UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :TP Chemical technology
Main Author :Hanisom Abdullah
Title :High energy density fuels derived from Mallee Biomass: fuel properties and implications
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2010
Notes :doctoral
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
Mallee Biomass is considered to be a second-generation renewable feedstock in Australia and will play an important role in bioenergy development in Australia. Its production is of large-scale, low cost, small carbon footprint and high energy efficiency. However, biomass as a direct fuel is widely dispersed, bulky, fibrous and of high moisture content and low energy density. High logistic cost, poor grindability and mismatch of fuel property with coal are some of the key issues that impede biomass utilisation for power generation. Therefore, innovations are in urgent need to improve biomass volumetric energy densification, grindability and good fuel matching if co-fired with coal. Biomass pyrolysis is a flexible and low-cost approach that can be deployed for this purpose. Via pyrolysis, the bulky biomass can be converted to biomass-derived high-energy-density fuels such as biochar and/or biooil. So far there has been a lack of fundamental understanding of mallee biomass pyrolysis and properties of the fuel products. The series of study in this PhD thesis aims to investigate the production of such highenergy- density fuels obtained from mallee pyrolysis and to obtain some new knowledge on properties of the resultant fuels and their implications to practical applications. Particularly, the research has been designed and carried out to use pyrolysis as a pretreatment technology for the production of biochar, bio-oil and bioslurry fuels. The main outcomes of this study are summarised as follows. Firstly, biochars were produced from the pyrolysis of centimetre-sized particles of mallee wood at 300-500°C using a fixed-bed reactor under slow-heating conditions. The data show that at pyrolysis temperatures> 320°C, biochar as a fuel has similar fuel H/C and OIC ratios compared to Collie coal which is the only coal being mined in WA. Converting biomass to biochar leads to a substantial increase in fuel mass energy density from -10 GJ/tonne of green biomass to -28 GJ/tonne of biochars prepared from pyrolysis at 320°C, in comparison to 26 GJ/tonne for Collie coal. However, there is little improvement in fuel volumetric energy density, which is still around 7-9 GJ/m3 in comparison to 17 GJ/m3 of Collie coal. Biochars are still bulky and grinding is required for volumetric energy densification. Biochar grindability experiments have shown that the fuel grindability increases drastically even at pyrolysis temperature as low as 300°C. Further increase in pyrolysis temperature to 500°C leads to only small increase in biochar grindability. Under the grinding conditions, a significant size reduction (34-66 % cumulative volumetric size
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.