UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Kajian ini bertujuan untuk mengenal pasti kehadiran telatah kalut dan meramal data siri
masa aras air sungai di kawasan yang berkepentingan di Malaysia dengan
menggunakan pendekatan kalut. Kajian ini merangkumi tiga objektif utama iaitu mengenal
pasti kehadiran telatah kalut pada aras air sungai, meramal aras air sungai menggunakan pendekatan
kalut dan menambahbaik kaedah peramalan purata setempat (kpps) untuk peramalan aras air sungai
di kawasan berkepentingan di Malaysia. Kawasan berkepentingan di Malaysia diperincikan kepada
dua kawasan iaitu kawasan tadahan sungai yang berbeza ketinggian tanah dan kawasan dataran banjir.
Tiga batang sungai telah dipilih untuk memenuhi objektif kajian iaitu kawasan tadahan sungai yang
berbeza ketinggian tanah adalah di Sungai Pahang yang melibatkan kawasan tanah rendah
(skala masa jam) dan tanah tinggi (skala masa harian). Manakala kawasan dataran banjir
adalah di Sungai Kelantan (skala masa jam) dan Sungai Dungun (skala masa jam). Dapatan kajian
bagi objektif pertama membuktikan telatah kalut hadir terhadap data siri masa aras air
sungai yang dikaji menggunakan kaedah Cao menunjukkan sekurang-kurangnya satu nilai E2(d) ≠ 1
manakala kaedah plot ruang fasa pula menunjukkan wujud rantau penarik pada ruang fasa. Hasil
dapatan objektif kedua menunjukkan data siri masa aras sungai memberikan peramalan yang sangat
cemerlang (pekali korelasi, CC > 0.99) menggunakan kombinasi kaedah kpps dan d – songsang
berbanding kaedah lain dalam kajian ini. Kaedah penambahbaikan kpps dapat
memberikan peramalan yang lebih baik berbanding kaedah kpps kerana kaedah penambahbaikan
kpps dapat memberikan nilai pekali korelasi yang lebih tinggi. Kesimpulannya, pendekatan
kalut berjaya meramal siri masa aras air sungai di kawasan berkepentingan di Malaysia. Implikasi
kajian ini dapat menyumbangkan maklumat aras sungai kepada pihak yang berkenaan bagi
pengurusan sumber air dan pengawalan
banjir.
|
References |
Abarbanel, H. D. I. (1996). Analysis of Observed Chaotic Data. New York, NY: Springer New York.
Acharya, R., Pal, J., Das, D., & Chaudhuri, S. (2019). Long?Range Forecast of Indian Summer Monsoon Rainfall Using an Artificial Neural Network Model. Meteorological Applications, 26(3), met.1766.
Adenan, N. H., & Noorani, M. S. M. (2013). River Flow Prediction Using Nonlinear Prediction Method. International Journal of Physical and Mathematical Sciences, 7(11).
Adenan, N. H. (2015). Analisis Dan Peramalan Data Siri Masa Aliran Sungai Dengan Menggunakan Pendekatan Kalut. Universiti Kebangsaan Malaysia (UKM).
Adenan, N. H., & Noorani, M. S. M. (2016). Multiple Time-Scales Nonlinear Prediction of River Flow Using Chaos Approach. Jurnal Teknologi, 78(7).
Adenan, N. H., & Noorani, M. S. M. (2015a). Peramalan Data Siri Masa Aliran sungai di Dataran Banjir dengan Menggunakan Pendekatan Kalut. Sains Malaysiana, 44(3), 463–471.
Aeschbacher, J., Liniger, H., & Weingartner, R. (2009). River Water Shortage in a Highland–Lowland System. Environmental Sciences.
Agensi Pengurusan Bencana Negara (NADMA). (2018). Portal Bencana. Retrieved December 10, 2018.
Ahmad, A. K., Mushrifah, I., & Othman, M. S. (2009). Water Quality and Heavy Metal Concentrations in Sediment of. Sains Malaysiana (Vol. 38).
Akhir, N. M., Azman, A., Hassan, N., & Akhir, N. H. M. (2017). Kajian Penelitian Masalah Mangsa Bencana Banjir Disember 2014 Di Kelantan. Journal of Social Sciences & Humanities.
Albostan, A., & Önöz, B. (2015). Implementation of Chaotic Analysis on River Discharge Time Series. Energy and Power Engineering, 7, 81–92.
Albostan, A., & Önöz, B. (2015). Implementation of Chaotic Analysis on River Discharge Time Series. Energy and Power Engineering, 07(03), 81–92.
Ambak, M. A., & Zakaria, M. Z. (2010). Freshwater Fish Diversity in Sungai Kelantan. Universiti Malaysia Terengganu (UMT).
Ghani, A. A., Chang, C. K., Pua, H. T. & Ismail, W. R. (2016). Flood inundation analysis for large scale river using hydrodynamic and sediment transport model –
Case study of Sungai Pahang’s December 2014 flood. Persidangan Kajian Bencana Banjir 2014 , 9.
Anika, N., & Kato, T. (2019). Modeling River Flow using Artificial Neural Networks: A Case Study on Sumani Watershed. Pertanika J. Sci. & Technol, 27(S1), 179– 188.
Arbain, S. H. (2014). Non-Linear Water Level Forecasting of Dungun River Using Hybridization of Backpropagation Neural Network and Genetic Algorithm .
Arbain, S. H., & Wibowo, A. (2012). Time series methods for water level forecasting of Dungun river in Terengganu Malaysia, 9.
Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena, 110(1–2), 43–50.
Chapman, D. (1992). Water Quality Assessments-A Guide to Use of Biota, Sediments and Water in Environmental Monitoring-Second Edition. London: E & FN Spon.
Cheng, H., & Sandu, A. (2009). Uncertainty quantification and apportionment in air quality models using the polynomial chaos method. Environmental Modelling & Software, 24(8), 917–925.
Chennai, T., Padma, K., Selvaraj, R. S., & Boaz, B. M. (2013). Use of Chaotic and Time Series Analysis on Surface Ozone Study at the Tropical Region. Universal Journal of Environmental Research and Technology, 3(6), 650–659.
Ching, Y., Baharudin, Y., Ekhwan, T. M., Lee, Y., Maimon, A., & Salmijah, S. (2013). Impact of climate change on flood risk in the Muar River Basin of Malaysia. In Disaster Advances 6 (pp. 11–17). Universiti Kebangsaan Malaysia, Selangor.
Dewan Bahasa dan Pustaka. (2005). Kamus Dewan (Edisi 4.). Kuala Lumpur: Dewan Bahasa dan Pustaka
Ducard, G. (2017). Modeling and Analysis of Dynamic Systems Institute for Dynamic Systems and Control. Zurich, Switzerland.
Elshorbagy, A., Simonovic, S. P., & Panu, U. S. (2002). Estimation of missing streamflow data using principles of chaos theory. Journal of Hydrology, 255(1– 4), 123–133.
Fathima, T. A., & Jothiprakash, V. (2014). Behavioural analysis of a time series-A chaotic approach. S¯ Adhan¯ A, 39, 659–676.
Frison, T. W., I Abarbanel, H. D., Earle, M. D., Schultz, J. R., Scherer, W. D., & Diego, S. (1999). Chaos and predictability in ocean water levels. Journal Of Geophysical Research, 104(C4).
Gasim, M. B., Toriman, M. I., & Idris, M. (2013). River flow conditions and dynamic state analysis of Pahang river.
Gasim, M. B., Adam, J., Toriman, M. E., Rahim, S. A., & Juahir, H. (2007). Coastal Flood Phenomenon in Terengganu, Malaysia: Special Reference to Dungun. Reseach Journal of Enviromental Science, 3, 9.
Ghani, A. A., Chang, C. K., Leow, C. S., & Zakaria, N. A. (2012). International Journal of River Basin Management Sungai Pahang digital flood mapping: 2007 flood, 11.
Ghorbani, M. A., Daneshfaraz, R., Arvanagi, H., Pourzangbar, A., Saghebian, S. M., & Kar, K. K. (2012). Local Prediction in River Discharge Time Series. Journal of Civil Engineering and Urbanism, 2(2), 51–55.
Ghosh, S., & Mistri, B. (2015). Geographic Concerns on Flood Climate and Flood Hydrology in Monsoon-Dominated Damodar River Basin, Eastern India. Geography Journal, 2015, 1–16.
Gurjar, M., Naik, P., Mujumdar, G., & Vaidya, T. (2018). Stock Market Prediction Using ANN. International Research Journal of Engineering and Technology, 5(3), 2758–2761.
Hamid, N. Z. A. & Noorani, M. S. M. (2013). An Improved Prediction Model of Ozone Concentration Time Series Based On Chaotic Approach. Int. J. Math. Comput. Sci. Eng.
Hamid, N. Z. A. & Noorani, M. S. M. (2014). Suatu Kajian Perintis Menggunakan Pendekatan Kalut bagi Pengesanan Sifat dan Peramalan Siri Masa Kepekatan PM10. Sains Malaysiana, 43(3), 475–481.
Hamid, N. Z. A. (2015). Pemodelan siri masa kepekatan bahan pencemar udara 03,PM10 dan jerebu menerusi pendekatan kalut. Universiti Kebangsaan Malaysia (UKM).
Hamid, N. Z. A., (2018). Application of chaotic approach in forecasting highland’s temperature time series. IOP Conf. Ser.: Earth Environ. Sci, 169. 7
Hamid, N. Z. A. (2015). Pemodelan Siri Masa Kepekatan Bahan Pencemar Udara 03, Pmlo Dan Jerebu Menerusi Pendekatan Kalut. Tesis doktor falsafah, Universiti Kebangsaan Malaysia.
Hamid, N. Z. A. & Noorani, M. S. M. (2017). Aplikasi Model Baharu Penambahbaikan Pendekatan Kalut ke atas Peramalan Siri Masa Kepekatan Ozon. Sains Malaysiana, 46(8), 1333–1339.
Ibrahim, H. A. & Ahmad, M. K. F. (2017). Geografi Tingkatan 1. Era Visi Sdn Bhd.
Hohle, S. M., & Teigen, K. H. (2015). Forecasting forecasts: The trend effect. Judgment and Decision Making, 10(5), 416–428.
Hussain, T. P. R. S., & Ismail, H. (2011). Land Use Changes Analysis for Kelantan
Basin Using Spatial Matrix Technique "Patch Analyst" in Relation to Flood Disaster. Journal of Techno-Social, 3(1).
Ibrahim, F. (2016). Strategi Penambahbaikan Pengurusan Bencana Banjir Besar Di Kelantan. Universiti Teknologi Malaysia.
Jabatan Meteorologi Malaysia. (2017). Laporan Tahunan 2016.
Jabatan Pengairan dan Saliran Malysia (JPS). (2015). Kompedium Data dan Maklumat Asas.
Jabatan Pengairan dan Saliran Selangor (JPS). (2018). Pengurusan Banjir.
Jabatan Perangkaan Malaysia (JPM). (2018). Department of Statistics Malaysia Official Portal.
Jayawardena, A. W. (1997). Runoff forecasting using a local approximation method. IAHS Publ.
Jieni, X. & Zhongke, S. (2008). Short-Time Traffic Flow Prediction Based on Chaos Time Series Theory. Journal Of Transportation Systems Engineering And Information Technology, 8(5), 68–72.
Kantz, H. & Schreiber, T. (2004). Nonlinear Time Series Analysis.
Kaplan, D. & Glass, L. (1995). Understanding Nonlinear Dynamics. Texts in Applied Mathematics., (jil. 19).
Karri, R. R., Badwe, A., Wang, X., Serafy, G. E., Sumihar, J., Babovic, V. & Gerritsen, H. (2013). Application of data assimilation for improving forecast of water levels and residual currents in Singapore regional waters. Ocean Dynamics, 63(1), 43– 61.
Khairul, M., Kamarudin, A., Toriman, E., Sulaiman, N. H., Ata, F. M., Gasim, M. B., … Aziz, A. (2015). Klasifikasi Sungai Tropika Menggunakan Teknik Kemometrik: Kajian Kes Di Sungai Pahang, Malaysia. Malaysian Journal of Analytical Sciences, 19, 1001–1018.
Khatami, S. (2013). Nonlinear Chaotic and Trend Analyses of Water Level at Urmia Lake, Iran Does Climate Variability Explain Urmia Lake Depletion. Lund University.
Khatibi, R., Ghorbani, M. A., Aalami, M. T., Kocak, K., Makarynskyy, O., Makarynska, D., & Aalinezhad, M. (2011). Dynamics of hourly sea level at Hillarys Boat Harbour, Western Australia: a chaos theory perspective. Ocean Dynamics, 61(11), 1797–1807.
Khatibi, R., Sivakumar, B., Ghorbani, M. A., Kisi, O., Koçak, K., & Zadeh, D. F. (2012). Investigating chaos in river stage and discharge time series. Journal of
Hydrology, 414–415, 108–117.
Khokhlov, V., Glushkov, A. A., Loboda, A. N., Serbov, A. N., & Zhurbenko, A. K. (2008). Signatures of low-dimensional chaos in hourly water level measurements at coastal site of Mariupol, Ukraine.
Lak, R., Darvishikhatuoni, J., & Mohammadi, A. (2012). Study Of Paleolimnology And Causes Of Sudden Decrease Of Urmia Lake Water Table. Journal of Geotechnical Gology (Applied Geology), 7(4), 343–358.
Li, T.-Y., & Yorke, J. A. (1975). Period Three Implies Chaos. The American Mathematical Monthly (Vol. 82).
Li, Y., Liu, Y., & Zhu, H. (2017). Analysis of the chaotic characteristics of traffic flow under congested traffic condition. In 2017 29th Chinese Control And Decision Conference (CCDC) (pp. 4949–4954). IEEE.
Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal Of The Atmospheric Sciences, 20, 12.
Lun, P. I., Gasim, M. B., Toriman, M. E., Rahim, S. A., & Kamaruddin, K. A. (2011). Hydrological Pattern Of Pahang River Basin And Their Relation To Flood Historical Event (Corak Hidrologi Lembangan Sungai Pahang dan Hubungannya dengan, 6, 9.
Mahmoudabadi, A., & Andalibi, S. (2014). The Assessment of Applying Chaos Theory for Daily Traffic Estimation. Industrial Engineering and Operations Management , 559–567.
Marcinkowski, P., Grygoruk, M., Marcinkowski, P., & Grygoruk, M. (2017). Long- Term Downstream Effects of a Dam on a Lowland River Flow Regime: Case Study of the Upper Narew. Water, 9(10), 783.
Martin, C., Gill, J., Cacic, I., Muchemi, S., & Rubiera, J. (2007). World Meteorological Organization 2007.
Martins, O. Y., Sadeeq, M. A., & Ahaneku, I. E. (2011). Nonlinear Deterministic Chaos in Benue River Flow Daily Time Sequence. Journal of Water Resource and Protection, 03(10), 747–757.
Matlab. (2009). Matlab and Statistics Toolbox Release 2009b. The MathWorks, Inc., Natick, Massachusetts, United States.
Merkwirth, C., Parlitz, U., Wedekind, I., Engster, D., & Lauterborn, W. (2009). TSTOOL and User Manual.
Mesbahzadeh, M. (2016). Applying the 0-1 test on the analysis of climate and weather data using chaos theory. Journal of Fundamental and Applied Sciences, 8(2), 1188.
Mihailovi?, D. T., Nikoli?-?ori?, E., Arseni?, I., Malinovi?-Mili?evi?, S., Singh, V. P., Stoši?, T. & Stoši?, B. (2018). Analysis of Daily Streamflow Complexity by Kolmogorov Measures and Lyapunov Exponent.
Musa, S. M. S.,] & Shafii, H. (2012). Pengurusan sistem saliran dalam menangani masalah banjir di Batu Pahat, Johor (pp. 125–146). UTHM, Batu Pahat.
Ooi, S. H., Samah, A. A. & Braesicke, P. (2013). Primary productivity and its variability in the equatorial South China Sea during the northeast monsoon. Atmospheric Chemistry and Physics Discussions, 13(8), 21573–21608.
Ooi, See Hai, Samah, A. A. & Braesicke, P. (2011). A case study of the Borneo Vortex genesis and its interactions with the global circulation. Journal of Geophysical Research: Atmospheres, 116(D21).
Paimin, S. & Pramono, I. B. (2009). Teknik mitigasi banjir dan tanah longsor. Tropenbos International Indonesia Programme, Indonesia. Indonesia.
Pandey, A. & Srinivas, V. V. (2015). Use of Data Driven Techniques for Short Lead Time Streamflow Forecasting in Mahanadi Basin. Aquatic Procedia, 4, 972–978.
Peitgen, H.-O., Ju?rgens, H., & Saupe, D. (2004). Chaos and fractals : new frontiers of science. Springer.
Peng, D., Xin, F., Zhang, L., Gao, Z., Zhang, W., Wang, Y., Chen, X. & Wang, Y. (2017). Nonlinear time-series analysis of optical signals to identify multiphase flow behavior in microchannels. AIChE Journal, 63(6), 2378–2385.
Pomeroy, J. W., Stewart, R. E., & Whitfield, P. H. (2016). The 2013 flood event in the South Saskatchewan and Elk River basins: Causes, assessment and damages. Canadian Water Resources Journal / Revue Canadienne Des Ressources Hydriques, 41(1–2), 105–117.
Rahman, H. A. (2009). Suatu tinjauan terhadap permasalahan banjir kilat di Lembah Klang. In INasir Nayan et a. (eds) Persekitaran fizikal di Malaysia: Isu dan cabaran semasa (pp. 9–10). Universiti Pendidikan Sultan Idris, Tanjong Malim.
Ratner, B. (2009). The correlation coefficient: Its values range between 1/1, or do they. Journal of Targeting, Measurement and Analysis for Marketing, 17(2), 139–142.
Razali, A., Ismail, S. N. S., Awang, S., Praveena, S. M. & Abidin, E. Z. (2018). Land use change in highland area and its impact on river water quality: a review of case studies in Malaysia. Ecological Processes, 7(1), 19.
Regonda, S. K., Rajagopalan, B., Lall, U., Clark, M. & Moon, Y.-I. (2005). Local polynomial method for ensemble forecast of time series. Nonlinear Processes in Geophysics (Vol. 12).
Rodriguez-Iturbe, I., Febres De Power, B., Sharifi, M. B., & Georgakakos, K. P. (1989). Chaos in rainfall. Water Resources Research, 25(7), 1667–1675.
Ruslan, A. B., & Hamid, N. Z. A. (2019). Application of Improved Chaotic Method in Determining Number of k-Nearest Neighbor for CO Data Series. International Journal of Engineering and Advanced Technology (IJEAT), 8(6S3), 10–14.
Sapini, M. L., Adam, N. S., Ibrahim, N., Rosmen, N., & Yusof, N. M. (2017). The presence of chaos in rainfall by using 0-1 test and correlation dimension. In AIP Conference Proceedings (Vol. 1905, p. 050040). AIP Publishing LLC.
Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation Coefficients. Anesthesia & Analgesia, 126(5), 1763–1768.
Shang, P., & Kamae, S. (2005). Fractal nature of time series in the sediment transport phenomenon. Chaos, Solitons & Fractals, 26(3), 997–1007.
Shang, P., Na, X., & Kamae, S. (2009). Chaotic analysis of time series in the sediment transport phenomenon. Chaos, Solitons & Fractals, 41(1), 368–379.
Sharifi, M. B., Georgakakos, K. P., Rodriguez-Iturbe, I., Sharifi, M. B., Georgakakos, K. P., & Rodriguez-Iturbe, I. (1990). Evidence of Deterministic Chaos in the Pulse of Storm Rainfall. Journal of the Atmospheric Sciences, 47(7), 888–893.
Siek, M. (2011). Predicting storm surges : chaos, computational intelligence, data assimilation, ensembles. Delft University of Technology. Netherlands.: CRC Press.
Sivakumar, B. (2002). A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers. Journal of Hydrology, 258(1–4), 149– 162.
Sivakumar, B. (2001). Rainfall dynamics at different temporal scales: A chaotic perspective. Hydrology and Earth System Sciences, 5(4), 645–651.
Sivakumar, B., & Berndtsson, R. (2010). Advances in Data-Based Approaches for Hydrologic Modeling and Forecasting. World Scientific.
Sivakumar, B., Berndtsson, R., Olsson, J., & Jinno, K. (2001). Evidence of chaos in the rainfall-runoff process. Hydrological Sciences Journal, 46(1), 131–145.
Sivakumar, B., & Jayawardena, A. W. (2002). An investigation of the presence of low- dimensional chaotic behaviour in the sediment transport phenomenon. Hydrological Sciences Journal, 47(3), 405–416.
Sivakumar, B., Sorooshian, S., Gupta, H. V., & Gao, X. (2001). A chaotic approach to rainfall disaggregation. Water Resources Research, 37(1), 61–72.
Sivakumar, B. & Wallender, W. W. (2005). Predictability of river flow and suspended sediment transport in the Mississippi River basin: a non-linear deterministic approach. Earth Surface Processes and Landforms, 30(6), 665–677.
Soeharn, A. W. H., Farid, M., Abidah, D. S., Maitsa, T. R., Setianingsih, & Majidah, N. (2019). Effect of extreme rain and land covering change in Jatihandap on 20 March 2018 flash flood. MATEC Web of Conferences, 270, 04003.
Solomatine, D. P., Rojas, C. J., Velickov, S., & Wüst, J. C. (2000). Chaos theory in predicting surge water levels in the North Sea. 4-Th International Conference on Hydroinformatics, 8.
Sprott, J. C. (2003). Chaos and Time-Series Analysis. Oxford University Press. Srivastava, P. K., Islam, T., Singh, S. K., Petropoulos, G. P., Gupta, M., & Dai, Q. (2016). Forecasting Arabian Sea Level Rise using Exponential Smoothing State Space Models and ARIMA from TOPEX and Jason satellite Radar Altimeter Data. Meteorological Applications, 23(4), 633–639.
Su, L. (2010). Prediction of multivariate chaotic time series with local polynomial fitting. Computers & Mathematics with Applications, 59(2), 737–744.
Sulaiman, N. H., Khairul, M., Kamarudin, A., Toriman, E., Juahir, H., Marcus Ata, F., Sideng, U. (2017). Relationship of Rainfall Distribution and Water Level on Major Flood 2014 in Pahang River Basin, Malaysia.
Suratman, S. (2013). Distribution of Total Petrogenic Hydrocarbon in Dungun River Basin, Malaysia : Oriental Journal of Chemistry. Oriental Journal of Chemistry, 29(1).
Takens, F. (1981). Detecting strange attractors in turbulence. Dynamical Systems and Turbulence, Warwick.
Tanty, R., & Desmukh, T. S. (2015). Application of Artificial Neural Network in Hydrology- A Review. International Journal of Engineering Research & Technology, 4(6).
Tare, V., Gurjar, S. K., Mohanta, H., Kapoor, V., Modi, A., Mathur, R. P., & Sinha, R. (2017). Eco-geomorphological approach for environmental flows assessment in monsoon-driven highland rivers: A case study of Upper Ganga, India. Journal of Hydrology: Regional Studies, 13, 110–121.
Tongal, H., & Berndtsson, R. (2014). Phase-space reconstruction and self-exciting threshold models in lake level forecasting: a case study of the three largest lakes of Sweden. Stochastic Environmental Research and Risk Assessment; 28(4), Pp 955-971 (2014), 28(4), 955–971.
Toriman, M. E., Juahir, H., Mokhtar, M., Gazim, M. B., Mastura, S., Abdullah, S., & Jaafar, O. (2009). Predicting for Discharge Characteristics in Langat River, Malaysia Using Neural Network Application Model. Research Journal of Earth Sciences, 1(1), 15–21.
Velickov, S. (2004). Nonlinear dynamics and chaos with applications to to hydrodynamics and hydrological modelling. A.A. Balkema.
Wang, X., & Babovic, V. (2014). Enhancing water level prediction through model residual correction based on Chaos theory and Kriging. International Journal for Numerical Methods in Fluids, 75(1), 42–62.
Weng, T. K., & Mokhtar, M. (2010). Towards Integrated Water Resources Management Approach in Malaysia: A Case Study in Pahang River Basin. Environment and Natural Resources J, 8(2), 47–58.
Yatim, B., Abdullah, M., & Surif, S. (2012). Banjir: Bencana alam. In Baharudin Yatim et al. (eds) Banjir besar Johor (pp. 13–18). Universiti Kebangsaan Malaysia, Selangor.
Yildirim, H. A., Hacinliyan, A. S., Akkaya, E. E., & Ikiel, C. (2016). Chaos in Time Series of Sakarya River Daily Flow Rate. Journal of Applied Mathematics and Physics, 04(10), 1849–1858. https://doi.org/10.4236/jamp.2016.410187
Zaim, W. N. A. W. M. (2018). Peramalan Siri Masa Ozon Mengikut Monsun Di Kawasan Pendidikan Tinggi Malaysia Melalui Pendekatan Kalut. UPSI.
Zaim, W. N. A. W. M., & Hamid, N. Z. A. (2017). Peramalan Bahan Pencemar Ozon (O3 ) di Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak, Malaysia Mengikut Monsun dengan Menggunakan Pendekatan Kalut. Sains Malaysiana, 46(12), 2523–2528.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |