UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The aims of this study were to improve the mechanical properties, thermal stability
and biocompatibility of epoxy/fish scales hydroxyapatite (FsHAP) composite
toughened with liquid natural rubber. The FsHAp was extracted from Tilapia fish
scales using thermal method while liquid natural rubber was produced from
poly(methyl methacrylate) grated natural rubber (MG30) via oxidative and photo
degradation methods label as LMG30A and LMG30B, respectively. The analysis of
liquid natural rubber was carried out using Fourier transform infrared spectroscopy
(FTIR), nuclear magnetic resonance spectroscopy (NMR) and gel permeation
chromatography (GPC) have shown that no significant chemical structure change
between both LMG30 (A and B) and MG30. GPC analysis exhibited that the average
molecular weight of LMG30A (29,307Da) was lower than LMG30B (97,693Da). The
fracture toughness of the epoxy was increased up to 23 fold (15.2 MPa.m1/2) when
epoxy loading with 10 wt% FsHAp and toughened with 6 phr LMG30A, whereas
impact strength and flexural test increased up to twice as compared to neat epoxy. The
morphology was characterized using field emission scanning electron microscope
(FESEM) showed uniform dispersion of rubber particles within the epoxy matrix with
average diameter between 0.7 and 1.2 μm. Differential scanning calorimetry (DSC)
and thermo gravimetric analysis (TGA) curves have showed the thermal stability of
the epoxy/FsHAp/LMG30A composite higher as compared to neat epoxy. The
epoxy/FsHAp/LMG30A composite was proven to be biocompatible through
cytotoxicity test. In conclusion, the epoxy/FsHAp/LMG30A composite shown higher
mechanical properties, thermal stability and biocompatibility as compared to neat
epoxy. As an implication, the developed epoxy/FsHAp/LMG30A composite is
potential to be used as medical device applications. |
References |
Abdul, A., Yop, K., Jin, S., & Hui, D. (2013). Composites : Part B Epoxy clay nanocomposites processing , properties and applications : A review. Composites Part B, 45(1), 308–320. https://doi.org/10.1016/j.compositesb.2012.04.012
Abdullah, I. (1994). Liquid Natural Rubber: Preparation and Application. Progress in Pacific Polymer Science 3, 351–365. https://doi.org/10.1007/978-3-642-78759-1_30
Abraham, A., Ajith, S. D., & Divya, K. S. S. (2014). Management chemical synthesis of bone-like hydroxyapatite from cuttle, 4(1), 2–5.
Acrylonitrile, C. B., Xu, S., Song, X., & Cai, Y. (2016). Mechanical Properties and Morphologies of Liquid Rubber/Epoxy Blends Compatibilized. https://doi.org/10.3390/ma9080640
Adam, C., Lacoste, J., & Lemaire, J. (1991). Photo-oxidation of polyisoprene. Polymer Degradation and Stability, 32(1), 51–69. https://doi.org/10.1016/0141- 3910(91)90062-V
Ahmad, S. H. (2014). Thermal and flexural properties of room-temperature cured PMMA grafted natural rubber toughened epoxy layered silicate nanocomposite
Ahmad, T., & Mamat, O. (2013). Studying the Effects of Adding Silica Sand Nanoparticles on Epoxy Based Composites, 2013.
Ahmad, Z., Ansell, M. P., & Smedley, D. (2010). Thermal Properties of Epoxy-Based Adhesive Reinforced With Nano And Micro-Particles For In-Situ Timber Bonding, (02).
Ahmadi, Z. (2019). Progress in Organic Coatings Epoxy in nanotechnology : A short review, 132(February), 445–448. https://doi.org/10.1016/j.porgcoat.2019.04.003
Ahmed, M. A., Kandil, U. F., Shaker, N. O., & Hashem, A. I. (2015). The overall effect of reactive rubber nanoparticles and nano clay on the mechanical properties of epoxy resin. Journal of Radiation Research and Applied Sciences, 1–13. https://doi.org/10.1016/j.jrras.2015.06.01
Abbey, W. (1983). Deformation and fracture behaviour of a rubber-toughened epoxy :Failure criteria, 24(type C).
Akbari, R., & Hosain, M. (2013). Toughening of dicyandiamide-cured DGEBA-based epoxy resins by CTBN liquid rubber, 313–324. https://doi.org/10.1007/s13726-013- 0130-x
Allahverdi, A., Ehsani, M., Janpour, H., & Ahmadi, S. (2012). Progress in Organic Coatings The effect of nanosilica on mechanical , thermal and morphological properties of epoxy coating. Progress in Organic Coatings, 75(4), 543–548. https://doi.org/10.1016/j.porgcoat.2012.05.013
Analyst, T., & Mcmahon, G. (2008). Detection of calcium phosphate crystals in the joint fluid of patients with osteoarthritis analytical approaches and challenges, (i), 302– 318. https://doi.org/10.1039/b716791a
Arbor, A. (1991). Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies, 26, 3828–3829.
Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., & Kenny, J. M. (2010). Biodegradable polymer matrix nanocomposites for tissue engineering : A review. Polymer Degradation and Stability, 95(11), 2126–2146. https://doi.org/10.1016/j.polymdegradstab.2010.06.007
Arsad, M. S. M., Lee, P. M., & Lee, K. H. (2011). Synthesis and Characterization of Hydroxyapatite Nanoparticles and β-TCP Particles. 2nd International Conference on Biotechnology and Food Science, 7, 184–188 https://doi.org/10.4028/www.scientific.net/DDF.312-315.423
Ashcroft, W. R. (1993). Curing agents for epoxy resins. Chemistry and Technology of Epoxy Resins, 37–71. https://doi.org/10.1007/978-94-011-2932-9_2
Aswathi, K. P., Hanna, P., George, J. K., & Shameer, K. (2017). Effect of Natural Rubber Latex as admixtures in concrete, 2031–2034.
Auad, M. L., Frontini, P. M., Borrajo, J., & Aranguren, M. I. (2001). Liquid rubber modi ed vinyl ester resins : fracture and mechanical behavior, 42, 3723–3730.
Azhar, N. H. A., Rasid, H. M., & Yusoff, S. F. M. (2016). Chemical modifications of liquid natural rubber. AIP Conference Proceedings, 1784, 1–7. https://doi.org/10.1063/1.4966762
Azis, Y., Jamarun, N., Arief, S., & Nur, H. (2015). Facile Synthesis of Hydroxyapatite Particles from Cockle Shells ( Anadaragranosa ) by Hydrothermal Method.
Bac, N. V., Terlemezyan, L., & Mlhallov, M. (1993). Epoxidation of Natural Rubber in latex in the Presence of a Reducing Agent, 50, 845–849.
Baharvand, H., & Rahimi, A. (2014). Effect of Modified Liquid Rubber on Increasing Toughness of Epoxy Resins.
Bahrololoom, M. E., Javidi, M., Javadpour, S., & Ma, J. (2009). Characterisation of natural hydroxyapatite extracted from bovine cortical bone ash, 10(2), 129–138.
Bakar, A. (2012). Effect of Epoxidized Natural Rubber on Mechanical Properties of Epoxy Reinforced Kenaf Fibre Composites, 20(January 2011), 129–137.
Bano, N., Jikan, S. S., Basri, H., Adzila, S., Bakar, S. A., & Nuhu, A. H. (2017). Natural te Extracted From Bovine Bone, 9(2), 22–28.
Barbosa, A. Q., Silva, L. F. M., Abenojar, J., Figueiredo, M., & Öchsner, A. (2016). Toughness of a brittle epoxy resin reinforced with micro cork particles: Effect of size, amount and surface treatment. Composites Part B. https://doi.org/10.1016/j.compositesb.2016.10.072
Barcia, F. L., Amaral, T. P., & Soares, B. G. (2003). Synthesis and properties of epoxy resin modified with epoxy-terminated liquid polybutadiene, 44, 5811–5819. https://doi.org/10.1016/S0032-3861(03)00537-8
Barthel, H. (2007). Effect of sub-micron silica fillers on the mechanical performances of epoxy-based composites, 48, 1596–1605. https://doi.org/10.1016/j.polymer.2007.01.053
Bascom, D. (1975). The Fracture of Epoxy- and Elastomer-Modified Epoxy Polymers in Bulk and as Adhesives, 19, 2545–2562.
Beisele, C., & Kultzow, B. (2001). Experiences with new hydrophobic cycloaliphatic epoxy outdoor insulation systems. IEEE Electrical Insulation Magazine, 17(4), 33– 39. https://doi.org/10.1109/57.948982
Ben Saleh, a. B., Mohd Ishak, Z. a., Hashim, a. S., & Kamil, W. a. (2009). Compatibility , mechanical , thermal , and morphological properties of epoxy resin modified with carbonyl-terminated butadiene acrylonitrile copolymer liquid rubber. Journal of Physical Science, 20(1), 1–12.
Bobby, S., & Samad, M. A. (2019). Chapter 5. Epoxy composites in biomedical engineering. Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816874-5.00005-0
Brusentseva, Filippov, A., Fomin, V., Smirnov, S. V., & Veretennikova, I. (2015). Modification of Epoxy Resin with Silica Nanoparticles and Process Engineering of Composites Based on Them. Mechanics of Composite Materials, 51(4), 531–538. https://doi.org/10.1007/s11029-015-9523-6
Bucknall, C. B., & Smith, R. R. (1983.). Stress-whitening in High-impact Polystyrenes, 437–446.
Cai, Y., Mei, D., Jiang, T., & Yao, J. (2010). Synthesis of oriented hydroxyapatite crystals : Effect of reaction conditions in the presence or absence of silk sericin. Materials Letters, 64(24), 2676–2678. https://doi.org/10.1016/j.matlet.2010.08.071
Cardoso, G. B. C., Tondon, A., Maia, L. R. B., Cunha, M. R., Zavaglia, C. A. C., & Kaunas, R. R. (2019). Materials Science & Engineering C In vivo approach of calcium de fi cient hydroxyapatite fi ller as bone induction factor, 99(February), 999–1006. https://doi.org/10.1016/j.msec.2019.02.060
Centre, M. E. (1993). Dilatational bands in rubber-toughened polymers, 28, 6799–6808.
Chaikumpollert, O., Sae-heng, K., Wakisaka, O., & Mase, A. (2011). Low temperature degradation and characterization of natural rubber. Polymer Degradation and Stability,96(11), 1989–1995. https://doi.org/10.1016/j.polymdegradstab.2011.08.010
Chandrasekar, A., Sagadevan, S., & Dakshnamoorthy, A. (2013). Synthesis and characterization of nano-hydroxyapatite (n-HAP ) using the wet chemical technique, 8(32), 1639–1645. https://doi.org/10.5897/IJPS2013.3990
Chen, J, Kinloch, A. J., Sprenger, S., & Taylor, A. C. (2013). The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles. Polymer, 54(16), 4276–4289. https://doi.org/10.1016/j.polymer.2013.06.009
Chen, Jingdi, Wang, Y., Chen, X., Ren, L., Lai, C., He, W., & Zhang, Q. (2011). A simple sol-gel technique for synthesis of nanostructured hydroxyapatite , tricalcium phosphate and biphasic powders. Materials Letters, 65(12), 1923–1926. https://doi.org/10.1016/j.matlet.2011.03.076
Chen, Li, Chai, S., Liu, K., Ning, N., Gao, J., Liu, Q., Fu, Q. (2012). Enhanced epoxy / silica composites mechanical properties by introducing graphene oxide to the interface.
Chen, Liang, Mccrate, J. M., Lee, J. C. M., & Li, H. (2011). The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology, 22(10). https://doi.org/10.1088/0957-4484/22/10/105708
Chen, Z., Liu, Y., Mao, L., Gong, L., Sun, W., & Feng, L. (2017). Effect of cation doping on the structure of hydroxyapatite and the mechanism of defluoridation. Ceramics International. https://doi.org/10.1016/j.ceramint.2017.12.191
Cheng, Q., Li, J., Li, S., & Zhi, K. (2019). Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys. Colloids and Surfaces B: Biointerfaces. https://doi.org/10.1016/j.colsurfb.2019.04.029
Chiang, C., Chang, R., & Chiu, Y. (2007). Thermal stability and degradation kinetics of novel organic / inorganic epoxy hybrid containing nitrogen / silicon / phosphorus by sol – gel method, 453, 97–104. https://doi.org/10.1016/j.tca.2006.11.013
Chikhi, N., Fellahi, S., & Bakar, M. (2002). Modi ® cation of epoxy resin using reactive liquid ( ATBN ) rubber, 38, 251–264.
Cholake, S. T., Mada, M. R., Raman, R. K. S., Bai, Y., Zhao, X. L., Rizkalla, S., & Bandyopadhyay, S. (2014). Quantitative Analysis of Curing Mechanisms of Epoxy Resin by Mid- and Near- Fourier Transform Infra Red Spectroscopy, 64(3), 314– 321.
Chot, K., Yang, J., & Park, C. E. (1997). The effect of interfacial adhesion on toughening behaviour of rubber modified poly( methyl methacrylate), 38(20), 5161–5167.
Chuayjuljit, S., Soatthiyanon, N., & Potiyaraj, P. (2006). Polymer blends of epoxy resin Science, 102(1), 452– 459. https://doi.org/10.1002/app.24193
Cizravi, J. C., & Subramaniam, K. (1999). Thermal and mechanical properties of epoxidized natural rubber modified epoxy matrices, 895(October 1998), 889–895.
Comyn, J., Horley, C. C., Oxley, D. P., Pritchard, R. G., & Tegg, J. L. (1981). The Application of Inelastic Electron Tunnelling Spectroscopy to Epoxide Adhesives.The Journal of Adhesion, 12(3), 171–188. https://doi.org/10.1080/00218468108071199
Cunningham, D. J., Deorio, J. K., Nunley, J. A., Easley, M. E., & Adams, S. B. (2019). The Effect of Patient Characteristics on 1 to 2-Year and Minimum 5-Year Outcomes After Total Ankle Arthroplasty, 199–208.
Dadfar, M. R., & Ghadami, F. (2013). Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites. Materials and Design, 47, 16–20. https://doi.org/10.1016/j.matdes.2012.12.035
Danible Reyx and Irine Campistron. (1997). Controlled degradation in tailor-made macromolecules elaboration. conirolled chainaeavages of polydienes by oxidation and by metathesis, 247, 197–211.
Dodiuk, H., & Kenig, S. (1994). Low temperature curing epoxies for. Science, 19, 439– 467.
Domun, N., Hadavinia, H., Zhang, T., Liaghat, G., Vahid, S., Spacie, C., … Liaghat, G. (2017). Improving the fracture toughness properties of epoxy using graphene nanoplatelets at low filler content Improving the fracture toughness properties of epoxy using graphene nanoplatelets at low filler content. Nanocomposites, 0324(September), 1–12. https://doi.org/10.1080/20550324.2017.1365414
Dorigato, A., Pegoretti, A., & Quaresimin, M. (2011). Thermo-mechanical characterization of epoxy / clay nanocomposites as matrices for carbon / nanoclay / epoxy laminates. Materials Science & Engineering A, 528(19–20), 6324–6333. https://doi.org/10.1016/j.msea.2011.04.042
Ebenezer, V., Balakrishnan, K., & Sargunar, R. B. (2015). Nano Hdroxyapatite Particulate Graft in Immediate Implant Placement - A Review of 10 Cases, 8, 421– 424.
Egan, S. S. Æ. D. (2006). The interlaminar toughness of carbon-fibre reinforced plastic composites using ‘hybrid-toughened matrices, 5043–5046. https://doi.org/10.1007/s10853-006-0130-8
El-tantawy, F., Aal, N. A., El-daly, A. A., & Abdel-daiem, A. M. (2004). A new phantom model and attenuation backing from epoxy resin nanosized hydroxyapatite carbon black and multifunctional agent composites, 58, 3388–3394. https://doi.org/10.1016/j.matlet.2004.03.039
Fabio, L., Nascimento, C., Monteiro, S. N., Henrique, L., Louro, L., Santos, F., Braga, F. D. O. (2018). Charpy impact test of epoxy composites reinforced with untreated and mercerized mallow fibers 4–11. https://doi.org/10.1016/j.jmrt.2018.03.008
Fainleib, A., Pires, R. V, Lucas, E. F., & Soares, B. G. (2013). Degradation of Non- vulcanized Natural Rubber – Renewable Resource for Fine Chemicals Used in Polymer Synthesis, 23, 441–450.
Fan, H. B., & Yuen, M. M. F. (2007). Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation, 48, 2174–2178. https://doi.org/10.1016/j.polymer.2007.02.007
Fara, A. N. K. A., & Abdullah, H. Z. (2015). Characterization of Derived Natural Hydroxyapatite ( HAp ) Obtained From Different Types of Tilapia Fish Bones and, 020077. https://doi.org/10.1063/1.4919215
Fernández, B., Arbelaiz, A., Diaz, E., & Mondragon, I. (2004). Influence of Polyethersulfone Modification of a Tetrafunctional Epoxy Matrix on the Fracture Behavior of Composite Laminates Based on Woven Carbon Fibers, 25(5). https://doi.org/10.1002/pc.20041
Fihri, A., Len, C., Varma, R. S., & Solhy, A. (2017). Hydroxyapatite : A review of syntheses , structure and applications in heterogeneous catalysis q. Coordination Chemistry Reviews, 347, 48–76. https://doi.org/10.1016/j.ccr.2017.06.009
Fisica, C. De, Avanzada, T., & Nacional, U. (2009). Preparation and properties of ( epoxy resin )/( nylon 6 , 6 oligomer ) blends, 3(2).
Fouad, H., Elleithy, R., & Alothman, O. Y. (2013). Thermo-mechanical , Wear and fracture behavior of high-density polyethylene / hydroxyapatite nano composite for biomedical applications : effect of accelerated ageing. Journal of Materials Science & Technology, 29(6), 573–581. https://doi.org/10.1016/j.jmst.2013.03.020
Feng, X. Q., Lauke, B., & Mai, Y. W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate- polymer composites. Composites Part B: Engineering, 39(6), 933–961. https://doi.org/10.1016/j.compositesb.2008.01.002
Fu, T. A. O., & Zhao, J. (2004). Preparation of carbon fiber fabric reinforced hydroxyapatite / epoxy composite by RTM processing, 9, 1411–1413.
Gallagher, J. C., & Harsha, S. (2013). Prevention and treatment of postmenopausal osteoporosis. Journal of Steroid Biochemistry and Molecular Biology, 1–16. https://doi.org/10.1016/j.jsbmb.2013.09.008
Gan, L., & Ng, S. (1986). Kinetic studies of the performic acid epoxidation of natural rubber latex, 22(7), 573–576.
Gardette, J., Lacoste, J., Baba, M., & Bussie, P. (2005). Characterization of photodegradation of polybutadiene and polyisoprene : chronology of crosslinking andchain-scission,88,182–18.https://doi.org/10.1016/j.polymdegradstab.2004.02.013
Garg, A. C. (2006). Failure Mechanisms in Toughened Epoxy Resins Review A, 31(1988), 179–223.
Garg A.C., Mai Y.W., 1988, Failure mechanisms in toughened epoxy resins- A review, Composites science and technology, 31, 179.
Gazi, R. (2019). Composite organic encapsulate fi lm with epoxy and benzoxazine, 116(January), 453–462. https://doi.org/10.1016/j.eurpolymj.2019.04.039
Ge, X., Ren, C., Lu, X., Li, Z., Chen, G., Wang, K., Qian, B. (2019). Surfactant-free electrochemical synthesis of fluoridated hydroxyapatite nanorods for biomedical applications. Ceramics International. https://doi.org/10.1016/j.ceramint.2019.05.292
Ghahremani, D., Mobasherpour, I., Manafi, S., & Keramatpour, L. (2013). Potential of nano crystalline calcium hydroxyapatite for Tin ( II ) removal from aqueous solutions : Equilibria and kinetic processes. Arabian journal of chemistry. https://doi.org/10.1016/j.arabjc.2012.10.006
Ghosh, P. K., Studies, E., & Halder, S. (2012). Influence of nanoparticle weight fraction on morphology and thermal properties of epoxy/TiO2 nanocomposite. Journal of Reinforced, (September). https://doi.org/10.1177/0731684412455955
Giang, L. D., Thao, D. L. M., Huong, H. T., & Thu Hiep, L. T. (2016). Synthesis of hydroxyl terminated liquid natural rubber by oxidative depolymerization of deproteinized natural rubber. Journal of Science and Technology, 54(3), 340–346. https://doi.org/10.15625/0866-708X/54/3/7240
Gillier-ritoit, S., Laguerre, A., Singh, R. P., & Polyme, L. (2002). Telechelic cis -1 , 4- Oligoisoprenes through the Selective Oxidolysis of Epoxidized Monomer Units and Polyisoprenic Monomer Units in cis -1 , 4-Polyisoprenes, 6, 4–8. https://doi.org/10.1002/app.11661
Gojny, F. H. (2004). SCIENCE AND Carbon nanotube-reinforced epoxy-composites : enhanced stiffness and fracture toughness at low nanotube content, 64, 2363–2371. https://doi.org/10.1016/j.compscitech.2004.04.002
Göktürk, E., & Erdal, H. (2017). Biomedical applications of polyglycolic acid ( PGA ) Poliglikolik Asit ’ in ( PGA ) Biyomedikal uygulamalar?, 21(6), 1237–1244. https://doi.org/10.16984/saufenbilder.283156
González, M. G., Cabanelas, J. C., & Baselga, J. (1988). Applications of FTIR on Epoxy resins – identification , monitoring the curing process , phase separation and water uptake,
Granito, R. N., Claudia, A., Renno, M., Yamamura, H., Almeida, M. C. De, Luiz, P., … Ribeiro, D. A. (2018). Hydroxyapatite from fish for bone tissue engineering: a promising approach, (1).
Guo, X., Yan, H., Zhao, S., Zhang, L., Li, Y., & Liang, X. (2013). Effect of calcining temperature on particle size of hydroxyapatite synthesized by solid- state reaction at room temperature. Advanced powder technology. https://doi.org/10.1016/j.apt.2013.03.002
Guo, Y., Zhao, P., Wang, X., Xu, D., Zhong, J., Yue, G., & Shuai, M. (2017). for epoxy polymer and the effect of water on its damage indicating ability, 17(1), 57–64. https://doi.org/10.1515/epoly-2016-0135
Haider, A., Haider, S., Han, S., & Kang, I. (2017). RSC Advances Recent advances in the synthesis , functionalization and biomedical applications of hydroxyapatite :, 7442– 7458. https://doi.org/10.1039/c6ra26124h
Hajian, M., Reisi, M. R., & Zanjanijam, A. R. (2012). Preparation and characteri zation of Polyvinylbutyral/Graphene Nanocomposite, (November 2014). https://doi.org/10.1007/s10965-012-9966-6
Hamzah, R., Bakar, M. A., Khairuddean, M., Mohammed, I. A., & Adnan, R. (2012). A Structural Study of Epoxidized natural rubber (ENR-50) and Its cyclic dithiocarbonate derivative using NMR spectroscopy techniques, 10974–10993. https://doi.org/10.3390/molecules170910974
Harun, F., & Chan, C. H. (2017). Electronic Applications of Polymer Electrolytes of Epoxidized Natural Rubber, (December). https://doi.org/10.1007/978-3-319-23663- 6
Heo, S. Y., Seol, J. W., & Kim, N. S. (2014). Characterisation and assessment of electrospun Poly/hydroxyapatite nanofibres together with a cell adhesive for bone repair applications, 2014(1301001074), 498–501.
Hedrick, J. L., Yilgör, I., Wilkes, G. L., & Mc Grath, J. E. (1985). Chemical modification of matrix Resin networks with engineering thermoplastics. Polymer Bulletin, 13(3), 201-208.
Hisham, S. F., Ahmad, I., Daik, R., & Ramli, A. (2011). Blends of LNR with unsaturated polyester resin from recycled PET: Comparison of mechanical properties and morphological analysis with the optimum blend by commercial resin. Sains Malaysiana, 40(7), 729–735. https://doi.org/10.1111/j.1365-2699.2007.01732.x
Hong, Z., Zhang, P., He, C., Qiu, X., & Liu, A. (2005). Nano-composite of poly ( L - lactide ) and surface grafted hydroxyapatite : Mechanical properties and biocompatibility, 26, 6296–6304. https://doi.org/10.1016/j.biomaterials.2005.04.018
Hong, Z., Zhang, P., Liu, A., Chen, L., Chen, X., & Jing, X. (2006). Composites of poly ( lactide- co -glycolide ) and the surface modified carbonated hydroxyapatite nanoparticles. https://doi.org/10.1002/jbm.a
Hooshmand, T., & Abrishamchian, A. (2014). Development of sol-gel-derived multi-wall carbon nanotube / hydroxyapatite nanocomposite powders for bone substitution, (November 2015). https://doi.org/10.1177/0021998313475368
Hourston, D. J., Lane, J. M., & Macbeath, N. A. (1991). Toughening of Epoxy Resins with Thermoplastics . II . Tetrafunctional Epoxy Resin-Polyetherimide Blends *, 26(September 1990), 19–20.
Husamelden, E., & Fan, H. (2019). Fluorinated functionalization of graphene oxide and its role as a reinforcement in epoxy composites.
Hull D (1996) Influence of stress intensity and crack speed on fracture surface topography: mirror to mist to macroscopic bifurcation. J Mater Sci 31:4483–4492
Ibrahim, S., Othman, N., Sreekantan, S., & Tan, K. S. (2018). Preparation and Characterization of Low-Molecular-Weight Natural Rubber Latex via Photodegradation Catalyzed by Nano TiO2 https://doi.org/10.3390/polym10111216
Ibrahim, S., Daik, R., & Abdullah, I. (2014). Functionalization of liquid natural rubber via oxidative degradation of natural rubber. Polymers, 6(12), 2928–2941. https://doi.org/10.3390/polym6122928
Ibrahim, S., Mustafa, A., Chemicals, F., & Programme, B. (2014). Effect of reagents concentration and ratio on degradation of natural rubber latex in acidic medium 18(2), 405–414.
Ibrahim, S., Othman, N., Nor, Z. M., & Ismail, H. (2017). Preliminary study on photochemical degradation of natural rubber latex, 22–26. https://doi.org/10.1002/masy.201600033
Ikoma, T., & Yamazaki, A. (1999). Preparation and Structure Refinement of Monoclinic Hydroxyapatite, 276, 3–4.
Im, H.& Kim, J. (2012). Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite. Carbon, 50(15), 5429–5440. https://doi.org/10.1016/j.carbon.2012.07.029
Inoue, K., Ohgushi, H., Yoshikawa, T., Okumura, M., Sempuku, T., Tamai, S., & Dohi, Y. (1997). The effect of aging on bone formation in porous hydroxyapatite: Biochemical and histological analysis. Journal of Bone and Mineral Research, 12(6), 989–994. https://doi.org/10.1359/jbmr.1997.12.6.989
Jaafar, C. N., Zainol, I., & Mohd Amin, M. (2017). Fish scales Hydroxyapatite as potential fillers in HDPE composites for bone replacement Applications. In Solid State Phenomena (Vol. 264, pp. 79-82). Trans Tech Publications.
Jansen, B. J. P., Tamminga, K. Y., Meijer, H. E. H., & Lemstra, P. J. (1999). Preparation of thermoset rubbery epoxy particles as novel toughening modifiers for glassy epoxy resins. Polymer, 40(20), 5601–5607. https://doi.org/10.1016/S0032-3861(98)00774-
Jin, F. L., & Park, S. J. (2012). Thermal properties of epoxy resin/filler hybrid composites. Polymer Degradation and Stability, 97(11), 2148–2153. https://doi.org/10.1016/j.polymdegradstab.2012.08.015
Jin, H., Huang, W., Zhu, X., Zhou, Y., & Yan, D. (2012). Biocompatible or biodegradable hyperbranched polymers: From self-assembly to cytomim etic applications. Chemical Society Reviews, 41(18), 5986–5997. https://doi.org/10.1039/c2cs35130g
Johnsen, B. B., Kinloch, A. J., Mohammed, R. D., Taylor, A. C., & Sprenger, S. (2007). Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer, 48(2), 530–541. https://doi.org/10.1016/j.polymer.2006.11.038
Johnsen, B. B., Kinloch, A. J., & Taylor, A. C. (2006). Toughness of Syndiotactic Polystyrene / Epoxy Polymer Blends : Microstructure and toughening mechanisms toughness of syndiotactic polystyrene / epoxy polymer blends : Microstructure and Toughening Mechanisms, (May 2017).
Jyotishkumar, P., Koetz, J., Tiersch, B., Strehmel, V., Özdilek, C., Moldenaers, P., … Thomas, S. (2009). Complex phase separation in poly ( acrylonitrile - butadiene - styrene ) -modified epoxy / 4 , 4 ′ -diaminodiphenyl sulfone blends : generation of new micro- and nanosubstructures, 5418–5430.
Kalita, S. J., Bhardwaj, A., & Bhatt, H. A. (2007). Nanocrystalline calcium phosphate ceramics in biomedical engineering, 27, 441–449. https://doi.org/10.1016/j.msec.2006.05.018
Kalita, S. J., & Verma, S. (2010). Nanocrystalline hydroxyapatite bioceramic using microwave radiation : Synthesis and characterization. Materials Science & Engineering C, 30(2), 295–303. https://doi.org/10.1016/j.msec.2009.11.007
Kamalanathan, P. (2014). Development of hydroxyapatite from natural fish bone through heat treatment Development of Hydroxyapatite from Natural Fish Bone, (July 2006).
Kang, S., Il, S., Rim, C., Park, M., Rim, S., & Kim, J. (2001). Preparation and characterization of epoxy composites lled with functionalized nanosilica particles obtained via sol gel process, 42.
Kargarzadeh, H., Ahmad, I., & Abdullah, I. (2017). Mechanical Properties of Epoxy/Rubber Blends. https://doi.org/10.1007/978-3-319-40043-3
Kargarzadeh, H., Ahmad, I., Abdullah, I., Thomas, R., Dufresne, A., Thomas, S., & Hassan, A. (2015). Functionalized liquid natural rubber and liquid epoxidized natural rubber: A promising green toughening agent for polyester. Journal of Applied Polymer Science, 132(3), 1–15. https://doi.org/10.1002/app.41292
Kunz-Douglass S, Beaumont PWR, Ashby MF (1980) A model for the toughness of epoxy–rubber particulate composites. J Mater Sci 15:1109–1123
Kattimani, V. S., Kondaka, S., & Lingamaneni, K. P. (2016). Hydroxyapatite Past. Present , and Future in Bone Regeneration, 9–19. https://doi.org/10.4137/BTRI.S36138
Kim, J. R., & Kim, J. J. (2017). Epoxy resins toughened with surface modified epoxidized natural rubber fibers by one-step electrospinning. Materials, 10(5), 1–13. https://doi.org/10.3390/ma10050464
Kim, S. C., & Science, P. (1995). The effect of the viscosity of epoxy prepolymer on the generated morphology in rubber-toughened epoxy resin, 36, 2189–2195.
Klinklai, W., Kawahara, S., & Mizumo, T. (2003). Depolymerization and ionic conductivity of enzymatically deproteinized natural rubber having epoxy group, 39, 1707–1712. https://doi.org/10.1016/S0014-3057(03)00060-0
Klinpituksa, P., Saetung, A., Rungvichaniwat, A., Laguerre, A., Phinyocheep, P., Messiaen, A. O., & Cedex, L. M. (n.d.). Controlled Degradation of natural rubber and modification of the obtained telechelic oligoisoprenes : preliminary study of their potentiality as polyurethane foam precursors. https://doi.org/10.1002/app
Kontaxis, L. C., Pavlou, C., Portan, D. V., & Papanicolaou, G. C. (2018). Effect of saline absorption on the flexural stress relaxation behavior of epoxy/cotton composite materials for orthopedics applications. AIP Conference Proceedings, 1932. https://doi.org/10.1063/1.5024170
Kodama, S., Nishi, K., and Furukawa, M. (2003). Preparation of low molecular weight natural rubber by ozonolysis of high ammonia latex. Journal of Rubber Research, 6(3), 153-163.
Kumar, K. D., & Kothandaraman, B. (2008). Modification of (DGEBA) epoxy resin with maleated depolymerised natural rubber. Express Polymer Letters, 2(4), 302–311. https://doi.org/10.3144/expresspolymlett.2008.36
Kunz, S. C., Sayre, J. A., & Assink, R. A. (1982). Morphology and toughness characterization of epoxy resins modified with amine and carboxyl terminated rubbers, 23(December 1897), 1897–1906.
Laboratories, S., & Street, T. (1980). A model for the toughness of epoxy-rubber particulate composites, 15, 1109–1123.
Latha, P. B., Adhinarayanan, K., & Ramaswamy, R. (1994). Epoxidized hydroxy- terminated polybutadiene synthesis , characterization and toughening studies, 14(1), 57–61.
Lange FF (1970) The interaction of a crack front with a second phase dispersion. Philos Mag 22:983–992
Lalande, L., Plummer, C. J. G., & Ma, J. E. (2006). The influence of matrix modification on fracture mechanisms in rubber toughened polymethylmethacrylate, 47, 2389– 2401. https://doi.org/10.1016/j.polymer.2006.02.016
Le, H., Natesan, K., & Pranti-haran, S. (2015). Mechanical property and biocompatibility of co-precipitated nano hydroxyapatite gelatine composites, 4(3), 237–243. https://doi.org/10.1007/s40145-015-0155-z
Lee, H. J., Kim, S. E., Choi, H. W., Kim, C. W., Kim, K. J., & Lee, S. C. (2007). Polymer The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly (e-caprolactone )/ hydroxyapatite nanocomposites, 43, 1602–1608. https://doi.org/10.1016/j.eurpolymj.2007.02.030
Leelachai, K., Kongkachuichay, P., & Dittanet, P. (2017). Toughening of epoxy hybrid nanocomposites modified with silica nanoparticles and epoxidized natural rubber. https://doi.org/10.1007/s10965-017-1202-y
Lei, F., Zhang, C., Cai, Z., Yang, J., Sun, H., & Sun, D. (2018). Epoxy Toughening with Graphite Fluoride : Toward High Toughness. Polymer. https://doi.org/10.1016/j.polymer.2018.07.084
Leyva, M. E., Antonio, A., & Queiroz, A. De. (2008). Epoxy Networks for Medicine Applications : Mechanical Properties and In Vitro biological properties. https://doi.org/10.1002/app
Lin, K., & Chang, J. (2015). 1 Structure and properties of hydroxyapatite for biomedical applications. hydroxyapatite (hap) for biomedical applications (Vol. 4214). Elsevier Ltd. https://doi.org/10.1016/B978-1-78242-033-0.00001-8
Liu, M., Guo, B., & Du, M. (2008). Natural inorganic nanotubes reinforced epoxy resin nanocomposites, 205–212. https://doi.org/10.1007/s10965-007-9160-4
Liu, Q., Wijn, J. R. De, Groot, K. De, & Blitterswijk, C. A. Van. (1998). Surface modification of nano-apatite by grafting organic polymer, 19, 1067–1072.
Liu, Y., Hsu, C., Wei, W., & Jeng, R. (2003). Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica, 44, 5159–5167. https://doi.org/10.1016/S0032-3861(03)00519-6
Lo, J., Cano, J., Torres, A., Abad, M. J., Barral, L., & D?, F. J. (2002). Characterization of an ABS-modified epoxy system, 1276(February), 2–6 https://doi.org/10.1002/pi.940.
Madhav, H., Singh, N., & Jaiswar, G. (2019). Chapter 4. Thermoset, bioactive, metal– polymer composites for medical applications. materials for biomedical engineering: thermoset and thermoplastic Polymers. Elsevier Inc. https://doi.org/10.1016/B978-0- 12-816874-5.00004-9
Margolina, A., & Souheng, W. (1988). Percolation model for brittle-tough transition in nylon / rubber blends, 29, 2170–2173.
Mathew, V. S., George, S. C., Parameswaranpillai, J., & Thomas, S. (2014). Epoxidized natural rubber/epoxy blends: Phase morphology and thermomechanical properties. Journal of Applied Polymer Science, 131(4), 1–9. https://doi.org/10.1002/app.39906
Mathew, V. S., Jyotishkumar, P., George, S. C., Gopalakrishnan, P., Delbreilh, L., Saiter, J. M., Thomas, S. (2011). High Performance HTLNR / Epoxy Blend — Phase Morphology and Thermo-Mechanical Properties. https://doi.org/10.1002/app
Mathew, V. S., Sinturel, C., George, S. C., & Thomas, S. (2010). Epoxy resin/liquid natural rubber system: Secondary phase separation and its impact on mechanical properties. Journal of Materials Science, 45(7), 1769–1781. https://doi.org/10.1007/s10853-009-4154-8
May, M., Wang, H. M., & Akid, R. (2010). Effects of the addition of inorganic nanoparticles on the adhesive strength of a hybrid sol gel epoxy system. International Journal of Adhesion and Adhesives, 30(6), 505–512. https://doi.org/10.1016/j.ijadhadh.2010.05.002
Mazzocchetti, L., Benelli, T., Angelo, E. D., Guadagno, L., Naddeo, C., Raimondo, M., Koo, B. (2018). composites properties of structural advanced materials matrix composites In situ curing of liquid epoxy via gold- nanoparticle mediated photothermal heating.
Mcgarry, F. J., & A, Prsl. (1970). Building Design with Fibre Reinforced Materials, 59– 68. https://doi.org/10.1098/rspa.1970.0165
Mezzenga, R., Boogh, L., & Ma, J. E. (2001). A review of dendritic hyperbranched polymer as modi?ers in epoxy.pdf, 61, 787–795. https://doi.org/10.1109/SBAC- PADW.2014.7
Miranda, M., Esteban-tejeda, L., & Malpartida, F. (2010). Silver-hydroxyapatite nanocomposites as bactericidal and fungicidal materials, 101.
Mohanty, A., & Srivastava, V. K. (2015). Effect of alumina nanoparticles on the enhancement of impact and flexural properties of the short glass / carbon fiber reinforced epoxy based effect of alumina nanoparticles on the enhancement of impact and flexural properties of the short glass / carbon fiber reinforced epoxy Based Composites, (January). https://doi.org/10.1007/s12221-015-0188-5
Mondal, S., Bardhan, R., Mondal, B., Dey, A., Mukhopadhyay, S. S., Roy, S., & Roy, K. (2012). Synthesis , characterization and in vitro cytotoxicity assessment of hydroxyapatite from different bioresources for tissue, 35(4), 683–691.
Mondal, S., Hoang, G., Manivasagan, P., Moorthy, M. S., Kim, H. H., Tuong, T., … Oh, J. (2019). Comparative characterization of biogenic and chemical synthesized hydroxyapatite biomaterials for potential biomedical application. Materials Chemistry and Physics. https://doi.org/10.1016/j.matchemphys.2019.02.021
Monika, Š. (2015). Substituted hydroxyapatites for biomedical applications : A review, 41, 9203–9231. https://doi.org/10.1016/j.ceramint.2015.03.316
Monmaturapoj, N., Srion, A., Chalermkarnon, P., Buchatip, S., Petchsuk, A., Noppakunmongkolchai, W., & Mai-Ngam, K. (2017). Properties of poly(lactic acid)/hydroxyapatite composite through the use of epoxy functional compatibilizers for biomedical application. Journal of Biomaterials Applications, 32(2), 175–190. https://doi.org/10.1177/0885328217715783
Moolsin, S., Saksayamkul, N., & Wichien, A. N. (2017). Natural rubber grafted poly(methyl methacrylate) as compatibilizer in 50/50 natural rubber/nitrile rubber blend. Journal of Elastomers and Plastics, 49(5), 422–439. https://doi.org/10.1177/0095244316671021
Moore, D. C., Chapman, M. W., & Manske, D. (1987). The evaluation of a biphasic calcium phosphate ceramic for use in grafting long? bone diaphyseal defects. Journal of Orthopaedic Research, 5(3), 356–365. https://doi.org/10.1002/jor.1100050307
Morwood, M. P., & Garrigues, G. E. (2015). Shoulder arthroplasty in the patient with metal hypersensitivity. Journal of Shoulder and Elbow Surgery, 24(7), 1156–1164. https://doi.org/10.1016/j.jse.2015.01.015
Murugan, R., & Ramakrishna, S. (2004). Coupling of therapeutic molecules onto surface modified coralline hydroxyapatite, 25, 3073–3080. https://doi.org/10.1016/j.biomaterials.2003.09.089
Nandi, S. K., Kundu, B., Mukherjee, J., Mahato, A., Datta, S., & Balla, V. K. (2015). Converted marine coral hydroxyapatite implants with growth factors: In vivo bone regeneration. Materials Science and Engineering C, 49, 816–823. https://doi.org/10.1016/j.msec.2015.01.078
Nath, N., & Krishna, P. (2013). Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold. https://doi.org/10.1007/s00449-013-1009-0
Nazir, K., Aziz, A. F., Adam, N. I., Yahya, M. Z. A., & Ali, A. M. M. (2015). Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes. AIP Conference Proceedings, 1674. https://doi.org/10.1063/1.4928838
Nogueira, P., Ram, C., Abad, M. J., Barral, L., Cano, J., L, J., & Torres, A. (2001). Thermal decomposition behavior and the mechanical properties of an epoxy / cycloaliphatic amine resin with ABS, 37, 1613–1623.
Noorshashillawati Azura Mohammad, , S. H. A., Nor, N. E., & Ain Mohammad, N. H. M. H. (2019). Mechanical Properties of Epoxy Matrix Composites Toughened by Liquid Epoxidized Natural Rubber (LENR), (December 2018). https://doi.org/10.30880/ijie.2018.10.08.025
Nor, H. M., & Ebdon, J. R. (1998). Telechelic liquid natural rubber: A review. Progress in Polymer Science, 23(2), 143-177.
Odegard, G. M., Jensen, B. D., Gowtham, S., Wu, J., He, J., & Zhang, Z. (2014). Predicting mechanical response of crosslinked epoxy using ReaxFF. Chemical Physics Letters, 591, 175–178. https://doi.org/10.1016/j.cplett.2013.11.036
Oladele, I. O., Akinola, O. S., Agbabiaka, O. G., & Omotoyinbo, J. A. (2018). Mathematical model for the prediction of impact energy of organic material based hydroxyapatite (HAp) reinforced epoxy composites. Fibers and Polymers, 19(2), 452–459. https://doi.org/10.1007/s12221-018-7844-5
Olszta, M. J., Cheng, X., Soo, S., Kumar, R., Kim, Y., Kaufman, M. J., … Gower, L. B. (2007). Bone structure and formation : A new perspective, 58, 77–116. https://doi.org/10.1016/j.mser.2007.05.001
Ozeren Ozgul, E., & Ozkul, M. H. (2018). Effects of epoxy, hardener, and diluent types on the workability of epoxy mixtures. Construction and Building Materials, 158, 369–377. https://doi.org/10.1016/j.conbuildmat.2017.10.008
Puglia, D., Al-maadeed, M. A. S. A., Kenny, J. M., & Thomas, S. (2017). Elastomer / thermoplastic modified epoxy nanocomposites : The hybrid effect of ‘ micro ’ and ‘ nano ’ scale. Materials Science & Engineering R, 116, 1–29. https://doi.org/10.1016/j.mser.2017.03.001
Parameswaranpillai, J., Hameed, N., Pionteck, J., & Woo, E. M. (2017). Handbook of epoxy blends. Handbook of Epoxy Blends, 1–1121. https://doi.org/10.1007/978-3- 319-40043-3
Pascault JP (2002) Yielding and fracture of toughened networks. In: Pascault JP, Sautereau H, Verdu J, Williams RJJ (eds) Thermosetting polymers. Marcel Dekker Incorporated, New York, pp 389–408
Park, Y. K., & Cho, C. H. (2016). Effects of additives on the mechanical and thermal properties of epoxy-based nanocomposites produced using sonication. Korean Journal of Chemical Engineering, 33(6), 1938–1941. https://doi.org/10.1007/s11814-016-0034-5
Parra, C., Gonzalez, G., & Albano, C. (2009). Synthesis and characterization of composite materials HDPE/HA and PMMA/HA prepared by sonochemistry. Macromolecular Symposia, 286(1), 60–69. https://doi.org/10.1002/masy.200951208
Pearson, R A, Yee, A. F., Building, D., & Arbor, A. (1989). Toughening mechanisms in elastomer-modified epoxies, 24, 2571–2580.
Pearson, Raymond A. (1993). Toughening Epoxies Using Rigid Thermoplastic Particles.
Pearson, Raymond A, & Yee, A. F. (1992). Toughening mechanisms in thermoplasticmodified epoxies . Modification using poly ( phenylene oxide ).
Phinyocheep, P., Phetphaisit, C. W., Derouet, D., Campistron, I., & Brosse, J. C. (2005). Chemical degradation of epoxidized natural rubber using periodic acid: Preparation of epoxidized liquid natural rubber. Journal of Applied Polymer Science, 95(1), 6– 15. https://doi.org/10.1002/app.20812
Phinyocheep, P., Saelao, J., & Buzare, J. Y. (2007). Mechanical properties , morphology and molecular characteristics of poly ( ethylene terephthalate ) toughened by natural rubber, 48, 5702–5712. https://doi.org/10.1016/j.polymer.2007.07.016
Pla, P., Raquez, J., Habibi, Y., Murariu, M., & Dubois, P. (2013). Progress in Polymer Science. Progress in Polymer Science, 38(10–11), 1504–1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014
Plowright, R., Belto, D. J., Kaplan, D. L., & Perry, C. C. (2017). Quantifying the efficiency of hydroxyapatite mineralising peptides, 1–9. https://doi.org/10.1038/s41598-017-07247-z
Polymdres, L. De, & Boveri, B. (1983). The fracture of particulate-filled epoxide resins, 18, 208–216.
Poonpipat, Y., Leelachai, K., Pearson, R. A., & Dittanet, P. (2017). Fracture behavior of silica nanoparticles reinforced rubber / epoxy composite, 1–12. https://doi.org/10.1177/0731684417709952
Poundarik, A. A., Wu, P., Evis, Z., & Sroga, G. E. (2015). A direct role of collagen glycation in bone fracture. Journal of the Mechanical Behavior of Biomedical Materials, 52, 120–130. https://doi.org/10.1016/j.jmbbm.2015.08.012
Pramanik, N., Mishra, D., Banerjee, I., Maiti, T. K., Bhargava, P., & Pramanik, P. (2009). Chemical Synthesis, characterization, and biocompatibility study of hydroxyapatite/chitosan phosphate nanocomposite for bone tissue engineering applications. International Journal of Biomaterials, 2009, 1–8. https://doi.org/10.1155/2009/512417
Provenzi, C., Leitune, V. C., Collares, F. M., Trommer, R., Bergmann, C. P., & Samuel, S. M. (2014). Interface evaluation of experimental dental adhesives with nanostructured hydroxyapatite incorporation. Applied Adhesion Science, 2(1), 1–5. https://doi.org/10.1186/2196-4351-2-2
Rabie, A. B. M., Wong, R. W. K., & Hägg, U. (2000). Composite autogenous bone and demineralized bone matrices used to repair defects in the parietal bone of rabbits, 565–570. https://doi.org/10.1054/bjom.2000.0464
Raghava, R. S. (1987). Role of Matrix-Particle Interface Adhesion on Fracture Toughness of Dual Phase Epoxy-Polyethersulfone Blend, 25, 1017–1031.
Ragosta, G., Abbate, M., Musto, P., Scarinzi, G., & Mascia, L. (2005). Epoxy-silica particulate nanocomposites : Chemical interactions , reinforcement and fracture toughness, 46, 10506–10516. https://doi.org/10.1016/j.polymer.2005.08.028
Ramli, R. A., Adnan, R., Bakar, M. A., & Masudi, S. M. (2011). Synthesis and characterisation of pure nanoporous hydroxyapatite. Journal of Physical Science, 22(1), 25–37.
Ramos, D., Helson, M., Soares, V. L. P., & Nascimento, R. S. V. (2005). Modification of epoxy resin : a comparison of different types of elastomer, 24, 387–394. https://doi.org/10.1016/j.polymertesting.2004.09.010
Ramsdale-capper, R., & Foreman, J. P. (2018). Internal antiplasticisation in highly crosslinked amine cured multifunctional epoxy resins. Polymer, 146, 321–330. https://doi.org/10.1016/j.polymer.2018.05.048
Ratna, D. (2001). Phase separation in liquid rubber modi ed epoxy mixture . Relationship between curing conditions , morphology and ultimate behavior, 42, 4209–4218.
Ratna, D., Banthia, A. K., & Deb, P. C. (2005). Toughening of epoxy resin using acrylate-based liquid rubbers. Journal of Applied Polymer Science, 78(4), 716–723. https://doi.org/10.1002/1097-4628(20001024)78:4716::AID-APP403.0.CO;2-B
Rezaifard, A. H., Hodd, K. A., & Barton, J. M. (1993). Toughening Epoxy Resin with Poly(methyl methacrylate)- Grafted Natural Rubber.
Riccardi, C. C. (1991). Rubber ? modified epoxies . II . Influence of the cure schedule and rubber concentration on the generated morphology, (February). https://doi.org/10.1002/app.1991.070420315
Road, M. E. (1984). Crack propagation in a glass particle-filled epoxy resin Part 1 Effect of partic / e volume fraction and size, 19(Equation 1), 473–486.
Robinette, E. J., Ziaee, S., & Palmese, G. R. (2004). Toughening of vinyl ester resin using butadiene-acrylonitrile rubber modifiers, 45, 6143–6154. https://doi.org/10.1016/j.polymer.2004.07.003
Roeder, R. K., Converse, G. L., Kane, R. J., & Yue, W. (2008). Hydroxyapatite- Reinforced Polymer Biocomposites for Synthetic Bone Substitutes, (March).
Roese, P. B., & Amico, S. C. (2009). Thermal and Microestructural Characterization of Epoxy-Infiltrated Hydroxyapatite Composite, 12(1), 107–111.
Rooshenass, P., Yahya, R., & Gan, S. N. (2016). Comparison of Three Different Degradation Methods To Produce Liquid Epoxidized Natural Rubber. Rubber Chemistry and Technology, 89(1), 177–198. https://doi.org/10.5254/RCT.15.84878
Rooshenass, P., Yahya, R., & Gan, S. N. (2018). Preparation of Liquid Epoxidized Natural Rubber by Oxidative Degradations Using Periodic Acid, Potassium Permanganate and UV-Irradiation. Journal of Polymers and the Environment, 26(4), 1378–1392. https://doi.org/10.1007/s10924-017-1038-x
Rosen, V. B., Hobbs, L. W., & Spector, M. (2002). The ultrastructure of anorganic bovine bone and selected synthetic hyroxyapatites used as bone graft substitute materials, 23, 921–928.
Rouhani, P., Taghavinia, N., & Rouhani, S. (2010). Ultrasonics Sonochemistry Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation. Ultrasonics - Sonochemistry, 17(5), 853–856. https://doi.org/10.1016/j.ultsonch.2010.01.010
Rusli, A., Cook, D., & Schiller, T. L. (2014). Blends of epoxy resins and polyphenylene oxide as processing aids and toughening agents 2 : Curing kinetics , rheology , structure and properties, (January). https://doi.org/10.1002/pi.4749
Russell, B., & Chartoff, R. (2005). The influence of cure conditions on the morphology and phase distribution in a rubber-modified epoxy resin using scanning electron microscopy and atomic force microscopy, 46, 785–798. https://doi.org/10.1016/j.polymer.2004.11.090
Sadat-shojai, M., Atai, M., Nodehi, A., & Nasiri, L. (2010). Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives :
Synthesis and application. Dental Materials, 26(5), 471–482. https://doi.org/10.1016/j.dental.2010.01.005
Sadat-shojai, M., Khorasani, M., Dinpanah-khoshdargi, E., & Jamshidi, A. (2013). Acta Biom aterialia Synthesis methods for nanosized hydroxyapatite in diverse structures. acta biomaterialia, (April). https://doi.org/10.1016/j.actbio.2013.04.012
Saeri, M. R., Afshar, A., Ghorbani, M., Ehsani, N., & Sorrell, C. C. (2003). The wet precipitation process of hydroxyapatite, 57, 4064–4069. https://doi.org/10.1016/S0167-577X(03)00266-0
Sahu, S., & Mehra, D. (2012). Characterization and Thermal Analysis of Hydroxyapatite Bioceramic Powder Synthesized by Sol-Gel Technique.
Saleh, A. B. B., Ishak, Z. A. M., Hashim, A. S., Kamil, W. A., & Ishiaku, U. S. (2014). Synthesis and characterization of liquid natural rubber as impact modifier for epoxy resin. Physics Procedia, 55, 129–137. https://doi.org/10.1016/j.phpro.2014.07.019
Sankar, S., Sekar, S., Mohan, R., Rani, S., Sundaraseelan, J., & Sastry, T. P. (2008). Preparation and partial characterization of collagen sheet from fish. Lates calcariferscales, 42, 6–9. https://doi.org/10.1016/j.ijbiomac.2007.08.003
Santos, K. A. M., Suarez, P. A. Z., & Rubim, J. C. (2005). Photo-degradation of synthetic and natural polyisoprenes at specific UV radiations, 90, 34–43. https://doi.org/10.1016/j.polymdegradstab.2005.01.038
Sarker, M. (2015). Chemical Characteristics of Hydroxyapatite from Oyster Shell by Thermo-Chemical Process, https://doi.org/10.15680/IJIRSET.2015.0407002
Scalera, F., Esposito Corcione, C., Montagna, F., Sannino, A., & Maffezzoli, A. (2014). Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering. Ceramics International, 40(10), 15455–15462. https://doi.org/10.1016/j.ceramint.2014.06.117
Scholz, M. S., Blanchfield, J. P., Bloom, L. D., Coburn, B. H., Elkington, M., Fuller, J. D., Bond, I. P. (2011). The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review. Composites Science and Technology, 71(16), 1791–1803. https://doi.org/10.1016/j.compscitech.2011.08.017
Sci, M., Med, M., Science, S., & Media, B. (2009). Problem of hydroxyapatite dispersion in polymer matrices : a review, 1201–1213. https://doi.org/10.1007/s10856-009- 3696-2
Selvin, T. P., Kuruvilla, J., & Sabu, T. (2004). Mechanical properties of titanium dioxidefilled polystyrene microcomposites. Materials Letters, 58(3–4), 281–289. https://doi.org/10.1016/S0167-577X(03)00470-1
Seng, L. Y., Ahmad, S. H. J., Rasid, R., Noum, Seyeh., Hock, Y. C., & Tarawneh, M. A. (2011). Effects of liquid natural rubber (LNR) on the mechanical properties of LNR toughened epoxy composite. Sains Malaysiana, 40(7), 679–683.
Shahabi, S., Najafi, F., Majdabadi, A., Hooshmand, T., Haghbin Nazarpak, M., Karimi, B., & Fatemi, S. M. (2014). Effect of gamma irradiation on structural and biological properties of a PLGA-PEG-hydroxyapatite composite. Scientific World Journal, 2014. https://doi.org/10.1155/2014/420616
Sheinbaum, M., Sheinbaum, L., Weizman, O., Dodiuk, H., & Kenig, S. (2019). Toughening and enhancing mechanical and thermal properties of adhesives and glass-fiber reinforced epoxy composites by brominated epoxy. Composites Part B https://doi.org/10.1016/j.compositesb.2019.02.020
Shikinami, Y., & Okuno, M. (1999). Bioresorbable devices made of forged composites of hydroxyapatite ( HA ) particles and poly L -lactide ( PLLA ): Part I . Basic characteristics, 20, 859–877.
Sivaraman, O., Ghosh, N., Gayathri, S., Sudhakara, P., Misra, S. K., & Jayaramudu, J. (2017). Natural rubber nanoblends : preparation , characterization and applications. https://doi.org/10.1007/978-3-319-48720-5
Sonoyama, W., Kuboki, T., Okamoto, S., Suzuki, H., Arakawa, H., Kanyama, M., … Yamashita, A. (2002). Quality of life assessment in patients with implant-supported and resin-bonded fixed prosthesis for bounded edentulous spaces. Clinical Oral Implants Research, 13(4), 359–364. https://doi.org/10.1034/j.1600- 0501.2002.130403.x
Su’ait, M. S., Ahmad, A., Hamzah, H., & Rahman, M. Y. A. (2011). Effect of lithium salt concentrations on blended 49% poly(methyl methacrylate) grafted natural rubber and poly(methyl methacrylate) based solid polymer electrolyte. Electrochimica Acta, 57(1), 123–131. https://doi.org/10.1016/j.electacta.2011.06.015
Sultan, J. N., & Mcgarry, F. J. (1973.). Effect of rubber particle size on deformation mechanisms in glassy epoxy, 29–34.
Swetha, M., Sahithi, K., Moorthi, A., Srinivasan, N., Ramasamy, K., & Selvamurugan, N. (2010). Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. International Journal of Biological Macromolecules, 47(1), 1–4. https://doi.org/10.1016/j.ijbiomac.2010.03.015
Szcze?, A., Ho?ysz, L., & Chibowski, E. (2017). Synthesis of hydroxyapatite for biomedical applications. Advances in Colloid and Interface Science, 249, 321–330. https://doi.org/10.1016/j.cis.2017.04.007
Tan, S. K., Ahmad, S., Chia, C. H., Mamun, A., & Heim, H. P. (2013). A Comparison Study of Liquid Natural Rubber ( LNR ) and Liquid Epoxidized Natural Rubber ( LENR) as the Toughening Agent for Epoxy, 3(3), 55–61. https://doi.org/10.5923/j.materials.20130303.02
Tangpakdee, J., Mizokoshi, M., Endo, A., & Tanaka, Y. (1998.). Novel method for preparation of low molecular weight natural rubber LATEX, 795–802.
Tao, J., Jiang, W., Pan, H., Xu, X., & Ã, R. T. (2007). Preparation of large-sized hydroxyapatite single crystals using homogeneous releasing controls, 308, 151–158. https://doi.org/10.1016/j.jcrysgro.2007.08.009
Taylor, P., Knight, C. C., Zeng, C., Zhang, C., & Wang, B. (2012). Recycling of woven carbon-fibre-reinforced polymer composites using supercritical water, (November 2014), 37–41. https://doi.org/10.1080/09593330.2011.586732
Taylor, P., Qasas, N. S. Al, & Rohani, S. (2007). Synthesis of pure hydroxyapatite and the effect of synthesis conditions on its yield , crystallinity , morphology and mean particle size. https://doi.org/10.1080/01496390500385400
Tayton, E., Purcell, M., Aarvold, A., Smith, J. O., Briscoe, A., Kanczler, J. M., Oreffo, R. O. C. (2013). A comparison of polymer and polymer hydroxyapatite composite tissue engineered scaffolds for use in bone regeneration . An in vitro and in vivo study, 2613–2624. https://doi.org/10.1002/jbm.a.34926
Teo, W. Z. W., & Schalock, P. C. (2016). Metal Hypersensitivity Reactions to Orthopedic Implants. Dermatology and Therapy. https://doi.org/10.1007/s13555- 016-0162-1
Thomas, R., Abraham, J., P, S. T., & Thomas, S. (2004). Influence of Carboxyl- Terminated (Butadiene co acrylonitrile ) Loading on the Mechanical and Thermal Properties of Cured Epoxy Blends, 2531–2544. https://doi.org/10.1002/polb.20115
Thomas, R., Yumei, D., Yuelong, H., Le, Y., & Moldenaers, P. (2008). Miscibility , morphology , thermal , and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber, 49, 278–294. https://doi.org/10.1016/j.polymer.2007.11.030
TianKhoon, L., Ataollahi, N., Hassan, N. H., & Ahmad, A. (2016). Studies of porous solid polymeric electrolytes based on poly (vinylidene fluoride) and poly (methyl methacrylate) grafted natural rubber for applications in electro chemical devices. Journal of Solid State Electrochemistry, 20(1), 203–213. https://doi.org/10.1007/s10008-015-3017-2
Tripathi, G., & Srivastava, D. (2008). Studies on the physico-mechanical and thermal characteristics of blends of DGEBA epoxy , 3 , 4 epoxy cyclohexylmethyl , 3 , 4 - epoxycylohexane carboxylate and carboxyl terminated butadiene co-acrylonitrile ( CTBN ), 496, 483–493. https://doi.org/10.1016/j.msea.2008.06.035
Ungureanu, D. N., Angelescu, N., Ion, R. M., Stoian, E. V., & Rizescu, C. Z. (2011). Synthesis and Characterization of Hydroxyapatite Nanopowders by Chemical Precipitation. Recent Researches in Communications, Automation, Signal Processing, Nanotechnology, Astronomy and Nuclear Physics , 296–301. https://doi.org/10.1007/s40097-014-0099-9
Unnikrishnan, K. P., & Thachil, E. T. (2012). Designed Monomers and Polymers Toughening of epoxy resins, (November 2014), 37–41. https://doi.org/10.1163/156855506776382664
Vijayan, P. P., Pionteck, J., Huczko, A., Puglia, D., Kenny, J. M., & Thomas, S. (2014). Liquid rubber and silicon carbide nanofiber modified epoxy nanocomposites : Volume shrinkage , cure kinetics and properties. Composites science and technology, 102, 65–73. https://doi.org/10.1016/j.compscitech.2014.07.017
Wang, J., & Shaw, L. L. (2009). Biomaterials Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials, 30(34), 6565– 6572. https://doi.org/10.1016/j.biomaterials.2009.08.048
Wang, K., Chen, L., Wu, J., Toh, M. L., He, C., & Yee, A. F. (2005). Epoxy Nanocomposites with Highly Exfoliated Clay : Mechanical Properties and Fracture Mechanisms, 788–800.
Wang, M, Joseph, R., & Bonfield, W. (1998). Hydroxyapatite-polyethylene composites for bone substitution : effects of ceramic particle size and morphology, 19, 2357– 2366.
Wang, Minghai, Yu, Y., Wu, X., & Li, S. (2004). Polymerization induced phase separation in poly ( ether imide ) -modified epoxy resin cured with imidazole, 45, 1253–1259. https://doi.org/10.1016/j.polymer.2003.12.037
Wang, T., Huang, P., Li, Y., Hu, N., & Fu, S. (2019). Epoxy nanocomposites significantly toughened by both poly(sulfone) and graphene oxide. Composites Communications. https://doi.org/10.1016/j.coco.2019.05.007
Wang, Z., Xie, M., Zhao, Y., Yu, Y., & Fang, S. (2003). Synthesis and properties of novel liquid ester-free reworkable cycloaliphatic diepoxides for electronic packaging application. Polymer, 44(4), 923–929. https://doi.org/10.1016/S0032- 3861(02)00873-X
Wetzel, B., Haupeiit, F., Friedrich, K., Zhang, M. Q. I. U., & Rong, M. I. N. Z. H. I. (2002). Impact and Wear Resistance of Polymer Nanocomposites, 42(9), 1919– 1927.
Wijesinghe, W. P. S. L. (2014). Overview to hydroxyapatite nanoparticles and their applications, 01, 29–30.
Wiles, D. M., & Carlsson, D. J. (1980). Photostabilisati on mechanisms in polymers : a review 5-, (18383), 61–72.
Wu, C., & Xu, W. (2006). Atomistic molecular modelling of crosslinked epoxy resin, 47, 6004–6009. https://doi.org/10.1016/j.polymer.2006.06.025
Xian, G., Walter, R., & Haupert, F. (2005). Comparative Study of the Mechanical and Wear Performance of Short Carbon Fibers and Mineral Particles ( Wollastonite , CaSiO 3 ) Filled Epoxy Composites, 3–10. https://doi.org/10.1002/polb.20730
Xiang-guo, L., Bao-guo, M., Li, X., Zhen-wu, H., & Xin-gang, W. (2006). Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres, 441, 79–83. https://doi.org/10.1016/j.tca.2005.11.044
Yahyaie, H., Ebrahimi, M., Tahami, H. V., & Mafi, E. R. (2013). Progress in Organic Coatings Toughening mechanisms of rubber modified thin film epoxy resins. Progress in Organic Coatings, 76(1), 286–292. https://doi.org/10.1016/j.porgcoat.2012.09.016
Yamamoto, Y., Nadiah, S., Norulhuda, B., Nghia, P. T., & Kawahara, S. (2018). Thermal degradation of Deproteinized Natural Rubber. Polymer Degradation and Stability. https://doi.org/10.1016/j.polymdegradstab.2018.08.003
Yang, G. U. O., Zheng, B. I. N., Yang, J., Xu, G., & Fu, S. (2008). Preparation and Cryogenic Mechanical Properties of Epoxy Resins Modified by Poly ( ethersulfone ), 612–624. https://doi.org/10.1002/pola
Yang, K., Wu, S., Guan, J., Shao, Z., & Ritchie, R. O. (2017). Enhancing the Mechanical Toughness of Epoxy-Resin Composites Using Natural Silk Reinforcements. Scientific Reports, (September), 1–9. https://doi.org/10.1038/s41598-017-11919-1
Yelten-yilmaz, A., & Yilmaz, S. (2018). Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. Ceramics International. https://doi.org/10.1016/j.ceramint.2018.02.201
Yu, J., Huang, X., Wu, C., Wu, X., Wang, G., & Jiang, P. (2012). Interfacial modi fi cation of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer, 53(2), 471–480. https://doi.org/10.1016/j.polymer.2011.12.040
Yu, N. Y. C., Schindeler, A., Little, D. G., & Ruys, A. J. (2010). Review Biodegradable Poly ( a -hydroxy acid ) Polymer Scaffolds for Bone Tissue Engineering, 285–295. https://doi.org/10.1002/jbm.b.31588
Yu, Y., Wang, M., Gan, W., Tao, Q., & Li, S. (2004). Polymerization-Induced Viscoelastic Phase Separation in Polyethersulfone-Modified Epoxy Systems, 6208– 6215.
Yusoff, S. N. H. M., Sim, L. H., Chan, C. H., Aziz, S. S. S. A., Mahmud, Z. S., & Hairi, H. M. (2015). Studies on thermal and conductivity of modified natural rubber studies on thermal and conductivity of modified natural rubber. Journal of Advanced Research in Materials Science, 12(1), 1–11.
Zainol, I., Ahmad, M. I., Zakaria, F. A., Ramli, A., HaslanFadli, A. M., & Abdul Aziz, A. (2006). Modification of Epoxy Resin Using Liquid Natural Rubber. Materials Science Forum, 517(1), 272–274. https://doi.org/10.4028/www.scientific.net/MSF.517.272
Zainol, I., Alwi, N. M., Abidin, M. Z., Haniza, H. M. Z., Ahmad, M. S., & Ramli, A. (2012). Physicochemical Properties of Hydroxyapatite Extracted from Fish Scales. Advanced Materials Research, 545, 235–239. https://doi.org/10.4028/www.scientific.net/AMR.545.235
Zebarjad, S. M., Sajjadi, S. A., & Sdrabadi, T. E. (2011). A Study on Mechanical Properties of PMMA / Hydroxyapatite Nanocomposite, 2011(August), 795–801. https://doi.org/10.4236/eng.2011.38096
Zeng, M., Sun, X., Yao, X., Ji, G., Chen, N., & Wang, B. (2007). Effects of SiO 2 Nanoparticles on the Performance of Carboxyl-Randomized Liquid Butadiene – Acrylonitrile Rubber Modified Epoxy Nanocomposites, i, 2–7. https://doi.org/10.1002/app
Zewde, B., Pitliya, P., Karim, A., & Raghavan, D. (2016). Synergistic Effect of functionalized carbon nanotubes and micron-sized rubber particles on the mechanical properties of epoxy resin, 542–548.
Zhan, Z., Lu, L., & Yang, X. (2018). Structure , microparameters and properties of crosslinked DGEBA / MTHPA : A molecular dynamics simulation, 075332(May). https://doi.org/10.1063/1.5041283
Zhang, D., Luo, H., Zheng, L., Wang, K., Li, H., Wang, Y., & Feng, H. (2012). Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution. Journal of Hazardous Materials, 241–242, 418–426. https://doi.org/10.1016/j.jhazmat.2012.09.066
Zhang, G., Chen, J., Yang, S., Yu, Q., Wang, Z., & Zhang, Q. (2011). Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method. Materials Letters, 65(3), 572–574. https://doi.org/10.1016/j.matlet.2010.10.078
Zhang, H., Yan, Y., Wang, Y., & Li, S. (2002). Morphology and Formation Mechanism of Hydroxyapatite Whiskers from Moderately Acid Solution, 6(1), 111–115.
Zhang, J. I. N., Guo, Q., & Fox, B. (2010). Thermal and Mechanical Properties of a Dendritic Hydroxyl-Functional Hyperbranched Polymer and Tetrafunctional Epoxy Resin Blends, 48(September 2009), 417–424. https://doi.org/10.1002/POLB
Zhang, Jianing, Deng, S., Wang, Y., & Ye, L. (2016). Composites : Part A Role of rigid nanoparticles and CTBN rubber in the toughening of epoxies with different cross-linking densities. composites PART A, 80, 82–94. https://doi.org/10.1016/j.compositesa.2015.10.017
Zhang, Jing, Zhou, Q., Jiang, X., Du, A., Zhao, T., Kasteren, J. Van, & Wang, Y. (2010). Oxidation of natural rubber using a sodium tungstate / acetic acid / hydrogen peroxide catalytic system. Polymer Degradation and Stability, 95(6), 1077–1082. https://doi.org/10.1016/j.polymdegradstab.2010.02.028
Zheng, Y., Chonung, K., Wang, G., Wei, P., & Jiang, P. (2008). Epoxy / Nano-Silica Composites : Curing Kinetics , Glass Transition Temperatures , Dielectric , and Thermal – Mechanical Performances. https://doi.org/10.1002/app
Zhou, Heng-shi, Song, X., & Xu, S. (2014). Mechanical and Thermal Properties of Novel Rubber-Toughened Epoxy Blend Prepared by In Situ Pre-crosslinking, 41110, 1–7. https://doi.org/10.1002/app.41110
Zhou, W., & Cai, J. (2011). Mechanical and Dielectric Properties of Epoxy Resin Modified Using Reactive Liquid Rubber ( HTPB ). https://doi.org/10.1002/app
Zhu, Y., Xu, L., Liu, C., Zhang, C., Wu, N., Zhu, Y., … Wu, N. (2018). Nucleation and growth of hydroxyapatite nanocrystals by hydrothermal method Nucleation and growth of hydroxyapatite nanocrystals by hydrothermal method, 085221. https://doi.org/10.1063/1.5034441
Zima, A. (2017). Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. https://doi.org/10.1016/j.saa.2017.12.008
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |