiO2 https://doi.org/10.3390/polym10111216

 

Ibrahim, S., Daik, R., & Abdullah, I. (2014). Functionalization of liquid natural rubber via   

oxidative   degradation   of   natural   rubber.   Polymers,   6(12),   2928–2941. 

https://doi.org/10.3390/polym6122928

 

Ibrahim,  S.,  Mustafa,  A.,  Chemicals,  F.,  &  Programme,  B.  (2014).  Effect  of  reagents 

concentration  and  ratio  on  degradation  of  natural  rubber  latex  in  acidic  medium 18(2), 

405–414.

 

Ibrahim,  S.,  Othman,  N.,  Nor,  Z.  M.,  &  Ismail,  H.  (2017).  Preliminary  study  on 

photochemical        degradation        of        natural        rubber        latex,        22–26. 

https://doi.org/10.1002/masy.201600033

 

Ikoma, T., & Yamazaki, A. (1999). Preparation and Structure Refinement of Monoclinic 

Hydroxyapatite, 276, 3–4.

 

Im,   H.&   Kim,   J.   (2012).   Thermal    conductivity   of    a    graphene   oxide-carbon 

nanotube        hybrid/epoxy        composite.        Carbon,        50(15),        5429–5440. 

https://doi.org/10.1016/j.carbon.2012.07.029

 

Inoue, K., Ohgushi, H., Yoshikawa, T., Okumura, M., Sempuku, T., Tamai, S., & Dohi,

Y.  (1997).  The  effect  of  aging  on  bone  formation  in  porous  hydroxyapatite: Biochemical  

and  histological  analysis.  Journal  of  Bone  and  Mineral  Research, 12(6), 989–994. 

https://doi.org/10.1359/jbmr.1997.12.6.989

 

Jaafar,  C.  N.,  Zainol,  I.,  &  Mohd  Amin,  M.  (2017).  Fish  scales  Hydroxyapatite  as 

potential  fillers  in  HDPE  composites  for  bone  replacement  Applications.  In  Solid State 

Phenomena (Vol. 264, pp. 79-82). Trans Tech Publications.

 

Jansen, B. J. P., Tamminga, K. Y., Meijer, H. E. H., & Lemstra, P. J. (1999). Preparation of 

thermoset rubbery epoxy particles as novel toughening modifiers for glassy epoxy

resins. Polymer, 40(20), 5601–5607. https://doi.org/10.1016/S0032-3861(98)00774-

 

Jin,  F.   L.,  &  Park,  S.  J.  (2012).  Thermal  properties  of  epoxy  resin/filler  hybrid 

composites.     Polymer     Degradation     and     Stability,     97(11),     2148–2153. 

https://doi.org/10.1016/j.polymdegradstab.2012.08.015

 

Jin,   H.,   Huang,   W.,   Zhu,   X.,   Zhou,   Y.,   &   Yan,   D.   (2012).   Biocompatible or   

biodegradable   hyperbranched   polymers:   From   self-assembly   to   cytomim etic      

applications.      Chemical      Society      Reviews,      41(18),      5986–5997. 

https://doi.org/10.1039/c2cs35130g

 

Johnsen, B. B., Kinloch, A. J., Mohammed, R. D., Taylor, A. C., & Sprenger, S. (2007). Toughening 

mechanisms of nanoparticle-modified epoxy polymers. Polymer, 48(2), 530–541. 

https://doi.org/10.1016/j.polymer.2006.11.038

 

Johnsen,  B.  B.,  Kinloch,  A.  J.,  &  Taylor,  A.  C.  (2006).  Toughness  of  Syndiotactic 

Polystyrene / Epoxy Polymer Blends : Microstructure and toughening mechanisms toughness of 

syndiotactic polystyrene / epoxy polymer blends : Microstructure and Toughening Mechanisms, (May 

2017).

 

Jyotishkumar,  P.,  Koetz,  J.,  Tiersch,  B.,  Strehmel,  V.,  Özdilek,  C.,  Moldenaers,  P.,  … 

Thomas, S. (2009). Complex  phase separation in poly ( acrylonitrile  -  butadiene - styrene ) 

-modified epoxy / 4 , 4 ′ -diaminodiphenyl sulfone blends : generation of new micro- and 

nanosubstructures, 5418–5430.

 

Kalita,   S.   J.,   Bhardwaj,   A.,   &   Bhatt,   H.   A.   (2007).   Nanocrystalline   calcium 

phosphate       ceramics        in       biomedical       engineering,        27,       441–449. 

https://doi.org/10.1016/j.msec.2006.05.018

 

Kalita,  S.  J.,  &  Verma,  S.  (2010).  Nanocrystalline  hydroxyapatite  bioceramic  using 

microwave   radiation :   Synthesis   and   characterization.   Materials   Science   & Engineering 

C, 30(2), 295–303. https://doi.org/10.1016/j.msec.2009.11.007

 

Kamalanathan, P. (2014). Development of hydroxyapatite from natural fish bone through heat 

treatment Development of Hydroxyapatite from Natural Fish Bone, (July 2006).

 

Kang,  S.,  Il,  S.,  Rim,  C.,  Park,  M.,  Rim,  S.,  &  Kim,  J.  (2001).  Preparation  and 

characterization  of  epoxy  composites  lled  with  functionalized  nanosilica  particles obtained 

via sol gel process, 42.

 

Kargarzadeh,   H.,   Ahmad,   I.,   &   Abdullah,   I.   (2017).   Mechanical   Properties   of 

Epoxy/Rubber Blends. https://doi.org/10.1007/978-3-319-40043-3

 

Kargarzadeh,  H.,  Ahmad,  I.,  Abdullah,  I.,  Thomas,  R.,  Dufresne,  A.,  Thomas,  S.,  & 

Hassan,  A.  (2015).  Functionalized  liquid  natural  rubber  and  liquid  epoxidized natural  

rubber:  A  promising  green  toughening  agent  for  polyester.  Journal  of Applied Polymer 

Science, 132(3), 1–15. https://doi.org/10.1002/app.41292

 

Kunz-Douglass  S,  Beaumont  PWR,  Ashby  MF  (1980)  A  model  for  the  toughness  of

epoxy–rubber particulate composites. J Mater Sci 15:1109–1123

 

Kattimani,   V.   S.,   Kondaka,   S.,   &   Lingamaneni,   K.   P.   (2016).   Hydroxyapatite 

Past.       Present       ,       and       Future       in       Bone       Regeneration,       

9–19. https://doi.org/10.4137/BTRI.S36138

 

Kim,  J.  R.,  &  Kim,  J.  J.  (2017).  Epoxy  resins  toughened  with  surface  modified 

epoxidized natural rubber fibers by one-step electrospinning. Materials, 10(5), 1–13. 

https://doi.org/10.3390/ma10050464

 

Kim, S. C., & Science, P. (1995). The effect of the viscosity of epoxy prepolymer on the generated 

morphology in rubber-toughened epoxy resin, 36, 2189–2195.

 

Klinklai,   W.,   Kawahara,   S.,   &   Mizumo,   T.   (2003).   Depolymerization   and   ionic 

conductivity of enzymatically deproteinized natural rubber having epoxy group, 39, 1707–1712. 

https://doi.org/10.1016/S0014-3057(03)00060-0

 

Klinpituksa,   P.,   Saetung,   A.,   Rungvichaniwat,   A.,   Laguerre,   A.,   Phinyocheep,   P., 

Messiaen, A. O., & Cedex, L. M. (n.d.). Controlled Degradation of natural rubber and  modification  

of  the  obtained  telechelic  oligoisoprenes :  preliminary  study  of their potentiality as 

polyurethane foam precursors. https://doi.org/10.1002/app

 

Kontaxis, L. C., Pavlou, C., Portan, D. V., & Papanicolaou, G. C. (2018). Effect of saline 

absorption  on  the  flexural  stress  relaxation  behavior  of  epoxy/cotton  composite materials  

 for   orthopedics   applications.   AIP   Conference   Proceedings,   1932. 

https://doi.org/10.1063/1.5024170

 

Kodama, S., Nishi, K., and Furukawa, M. (2003). Preparation of  low molecular weight natural rubber 

by ozonolysis of high ammonia latex.  Journal of Rubber Research, 6(3), 153-163.

 

Kumar, K. D., & Kothandaraman, B. (2008). Modification of (DGEBA) epoxy resin with maleated  

depolymerised  natural  rubber.  Express  Polymer  Letters,  2(4),  302–311. 

https://doi.org/10.3144/expresspolymlett.2008.36

 

Kunz,   S.   C.,  Sayre,   J.   A.,   &  Assink,   R.   A.   (1982).   Morphology  and   toughness 

characterization  of  epoxy  resins  modified  with  amine  and  carboxyl  terminated rubbers, 

23(December 1897), 1897–1906.

 

Laboratories,  S.,  &  Street,  T.  (1980).  A  model  for  the  toughness  of  epoxy-rubber 

particulate composites, 15, 1109–1123.

 

Latha,  P.  B.,  Adhinarayanan,  K.,  &  Ramaswamy,  R.  (1994).  Epoxidized  hydroxy- terminated 

polybutadiene synthesis , characterization and toughening studies, 14(1), 57–61.

 

Lange FF (1970) The interaction of a crack front with a second phase dispersion. Philos

Mag 22:983–992

 

Lalande, L., Plummer, C. J. G., & Ma, J. E. (2006). The influence of matrix modification on  

fracture  mechanisms  in  rubber  toughened  polymethylmethacrylate,  47,  2389– 2401. 

https://doi.org/10.1016/j.polymer.2006.02.016

 

Le, H., Natesan, K., & Pranti-haran, S. (2015). Mechanical property and biocompatibility of   

co-precipitated   nano   hydroxyapatite   gelatine   composites,   4(3),   237–243. 

https://doi.org/10.1007/s40145-015-0155-z

 

Lee, H. J., Kim, S. E., Choi, H. W., Kim, C. W., Kim, K. J., & Lee, S. C. (2007). Polymer

The    effect    of    surface-modified    nano-hydroxyapatite    on    biocompatibility of   poly  

 (e-caprolactone   )/   hydroxyapatite   nanocomposites,   43,   1602–1608. 

https://doi.org/10.1016/j.eurpolymj.2007.02.030

 

Leelachai, K., Kongkachuichay, P., & Dittanet, P. (2017). Toughening of epoxy hybrid nanocomposites 

 modified  with  silica  nanoparticles  and  epoxidized  natural  rubber. 

https://doi.org/10.1007/s10965-017-1202-y

 

Lei,  F.,  Zhang,  C.,  Cai,  Z.,  Yang,  J.,  Sun,  H.,  &  Sun,  D.  (2018).  Epoxy  Toughening 

with        Graphite        Fluoride :        Toward        High        Toughness.        Polymer. 

https://doi.org/10.1016/j.polymer.2018.07.084

 

Leyva,  M.  E.,  Antonio,  A.,  &  Queiroz,  A.  De.  (2008).  Epoxy  Networks  for  Medicine 

Applications :    Mechanical    Properties    and    In    Vitro    biological    properties. 

https://doi.org/10.1002/app

 

Lin, K., & Chang, J. (2015). 1  Structure and properties of hydroxyapatite for biomedical 

applications. hydroxyapatite (hap) for biomedical applications (Vol. 4214). Elsevier Ltd. 

https://doi.org/10.1016/B978-1-78242-033-0.00001-8

 

Liu, M., Guo, B., & Du, M. (2008). Natural inorganic nanotubes reinforced epoxy resin 

nanocomposites, 205–212. https://doi.org/10.1007/s10965-007-9160-4

 

Liu,  Q.,  Wijn,  J.  R.  De,  Groot,  K.  De,  &  Blitterswijk,  C.  A.  Van.  (1998).  Surface 

modification of nano-apatite by grafting organic polymer, 19, 1067–1072.

 

Liu,  Y.,  Hsu,  C.,  Wei,  W.,  &  Jeng,  R.  (2003).  Preparation  and  thermal  properties  of 

epoxy-silica   nanocomposites   from   nanoscale   colloidal   silica,   44,   5159–5167. 

https://doi.org/10.1016/S0032-3861(03)00519-6

 

Lo, J., Cano, J., Torres, A., Abad, M. J., Barral, L., & D?, F. J. (2002). Characterization of an   

        ABS-modified           epoxy           system,           1276(February),           2–6

https://doi.org/10.1002/pi.940.

 

Madhav, H., Singh, N.,  & Jaiswar, G.  (2019). Chapter 4. Thermoset, bioactive, metal– polymer 

composites for medical applications. materials for biomedical engineering: thermoset and 

thermoplastic Polymers. Elsevier Inc. https://doi.org/10.1016/B978-0- 12-816874-5.00004-9

 

Margolina, A., & Souheng, W. (1988). Percolation model for brittle-tough transition in

nylon / rubber blends, 29, 2170–2173.

 

Mathew, V. S., George, S. C., Parameswaranpillai, J., & Thomas, S. (2014). Epoxidized natural  

rubber/epoxy blends:  Phase  morphology  and  thermomechanical  properties. Journal of Applied 

Polymer Science, 131(4), 1–9. https://doi.org/10.1002/app.39906

 

Mathew, V. S., Jyotishkumar, P., George, S. C., Gopalakrishnan, P., Delbreilh, L., Saiter,

J.  M.,  Thomas,  S.  (2011).  High  Performance  HTLNR  /  Epoxy  Blend  —  Phase Morphology and 

Thermo-Mechanical Properties. https://doi.org/10.1002/app

 

Mathew,  V.  S.,  Sinturel,  C.,  George,  S.  C.,  &  Thomas,  S.  (2010).  Epoxy  resin/liquid 

natural  rubber  system:  Secondary  phase  separation  and  its  impact  on  mechanical 

properties.        Journal        of        Materials        Science,        45(7),        

1769–1781. https://doi.org/10.1007/s10853-009-4154-8

 

May,  M.,  Wang,  H.  M.,  &  Akid,  R.  (2010).  Effects  of  the  addition  of  inorganic 

nanoparticles   on   the   adhesive   strength   of   a   hybrid   sol   gel   epoxy   system. 

International     Journal     of     Adhesion     and     Adhesives,     30(6),     505–512. 

https://doi.org/10.1016/j.ijadhadh.2010.05.002

 

Mazzocchetti, L., Benelli, T., Angelo, E. D., Guadagno, L., Naddeo, C., Raimondo, M., Koo,  B.  

(2018).  composites  properties  of  structural  advanced  materials  matrix composites   In   situ 

  curing   of   liquid   epoxy   via   gold-   nanoparticle   mediated photothermal heating.

 

Mcgarry, F. J., & A, Prsl. (1970). Building Design with Fibre Reinforced Materials, 59– 68. 

https://doi.org/10.1098/rspa.1970.0165

 

Mezzenga,  R.,  Boogh,  L.,  &  Ma,  J.  E.  (2001).  A  review  of  dendritic  hyperbranched 

polymer  as  modi?ers  in  epoxy.pdf,  61,  787–795.  https://doi.org/10.1109/SBAC- PADW.2014.7

 

Miranda,   M.,   Esteban-tejeda,   L.,   &   Malpartida,   F.   (2010).   Silver-hydroxyapatite 

nanocomposites as bactericidal and fungicidal materials, 101.

 

Mohanty,  A.,  &  Srivastava,  V.  K.  (2015).  Effect  of  alumina  nanoparticles  on  the 

enhancement  of  impact  and  flexural  properties  of  the  short  glass  /  carbon  fiber 

reinforced  epoxy  based  effect  of  alumina  nanoparticles  on  the  enhancement  of impact  and  

flexural  properties  of  the  short  glass  /  carbon  fiber  reinforced  epoxy Based Composites, 

(January). https://doi.org/10.1007/s12221-015-0188-5

 

Mondal, S., Bardhan, R., Mondal, B., Dey, A., Mukhopadhyay, S. S., Roy, S., & Roy, K. (2012).   

Synthesis   ,   characterization   and   in   vitro   cytotoxicity   assessment   of hydroxyapatite 

from different bioresources for tissue, 35(4), 683–691.

 

Mondal, S., Hoang, G., Manivasagan, P., Moorthy, M. S., Kim, H. H., Tuong, T., … Oh,

J.  (2019).  Comparative  characterization  of  biogenic  and  chemical  synthesized hydroxyapatite 

   biomaterials    for    potential    biomedical    application.    Materials Chemistry and 

Physics. https://doi.org/10.1016/j.matchemphys.2019.02.021

 

Monika,  Š.  (2015).  Substituted  hydroxyapatites  for  biomedical  applications :  A  review,

41, 9203–9231. https://doi.org/10.1016/j.ceramint.2015.03.316

 

Monmaturapoj,   N.,   Srion,   A.,   Chalermkarnon,   P.,   Buchatip,   S.,   Petchsuk,   A., 

Noppakunmongkolchai,  W.,  &  Mai-Ngam,  K.  (2017).  Properties  of  poly(lactic 

acid)/hydroxyapatite composite through the use of epoxy functional compatibilizers for  biomedical  

application.  Journal  of  Biomaterials  Applications,  32(2),  175–190. 

https://doi.org/10.1177/0885328217715783

 

Moolsin,  S.,  Saksayamkul,  N.,  &  Wichien,   A.  N.  (2017).  Natural   rubber   grafted 

poly(methyl  methacrylate)  as  compatibilizer  in  50/50  natural  rubber/nitrile  rubber blend.   

    Journal       of       Elastomers       and       Plastics,       49(5),       422–439. 

https://doi.org/10.1177/0095244316671021

 

Moore,  D.  C.,  Chapman,  M.  W.,  &  Manske,  D.  (1987).  The  evaluation  of  a  biphasic 

calcium  phosphate  ceramic  for  use  in  grafting  long?  bone  diaphyseal  defects. Journal      

      of            Orthopaedic            Research,            5(3),            356–365. 

https://doi.org/10.1002/jor.1100050307

 

Morwood,  M.  P.,  &  Garrigues,  G.  E.  (2015).  Shoulder  arthroplasty in  the  patient  with 

metal hypersensitivity. Journal of Shoulder and Elbow Surgery, 24(7), 1156–1164. 

https://doi.org/10.1016/j.jse.2015.01.015

 

Murugan,  R.,  &  Ramakrishna,  S.  (2004).  Coupling  of  therapeutic  molecules  onto surface     

    modified         coralline         hydroxyapatite,         25,         3073–3080. 

https://doi.org/10.1016/j.biomaterials.2003.09.089

 

Nandi,  S.  K.,  Kundu,  B.,  Mukherjee,  J.,  Mahato,  A.,  Datta,  S.,  & Balla,  V.  K.  (2015). 

Converted marine coral hydroxyapatite implants with growth factors: In vivo bone regeneration.     

Materials     Science     and     Engineering     C,     49,     816–823. 

https://doi.org/10.1016/j.msec.2015.01.078

 

Nath,  N.,  &  Krishna,  P.  (2013).  Extraction  and  characterization  of  biocompatible 

hydroxyapatite   from   fresh   water   fish   scales   for   tissue   engineering   scaffold. 

https://doi.org/10.1007/s00449-013-1009-0

 

Nazir, K., Aziz, A. F., Adam, N. I., Yahya, M. Z. A., & Ali, A. M. M. (2015). Effect of epoxidation 

 on  30%  poly(methyl  methacrylate)-grafted  natural  rubber  polymer electrolytes. AIP Conference 

Proceedings, 1674. https://doi.org/10.1063/1.4928838

 

Nogueira,  P.,  Ram,  C.,  Abad,  M.  J.,  Barral,  L.,  Cano,  J.,  L,  J.,  &  Torres,  A.  

(2001). Thermal  decomposition  behavior  and  the  mechanical  properties  of  an  epoxy  / 

cycloaliphatic amine resin with ABS, 37, 1613–1623.

 

Noorshashillawati Azura Mohammad, , S. H. A., Nor, N. E., & Ain Mohammad, N. H.

M.  H.  (2019).  Mechanical  Properties  of  Epoxy Matrix  Composites  Toughened  by Liquid       

Epoxidized       Natural       Rubber       (LENR),       (December       2018).

https://doi.org/10.30880/ijie.2018.10.08.025

 

Nor, H. M., & Ebdon, J. R. (1998). Telechelic liquid natural rubber: A review. Progress

in Polymer Science, 23(2), 143-177.

 

Odegard, G. M., Jensen, B. D., Gowtham, S., Wu, J., He, J., & Zhang, Z. (2014).

Predicting mechanical response of crosslinked epoxy using ReaxFF. Chemical

Physics Letters, 591, 175–178. https://doi.org/10.1016/j.cplett.2013.11.036

 

Oladele, I. O., Akinola, O. S., Agbabiaka, O. G., & Omotoyinbo, J. A. (2018).

Mathematical model for the prediction of impact energy of organic material based

hydroxyapatite (HAp) reinforced epoxy composites. Fibers and Polymers, 19(2),

452–459. https://doi.org/10.1007/s12221-018-7844-5

 

Olszta, M. J., Cheng, X., Soo, S., Kumar, R., Kim, Y., Kaufman, M. J., … Gower, L. B.

(2007). Bone structure and formation : A new perspective, 58, 77–116.

https://doi.org/10.1016/j.mser.2007.05.001

 

Ozeren Ozgul, E., & Ozkul, M. H. (2018). Effects of epoxy, hardener, and diluent types

on the workability of epoxy mixtures. Construction and Building Materials, 158,

369–377. https://doi.org/10.1016/j.conbuildmat.2017.10.008

 

Puglia, D., Al-maadeed, M. A. S. A., Kenny, J. M., & Thomas, S. (2017). Elastomer /

thermoplastic modified epoxy nanocomposites : The hybrid effect of ‘ micro ’ and ‘

nano ’ scale. Materials Science & Engineering R, 116, 1–29.

https://doi.org/10.1016/j.mser.2017.03.001

 

Parameswaranpillai, J., Hameed, N., Pionteck, J., & Woo, E. M. (2017). Handbook of

epoxy blends. Handbook of Epoxy Blends, 1–1121. https://doi.org/10.1007/978-3-

319-40043-3

 

Pascault JP (2002) Yielding and fracture of toughened networks. In: Pascault JP,

Sautereau H, Verdu J, Williams RJJ (eds) Thermosetting polymers. Marcel Dekker

Incorporated, New York, pp 389–408

 

Park, Y. K., & Cho, C. H. (2016). Effects of additives on the mechanical and

thermal properties of epoxy-based nanocomposites produced using sonication.

Korean Journal of Chemical Engineering, 33(6), 1938–1941.

https://doi.org/10.1007/s11814-016-0034-5

 

Parra, C., Gonzalez, G., & Albano, C. (2009). Synthesis and characterization of

composite materials HDPE/HA and PMMA/HA prepared by sonochemistry.

Macromolecular Symposia, 286(1), 60–69. https://doi.org/10.1002/masy.200951208

 

Pearson, R A, Yee, A. F., Building, D., & Arbor, A. (1989). Toughening mechanisms in

elastomer-modified epoxies, 24, 2571–2580.

 

Pearson, Raymond A. (1993). Toughening Epoxies Using Rigid Thermoplastic Particles.

 

Pearson, Raymond A, & Yee, A. F. (1992). Toughening mechanisms in thermoplasticmodified

epoxies . Modification using poly ( phenylene oxide ).

 

Phinyocheep, P., Phetphaisit, C. W., Derouet, D., Campistron, I., & Brosse, J. C. (2005).

Chemical degradation of epoxidized natural rubber using periodic acid: Preparation

of epoxidized liquid natural rubber. Journal of Applied Polymer Science, 95(1), 6–

15. https://doi.org/10.1002/app.20812

 

Phinyocheep, P., Saelao, J., & Buzare, J. Y. (2007). Mechanical properties , morphology

and molecular characteristics of poly ( ethylene terephthalate ) toughened by natural

rubber, 48, 5702–5712. https://doi.org/10.1016/j.polymer.2007.07.016

 

Pla, P., Raquez, J., Habibi, Y., Murariu, M., & Dubois, P. (2013). Progress in Polymer

Science. Progress in Polymer Science, 38(10–11), 1504–1542.

https://doi.org/10.1016/j.progpolymsci.2013.05.014

 

Plowright, R., Belto, D. J., Kaplan, D. L., & Perry, C. C. (2017). Quantifying the

efficiency of hydroxyapatite mineralising peptides, 1–9.

https://doi.org/10.1038/s41598-017-07247-z

 

Polymdres, L. De, & Boveri, B. (1983). The fracture of particulate-filled epoxide resins,

18, 208–216.

 

Poonpipat, Y., Leelachai, K., Pearson, R. A., & Dittanet, P. (2017). Fracture behavior of

silica nanoparticles reinforced rubber / epoxy composite, 1–12.

https://doi.org/10.1177/0731684417709952

 

Poundarik, A. A., Wu, P., Evis, Z., & Sroga, G. E. (2015). A direct role of collagen

glycation in bone fracture. Journal of the Mechanical Behavior of Biomedical

Materials, 52, 120–130. https://doi.org/10.1016/j.jmbbm.2015.08.012

 

Pramanik, N., Mishra, D., Banerjee, I., Maiti, T. K., Bhargava, P., & Pramanik, P. (2009).

Chemical Synthesis, characterization, and biocompatibility study of

hydroxyapatite/chitosan phosphate nanocomposite for bone tissue engineering

applications. International Journal of Biomaterials, 2009, 1–8.

https://doi.org/10.1155/2009/512417

 

Provenzi, C., Leitune, V. C., Collares, F. M., Trommer, R., Bergmann, C. P., & Samuel,

S. M. (2014). Interface evaluation of experimental dental adhesives with

nanostructured hydroxyapatite incorporation. Applied Adhesion Science, 2(1), 1–5.

https://doi.org/10.1186/2196-4351-2-2

 

Rabie, A. B. M., Wong, R. W. K., & Hägg, U. (2000). Composite autogenous bone and

demineralized bone matrices used to repair defects in the parietal bone of rabbits,

565–570. https://doi.org/10.1054/bjom.2000.0464

 

Raghava, R. S. (1987). Role of Matrix-Particle Interface Adhesion on Fracture

Toughness of Dual Phase Epoxy-Polyethersulfone Blend, 25, 1017–1031.

 

Ragosta, G., Abbate, M., Musto, P., Scarinzi, G., & Mascia, L. (2005). Epoxy-silica

particulate nanocomposites : Chemical interactions , reinforcement and fracture

toughness, 46, 10506–10516. https://doi.org/10.1016/j.polymer.2005.08.028

 

Ramli, R. A., Adnan, R., Bakar, M. A., & Masudi, S. M. (2011). Synthesis and

characterisation of pure nanoporous hydroxyapatite. Journal of Physical Science,

22(1), 25–37.

 

Ramos, D., Helson, M., Soares, V. L. P., & Nascimento, R. S. V. (2005). Modification of

epoxy resin : a comparison of different types of elastomer, 24, 387–394.

https://doi.org/10.1016/j.polymertesting.2004.09.010

 

Ramsdale-capper, R., & Foreman, J. P. (2018). Internal antiplasticisation in highly

crosslinked amine cured multifunctional epoxy resins. Polymer, 146, 321–330.

https://doi.org/10.1016/j.polymer.2018.05.048

 

Ratna, D. (2001). Phase separation in liquid rubber modi ed epoxy mixture . Relationship

between curing conditions , morphology and ultimate behavior, 42, 4209–4218.

 

Ratna, D., Banthia, A. K., & Deb, P. C. (2005). Toughening of epoxy resin using

acrylate-based liquid rubbers. Journal of Applied Polymer Science, 78(4), 716–723.

https://doi.org/10.1002/1097-4628(20001024)78:4716::AID-APP403.0.CO;2-B

 

Rezaifard, A. H., Hodd, K. A., & Barton, J. M. (1993). Toughening Epoxy Resin with

Poly(methyl methacrylate)- Grafted Natural Rubber.

 

Riccardi, C. C. (1991). Rubber ? modified epoxies . II . Influence of the cure schedule

and rubber concentration on the generated morphology, (February).

https://doi.org/10.1002/app.1991.070420315

 

Road, M. E. (1984). Crack propagation in a glass particle-filled epoxy resin Part 1 Effect

of partic / e volume fraction and size, 19(Equation 1), 473–486.

 

Robinette, E. J., Ziaee, S., & Palmese, G. R. (2004). Toughening of vinyl ester resin

using butadiene-acrylonitrile rubber modifiers, 45, 6143–6154.

https://doi.org/10.1016/j.polymer.2004.07.003

 

Roeder, R. K., Converse, G. L., Kane, R. J., & Yue, W. (2008). Hydroxyapatite-

Reinforced Polymer Biocomposites for Synthetic Bone Substitutes, (March).

 

Roese, P. B., & Amico, S. C. (2009). Thermal and Microestructural Characterization of

Epoxy-Infiltrated Hydroxyapatite Composite, 12(1), 107–111.

 

Rooshenass, P., Yahya, R., & Gan, S. N. (2016). Comparison of Three Different

Degradation Methods To Produce Liquid Epoxidized Natural Rubber. Rubber

Chemistry and Technology, 89(1), 177–198. https://doi.org/10.5254/RCT.15.84878

 

Rooshenass, P., Yahya, R., & Gan, S. N. (2018). Preparation of Liquid Epoxidized

Natural Rubber by Oxidative Degradations Using Periodic Acid, Potassium

Permanganate and UV-Irradiation. Journal of Polymers and the Environment, 26(4),

1378–1392. https://doi.org/10.1007/s10924-017-1038-x

 

Rosen, V. B., Hobbs, L. W., & Spector, M. (2002). The ultrastructure of anorganic

bovine bone and selected synthetic hyroxyapatites used as bone graft substitute

materials, 23, 921–928.

 

Rouhani, P., Taghavinia, N., & Rouhani, S. (2010). Ultrasonics Sonochemistry Rapid

growth of hydroxyapatite nanoparticles using ultrasonic irradiation. Ultrasonics -

Sonochemistry, 17(5), 853–856. https://doi.org/10.1016/j.ultsonch.2010.01.010

 

Rusli, A., Cook, D., & Schiller, T. L. (2014). Blends of epoxy resins and polyphenylene

oxide as processing aids and toughening agents 2 : Curing kinetics , rheology ,

structure and properties, (January). https://doi.org/10.1002/pi.4749

 

Russell, B., & Chartoff, R. (2005). The influence of cure conditions on the morphology

and phase distribution in a rubber-modified epoxy resin using scanning electron

microscopy and atomic force microscopy, 46, 785–798.

https://doi.org/10.1016/j.polymer.2004.11.090

 

Sadat-shojai, M., Atai, M., Nodehi, A., & Nasiri, L. (2010). Hydroxyapatite nanorods as

novel fillers for improving the properties of dental adhesives :

 

Synthesis and application. Dental Materials, 26(5), 471–482.

https://doi.org/10.1016/j.dental.2010.01.005

 

Sadat-shojai, M., Khorasani, M., Dinpanah-khoshdargi, E., & Jamshidi, A. (2013). Acta

Biom aterialia Synthesis methods for nanosized hydroxyapatite in diverse structures.

acta biomaterialia, (April). https://doi.org/10.1016/j.actbio.2013.04.012

 

Saeri, M. R., Afshar, A., Ghorbani, M., Ehsani, N., & Sorrell, C. C. (2003). The wet

precipitation process of hydroxyapatite, 57, 4064–4069.

https://doi.org/10.1016/S0167-577X(03)00266-0

 

Sahu, S., & Mehra, D. (2012). Characterization and Thermal Analysis of Hydroxyapatite

Bioceramic Powder Synthesized by Sol-Gel Technique.

 

Saleh, A. B. B., Ishak, Z. A. M., Hashim, A. S., Kamil, W. A., & Ishiaku, U. S. (2014).

Synthesis and characterization of liquid natural rubber as impact modifier for epoxy

resin. Physics Procedia, 55, 129–137. https://doi.org/10.1016/j.phpro.2014.07.019

 

Sankar, S., Sekar, S., Mohan, R., Rani, S., Sundaraseelan, J., & Sastry, T. P. (2008).

Preparation and partial characterization of collagen sheet from fish. Lates

calcariferscales, 42, 6–9. https://doi.org/10.1016/j.ijbiomac.2007.08.003

 

Santos, K. A. M., Suarez, P. A. Z., & Rubim, J. C. (2005). Photo-degradation of synthetic

and natural polyisoprenes at specific UV radiations, 90, 34–43.

https://doi.org/10.1016/j.polymdegradstab.2005.01.038

 

Sarker, M. (2015). Chemical Characteristics of Hydroxyapatite from Oyster Shell by

Thermo-Chemical Process, https://doi.org/10.15680/IJIRSET.2015.0407002

 

Scalera, F., Esposito Corcione, C., Montagna, F., Sannino, A., & Maffezzoli, A. (2014).

Development and characterization of UV curable epoxy/hydroxyapatite suspensions

for stereolithography applied to bone tissue engineering. Ceramics International,

40(10), 15455–15462. https://doi.org/10.1016/j.ceramint.2014.06.117

 

Scholz, M. S., Blanchfield, J. P., Bloom, L. D., Coburn, B. H., Elkington, M., Fuller, J.

D., Bond, I. P. (2011). The use of composite materials in modern orthopaedic

medicine and prosthetic devices: A review. Composites Science and Technology,

71(16), 1791–1803. https://doi.org/10.1016/j.compscitech.2011.08.017

 

Sci, M., Med, M., Science, S., & Media, B. (2009). Problem of hydroxyapatite dispersion

in polymer matrices : a review, 1201–1213. https://doi.org/10.1007/s10856-009-

3696-2

 

Selvin, T. P., Kuruvilla, J., & Sabu, T. (2004). Mechanical properties of titanium dioxidefilled

polystyrene microcomposites. Materials Letters, 58(3–4), 281–289.

https://doi.org/10.1016/S0167-577X(03)00470-1

 

Seng, L. Y., Ahmad, S. H. J., Rasid, R., Noum, Seyeh., Hock, Y. C., & Tarawneh, M. A.

(2011). Effects of liquid natural rubber (LNR) on the mechanical properties of LNR

toughened epoxy composite. Sains Malaysiana, 40(7), 679–683.

 

Shahabi, S., Najafi, F., Majdabadi, A., Hooshmand, T., Haghbin Nazarpak, M., Karimi,

B., & Fatemi, S. M. (2014). Effect of gamma irradiation on structural and biological

properties of a PLGA-PEG-hydroxyapatite composite. Scientific World Journal,

2014. https://doi.org/10.1155/2014/420616

 

Sheinbaum, M., Sheinbaum, L., Weizman, O., Dodiuk, H., & Kenig, S. (2019).

Toughening and enhancing mechanical and thermal properties of adhesives and

glass-fiber reinforced epoxy composites by brominated epoxy. Composites Part B

https://doi.org/10.1016/j.compositesb.2019.02.020

 

Shikinami, Y., & Okuno, M. (1999). Bioresorbable devices made of forged composites of

hydroxyapatite ( HA ) particles and poly L -lactide ( PLLA ): Part I . Basic

characteristics, 20, 859–877.

 

Sivaraman, O., Ghosh, N., Gayathri, S., Sudhakara, P., Misra, S. K., & Jayaramudu, J.

(2017). Natural rubber nanoblends : preparation , characterization and applications.

https://doi.org/10.1007/978-3-319-48720-5

 

Sonoyama, W., Kuboki, T., Okamoto, S., Suzuki, H., Arakawa, H., Kanyama, M., …

Yamashita, A. (2002). Quality of life assessment in patients with implant-supported

and resin-bonded fixed prosthesis for bounded edentulous spaces. Clinical Oral

Implants Research, 13(4), 359–364. https://doi.org/10.1034/j.1600-

0501.2002.130403.x

 

Su’ait, M. S., Ahmad, A., Hamzah, H., & Rahman, M. Y. A. (2011). Effect of lithium salt

concentrations on blended 49% poly(methyl methacrylate) grafted natural rubber

and poly(methyl methacrylate) based solid polymer electrolyte. Electrochimica

Acta, 57(1), 123–131. https://doi.org/10.1016/j.electacta.2011.06.015

 

Sultan,  J.  N.,  &  Mcgarry,  F.  J.  (1973.).  Effect  of  rubber  particle  size  on  

deformation

mechanisms in glassy epoxy, 29–34.

 

Swetha, M., Sahithi, K., Moorthi, A., Srinivasan, N., Ramasamy, K., & Selvamurugan,

N. (2010). Biocomposites containing natural polymers and hydroxyapatite for bone tissue 

engineering. International Journal of Biological Macromolecules, 47(1), 1–4. 

https://doi.org/10.1016/j.ijbiomac.2010.03.015

 

Szcze?,  A.,  Ho?ysz,  L.,  &  Chibowski,  E.  (2017).  Synthesis  of  hydroxyapatite  for 

biomedical applications. Advances in Colloid and Interface Science, 249, 321–330. 

https://doi.org/10.1016/j.cis.2017.04.007

 

Tan, S. K., Ahmad, S., Chia, C. H., Mamun, A., & Heim, H. P. (2013). A Comparison Study   of   

Liquid   Natural   Rubber   (   LNR   )   and   Liquid   Epoxidized   Natural Rubber    (    LENR)  

  as    the    Toughening    Agent    for    Epoxy,    3(3),    55–61. 

https://doi.org/10.5923/j.materials.20130303.02

 

Tangpakdee,  J.,  Mizokoshi,  M.,  Endo,  A.,  &  Tanaka,  Y.  (1998.).  Novel  method  for 

preparation of low molecular weight natural rubber LATEX, 795–802.

 

Tao,  J.,  Jiang,  W.,  Pan,  H.,  Xu,  X.,  &  Ã,  R.  T.  (2007).  Preparation  of  large-sized 

hydroxyapatite single crystals using homogeneous releasing controls, 308, 151–158. 

https://doi.org/10.1016/j.jcrysgro.2007.08.009

 

Taylor, P., Knight, C. C., Zeng, C., Zhang, C., & Wang, B. (2012). Recycling of woven 

carbon-fibre-reinforced  polymer  composites  using  supercritical  water,  (November 2014), 37–41. 

https://doi.org/10.1080/09593330.2011.586732

 

Taylor, P., Qasas, N. S. Al, & Rohani, S. (2007). Synthesis of pure hydroxyapatite and the effect 

of synthesis conditions on its yield , crystallinity , morphology and mean particle size. 

https://doi.org/10.1080/01496390500385400

 

Tayton, E., Purcell, M., Aarvold, A., Smith, J. O., Briscoe, A., Kanczler, J. M., Oreffo, R.

O.  C.  (2013).  A  comparison  of  polymer  and  polymer   hydroxyapatite  composite tissue  

engineered  scaffolds  for use  in  bone  regeneration  .  An  in  vitro  and  in  vivo study, 

2613–2624. https://doi.org/10.1002/jbm.a.34926

 

Teo,   W.   Z.   W.,   &   Schalock,   P.   C.   (2016).   Metal   Hypersensitivity   Reactions   

to Orthopedic  Implants.  Dermatology  and  Therapy.  https://doi.org/10.1007/s13555- 016-0162-1

 

Thomas,  R.,  Abraham,  J.,  P,  S.  T.,  &  Thomas,  S.  (2004).  Influence  of  Carboxyl- 

Terminated  (Butadiene  co  acrylonitrile  )  Loading  on  the  Mechanical  and  Thermal Properties 

of Cured Epoxy Blends, 2531–2544. https://doi.org/10.1002/polb.20115

 

Thomas,  R.,  Yumei,  D.,  Yuelong,  H.,  Le,  Y.,  &  Moldenaers,  P.  (2008).  Miscibility  , 

morphology   ,   thermal   ,   and   mechanical   properties   of   a   DGEBA   based epoxy      

resin       toughened       with       a       liquid       rubber,       49,       278–294.

https://doi.org/10.1016/j.polymer.2007.11.030

 

TianKhoon, L., Ataollahi, N., Hassan, N. H., & Ahmad, A. (2016). Studies of porous

solid polymeric electrolytes based on poly (vinylidene fluoride) and poly (methyl

methacrylate) grafted natural rubber for applications in electro

chemical devices. Journal of Solid State Electrochemistry, 20(1), 203–213.

https://doi.org/10.1007/s10008-015-3017-2

 

Tripathi, G., & Srivastava, D. (2008). Studies on the physico-mechanical and thermal

characteristics of blends of DGEBA epoxy , 3 , 4 epoxy cyclohexylmethyl , 3 , 4 -

epoxycylohexane carboxylate and carboxyl terminated butadiene co-acrylonitrile (

CTBN ), 496, 483–493. https://doi.org/10.1016/j.msea.2008.06.035

 

Ungureanu, D. N., Angelescu, N., Ion, R. M., Stoian, E. V., & Rizescu, C. Z. (2011).

Synthesis and Characterization of Hydroxyapatite Nanopowders by Chemical

Precipitation. Recent Researches in Communications, Automation, Signal

Processing, Nanotechnology, Astronomy and Nuclear Physics , 296–301.

https://doi.org/10.1007/s40097-014-0099-9

 

Unnikrishnan, K. P., & Thachil, E. T. (2012). Designed Monomers and Polymers

Toughening of epoxy resins, (November 2014), 37–41.

https://doi.org/10.1163/156855506776382664

 

Vijayan, P. P., Pionteck, J., Huczko, A., Puglia, D., Kenny, J. M., & Thomas, S. (2014).

Liquid rubber and silicon carbide nanofiber modified epoxy nanocomposites :

Volume shrinkage , cure kinetics and properties. Composites science and

technology, 102, 65–73. https://doi.org/10.1016/j.compscitech.2014.07.017

 

Wang, J., & Shaw, L. L. (2009). Biomaterials Nanocrystalline hydroxyapatite with

simultaneous enhancements in hardness and toughness. Biomaterials, 30(34), 6565–

6572. https://doi.org/10.1016/j.biomaterials.2009.08.048

 

Wang, K., Chen, L., Wu, J., Toh, M. L., He, C., & Yee, A. F. (2005). Epoxy

Nanocomposites with Highly Exfoliated Clay : Mechanical Properties and Fracture

Mechanisms, 788–800.

 

Wang, M, Joseph, R., & Bonfield, W. (1998). Hydroxyapatite-polyethylene composites

for bone substitution : effects of ceramic particle size and morphology, 19, 2357–

2366.

 

Wang, Minghai, Yu, Y., Wu, X., & Li, S. (2004). Polymerization induced phase

separation in poly ( ether imide ) -modified epoxy resin cured with imidazole, 45,

1253–1259. https://doi.org/10.1016/j.polymer.2003.12.037

 

Wang, T., Huang, P., Li, Y., Hu, N., & Fu, S. (2019). Epoxy nanocomposites

significantly toughened by both poly(sulfone) and graphene oxide. Composites

Communications. https://doi.org/10.1016/j.coco.2019.05.007

 

Wang, Z., Xie, M., Zhao, Y., Yu, Y., & Fang, S. (2003). Synthesis and properties of

novel liquid ester-free reworkable cycloaliphatic diepoxides for electronic packaging

application. Polymer, 44(4), 923–929. https://doi.org/10.1016/S0032-

3861(02)00873-X

 

Wetzel, B., Haupeiit, F., Friedrich, K., Zhang, M. Q. I. U., & Rong, M. I. N. Z. H. I.

(2002). Impact and Wear Resistance of Polymer Nanocomposites, 42(9), 1919–

1927.

 

Wijesinghe, W. P. S. L. (2014). Overview to hydroxyapatite nanoparticles and their

applications, 01, 29–30.

 

Wiles, D. M., & Carlsson, D. J. (1980). Photostabilisati on mechanisms in polymers : a

review 5-, (18383), 61–72.

 

Wu, C., & Xu, W. (2006). Atomistic molecular modelling of crosslinked epoxy resin, 47,

6004–6009. https://doi.org/10.1016/j.polymer.2006.06.025

 

Xian, G., Walter, R., & Haupert, F. (2005). Comparative Study of the Mechanical and

Wear Performance of Short Carbon Fibers and Mineral Particles ( Wollastonite ,

CaSiO 3 ) Filled Epoxy Composites, 3–10. https://doi.org/10.1002/polb.20730

 

Xiang-guo, L., Bao-guo, M., Li, X., Zhen-wu, H., & Xin-gang, W. (2006).

Thermogravimetric analysis of the co-combustion of the blends with high ash coal

and waste tyres, 441, 79–83. https://doi.org/10.1016/j.tca.2005.11.044

 

Yahyaie, H., Ebrahimi, M., Tahami, H. V., & Mafi, E. R. (2013). Progress in Organic

Coatings Toughening mechanisms of rubber modified thin film epoxy

resins. Progress in Organic Coatings, 76(1), 286–292.

https://doi.org/10.1016/j.porgcoat.2012.09.016

 

Yamamoto, Y., Nadiah, S., Norulhuda, B., Nghia, P. T., & Kawahara, S. (2018). Thermal

degradation of Deproteinized Natural Rubber. Polymer Degradation and Stability.

https://doi.org/10.1016/j.polymdegradstab.2018.08.003

 

Yang, G. U. O., Zheng, B. I. N., Yang, J., Xu, G., & Fu, S. (2008). Preparation and

Cryogenic Mechanical Properties of Epoxy Resins Modified by Poly ( ethersulfone

), 612–624. https://doi.org/10.1002/pola

 

Yang, K., Wu, S., Guan, J., Shao, Z., & Ritchie, R. O. (2017). Enhancing the Mechanical

Toughness of Epoxy-Resin Composites Using Natural Silk Reinforcements.

Scientific Reports, (September), 1–9. https://doi.org/10.1038/s41598-017-11919-1

 

Yelten-yilmaz, A., & Yilmaz, S. (2018). Wet chemical precipitation synthesis of

hydroxyapatite (HA) powders. Ceramics International.

https://doi.org/10.1016/j.ceramint.2018.02.201

 

Yu, J., Huang, X., Wu, C., Wu, X., Wang, G., & Jiang, P. (2012). Interfacial modi fi

cation of boron nitride nanoplatelets for epoxy composites with improved thermal

properties. Polymer, 53(2), 471–480. https://doi.org/10.1016/j.polymer.2011.12.040

 

Yu, N. Y. C., Schindeler, A., Little, D. G., & Ruys, A. J. (2010). Review Biodegradable

Poly ( a -hydroxy acid ) Polymer Scaffolds for Bone Tissue Engineering, 285–295.

https://doi.org/10.1002/jbm.b.31588

 

Yu, Y., Wang, M., Gan, W., Tao, Q., & Li, S. (2004). Polymerization-Induced

Viscoelastic Phase Separation in Polyethersulfone-Modified Epoxy Systems, 6208–

6215.

 

Yusoff, S. N. H. M., Sim, L. H., Chan, C. H., Aziz, S. S. S. A., Mahmud, Z. S., & Hairi,

H. M. (2015). Studies on thermal and conductivity of modified natural rubber

studies on thermal and conductivity of modified natural rubber. Journal of Advanced

Research in Materials Science, 12(1), 1–11.

 

Zainol, I., Ahmad, M. I., Zakaria, F. A., Ramli, A., HaslanFadli, A. M., & Abdul

Aziz, A. (2006). Modification of Epoxy Resin Using Liquid Natural

Rubber. Materials Science Forum, 517(1), 272–274.

https://doi.org/10.4028/www.scientific.net/MSF.517.272

 

Zainol, I., Alwi, N. M., Abidin, M. Z., Haniza, H. M. Z., Ahmad, M. S., &

Ramli, A. (2012). Physicochemical Properties of Hydroxyapatite Extracted from

Fish Scales. Advanced Materials Research, 545, 235–239.

https://doi.org/10.4028/www.scientific.net/AMR.545.235

 

Zebarjad, S. M., Sajjadi, S. A., & Sdrabadi, T. E. (2011). A Study on Mechanical

Properties of PMMA / Hydroxyapatite Nanocomposite, 2011(August), 795–801.

https://doi.org/10.4236/eng.2011.38096

 

Zeng, M., Sun, X., Yao, X., Ji, G., Chen, N., & Wang, B. (2007). Effects of SiO 2

Nanoparticles on the Performance of Carboxyl-Randomized Liquid Butadiene –

Acrylonitrile Rubber Modified Epoxy Nanocomposites, i, 2–7.

https://doi.org/10.1002/app

 

Zewde, B., Pitliya, P., Karim, A., & Raghavan, D. (2016). Synergistic Effect of

functionalized carbon nanotubes and micron-sized rubber particles on the

mechanical properties of epoxy resin, 542–548.

 

Zhan, Z., Lu, L., & Yang, X. (2018). Structure , microparameters and properties of

crosslinked DGEBA / MTHPA : A molecular dynamics simulation, 075332(May).

https://doi.org/10.1063/1.5041283

 

Zhang, D., Luo, H., Zheng, L., Wang, K., Li, H., Wang, Y., & Feng, H. (2012).

Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles

and its application towards removal of fluoride from aqueous

solution. Journal of Hazardous Materials, 241–242, 418–426.

https://doi.org/10.1016/j.jhazmat.2012.09.066

 

Zhang, G., Chen, J., Yang, S., Yu, Q., Wang, Z., & Zhang, Q. (2011). Preparation of

amino-acid-regulated hydroxyapatite particles by hydrothermal method. Materials

Letters, 65(3), 572–574. https://doi.org/10.1016/j.matlet.2010.10.078

 

Zhang, H., Yan, Y., Wang, Y., & Li, S. (2002). Morphology and Formation Mechanism

of Hydroxyapatite Whiskers from Moderately Acid Solution, 6(1), 111–115.

 

Zhang, J. I. N., Guo, Q., & Fox, B. (2010). Thermal and Mechanical Properties of a

Dendritic Hydroxyl-Functional Hyperbranched Polymer and Tetrafunctional Epoxy

Resin Blends, 48(September 2009), 417–424. https://doi.org/10.1002/POLB

 

Zhang, Jianing, Deng, S., Wang, Y., & Ye, L. (2016). Composites : Part A Role

of rigid nanoparticles and CTBN rubber in the toughening of epoxies with

different cross-linking densities. composites PART A, 80, 82–94.

https://doi.org/10.1016/j.compositesa.2015.10.017

 

Zhang, Jing, Zhou, Q., Jiang, X., Du, A., Zhao, T., Kasteren, J. Van, & Wang, Y. (2010).

Oxidation of natural rubber using a sodium tungstate / acetic acid / hydrogen

peroxide catalytic system. Polymer Degradation and Stability, 95(6), 1077–1082.

https://doi.org/10.1016/j.polymdegradstab.2010.02.028

 

Zheng, Y., Chonung, K., Wang, G., Wei, P., & Jiang, P. (2008). Epoxy / Nano-Silica

Composites : Curing Kinetics , Glass Transition Temperatures , Dielectric , and

Thermal – Mechanical Performances. https://doi.org/10.1002/app

 

Zhou, Heng-shi, Song, X., & Xu, S. (2014). Mechanical and Thermal Properties of Novel

Rubber-Toughened Epoxy Blend Prepared by In Situ Pre-crosslinking, 41110, 1–7.

https://doi.org/10.1002/app.41110

 

Zhou, W., & Cai, J. (2011). Mechanical and Dielectric Properties of Epoxy Resin

Modified Using Reactive Liquid Rubber ( HTPB ). https://doi.org/10.1002/app

 

Zhu, Y., Xu, L., Liu, C., Zhang, C., Wu, N., Zhu, Y., … Wu, N. (2018). Nucleation and

growth of hydroxyapatite nanocrystals by hydrothermal method Nucleation and

growth of hydroxyapatite nanocrystals by hydrothermal method, 085221.

https://doi.org/10.1063/1.5034441

 

Zima, A. (2017). Hydroxyapatite-chitosan based bioactive hybrid biomaterials with

improved mechanical strength. Spectrochimica Acta Part A: Molecular and

Biomolecular Spectroscopy. https://doi.org/10.1016/j.saa.2017.12.008

 

 

 

 

 

 

 

 

 

 

 

 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.