UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Dental resin-based composites (RBCs) have been widely used in dental treatment
because of their excellent characteristics such as aesthetic, mechanical and
biocompatibility properties. The aims of this study were to prepare and characterise the
resin-based dental composite using natural hydroxyapatite (NHA) and silica fillers. The
effect of different compositions of these materials on the properties of dental resin
composite was investigated. RBC was prepared by varying the composition of silica
(0, 5, 15, 20 wt%) in the filler mixture of NHA and silica. The ratio between fillers and organic
resins was fixed at 70:30 wt%. Two different ratios of organic resins of bisphenol A glycidyl
methacrylate (BisGMA)/triethylene glycol dimethacrylate (TEGDMA)/hydroxyethyl methacrylate
(HEMA) were used i.e. 50:25:25 wt% (CB50) and 25:50:25 wt% (CT50). The composites were
inserted into the mould and cross-linked using visible light for 60 seconds on both
sides. The degree of conversion, flexural and compressive strength, surface roughness, Vickers
hardness, water sorption of composites, and cytotoxicity test were evaluated and
compared. The surface morphology and distribution of the dental composites were also
observed and examined by field emission scanning electron microscope (FESEM). The
data were analysed using one-way ANOVA and the Tukey’s post hoc test at the significance level of
0.05. The results indicated that the CB50 with 15 wt% silica in filler mixture exhibited
satisfactory mechanical and physical properties compared to CT50 with the value of
flexural strength (42.74 MPa), compressive strength (174.28 MPa), surface roughness (43.0 nm),
Vickers hardness (43.7 HV) and water sorption (34.84 µg/mm³). Cytotoxicity test demonstrated
no toxic effects released from the composites. In conclusion, this result has complied
with the standard requirement of dental composite. The implication, combination of NHA and
silica is promising as reinforcing filler for dental resin composite application.
|
References |
Abdulrahman, I., Tijani, H. I., Mohammed, B. A., Saidu, H., Yusuf, H., Jibrin, M. N., & Mohammed, S. (2014). From Garbage to Biomaterials: An Overview on Egg Shell Based Hydroxyapatite. Journal of Materials.
Adabo, G. L., Cruz, C. A. D. S., Fonseca, R. G., & Vaz, L. G. (2003). The volumetric fraction of inorganic particles and the flexural strength. Journal of Dentistry, 31(5), 353-359.
Aguiar, T. R., André, C. B., Maria, G., Ambrosano, B., & Giannini, M. (2014). The Effect of Light Exposure on Water Sorption and Solubility of Self-Adhesive Resin Cements, International Scholarly Research Notices.
Akashi, A., Matsuya, Y., Unemori, M., & Akamine, A. (1999). The relationship between water absorption characteristics and the mechanical strength of resin- modified glass-ionomer cements in long-term water storage. Biomaterials, 20, 1573-1578.
Akram, M., Ahmed, R., Shakir, I., Ibrahim, W. A. W., & Hussain, R. (2014). Extracting hydroxyapatite and its precursors from natural resources. Journal of Materials Science, 49(4), 1461-1475.
Aktu?, S. L., Durdu, S., Yalç?n, E., Çavu?o?lu, K., & Usta, M. (2017). Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation. Materials Science and Engineering C, 71, 1020-1027.
Alrahlah, A. (2013). Physical, Mechanical and Surface Properties of Dental Resin- composites. Materials Science.
Al-sanabani, J. S., Madfa, A. A., & Al-sanabani, F. A. (2013). Application of Calcium Phosphate Materials in Dentistry. International Journal of Biomaterials.
Aljabo, A., Xia, W., Liaqat, S., Khan, M. A., Knowles, J. C., Ashley, P., & Young, A. M. (2015). Conversion, shrinkage, water sorption, flexural strength and modulus of re-mineralizing dental composites. Dental Materials, 31(11), 1279-1289.
Anusavice, K. J., & Phillips, R. W. (2003). Phillips' Science of Dental Materials. Philadelphia: W. B. Saunders.
Arcís, R. W., López-Macipe, A., Toledano, M., Osorio, E., Rodríguez-Clemente, R., Murtra, J., Fanovich, M. A., & Pascual, C. D. (2002). Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration. Dental Materials, 18, 49-57.
Asmussen, E., & Peutzfeldt, A. (1998). Influence of UEDMA , BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dental Materials, 14, 51-56.
Bakar, M. S. A., Cheng, M. H. W., Tang, S. M., Yu, S. C., Liao, K., Tan, C. T., Khor, K. A., & Cheang, P. (2003). Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load- bearing orthopedic implants. Biomaterials, 24, 2245–2250.
Balakrishnan, H., Husin, M. R., Wahit, M. U., & Abdul Kadir, M. R. (2013). Maleated High Density Polyethylene Compatibilized High Density Polyethylene/Hydroxyapatite Composites for Biomedical Applications: Properties and Characterization. Polymer-Plastics Technology and Engineering, 52(8), 774-782.
Bano, N., Jikan, S. S., Basri, H., Bakar, S. A. A., & Nuhu, A. H. (2017). Natural hydroxyapatite extracted from bovine bone. Journal of Science and Technology, 9(2), 22-28.
Barakat, N. A. M., Khalil, K. A., Sheikh, F. A., Omran, A. M., Gaihre, B., Khil, S. M., & Kim, H. Y. (2008). Physiochemical characterisations of hydroxyapatite extracted from bovine bones by three different methods: Extraction of biologically desirable HAp. Materials Science and Engineering: C, 28(8), 1381- 1387.
Bezzi, G., Celotti, G., Landi, E., La Torretta, T. M. G., Sopyan, I., & Tampieri, A. (2003). A novel sol-gel technique for hydroxyapatite preparation. Materials Chemistry and Physics, 78(3), 816-824.
Blackwood, D. J., & Seah, K. H. W. (2009). Electrochemical cathodic deposition of hydroxyapatite: Improvements in adhesion and crystallinity. Materials Science and Engineering C, 29(4), 1233-1238.
Bollen, C. M. L., Lambrechts, P., & Quirynen, M. (1997). Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dental Materials, 13(4), 258-269.
Borba, M., Bona, A. D., Cecchetti, D. (2009). Flexural strength and hardness of direct and indirect composites. Dental Materials, 23(1), 5-10.
Botta, A. C., Duarte, S., Filho, P. I. P., & Gheno, S. M. (2008). Effect of Dental Finishing Instruments on the Surface Roughness of Composite Resins as Elucidated by Atomic Force Microscopy. Microscopy and Microanalysis, 14, 380-386.
Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., de Carlos, A., & León, B. (2012). Biological hydroxyapatite obtained from fish bones. Materials Science and Engineering C, 32(3), 478-486.
Boyer, D. B., Chaklley, Y., & Chan, K. C. (1982). Correlation between strength of bonding to enamel and mechanical properties of dental composites. Journal of Biomedical Materials Research, 16, 775-83.
Braem, M., Finger, W., Van Doren, V. E., Lambrechts, P., & Vanherle, G. (1989). Mechanical Properties and Filler Fraction of Dental Composites. Dental Materials, 5, 346-349.
Calabrese, L., Fabiano, F., Currò, M., Borsellino, C., Bonaccorsi, L. M., Fabiano, V., Lentile, R., & Proverbio, E. (2016). Hydroxyapatite Whiskers Based Resin Composite versus Commercial Dental Composites : Mechanical and Biocompatibility Characterisation. Advances in Materials Science and Engineering.
Chadda, H., Naveen, S. V., Mohan, S., Satapathy, B. K., Ray, A. R., & Kamarul, T. (2016). Cytotoxic evaluation of hydroxyapatite-filled and silica/hydroxyapatite- filled acrylate-based restorative composite resins: An in vitro study. The Journal of Prosthetic Dentistry, 1-7.
Chadwick, R. G., McCabe, J. F., Walls, A. W. G., & Storer, R. (1990). The Effect of Storage Media Upon the Surface Microhardness and Abrasion Resistance of Three Composites. Dental Materials, 6, 123-128.
Chen, C., Huang, C., Lin, S., Han, J., Hsieh, K., & Lin, C. (2008). Low-shrinkage visible-light-curable urethane-modified epoxy acrylate/SiO? composites as dental restorative materials. Composites Science and Technology, 68, 2811-2817.
Chen, L., Yu, Q., Wang, Y., & Li, H. (2011). BisGMA / TEGDMA dental composite containing high aspect-ratio hydroxyapatite nanofibers. Dental Materials, 27(11), 1187-1195.
Cho, I. S., Oh, H. M., Cho, M. O., Jang, B. S., Cho, J. K., Park, K. H., & Huh, K. M. (2018). Synthesis and characterization of thiolated hexanoyl glycol chitosan as a mucoadhesive thermogelling polymer. Biomaterials research, 22(1), 30.
Chuenarrom, C., Benjakul, P., & Daosodsai, P. (2009). Effect of Indentation Load and Time on Knoop and Vickers Microhardness Tests for Enamel and Dentin. Materials Research, 12(4), 473-476.
Chung, K. H., & Greener, E. H. (1990). Correlation between Degree of Conversion, Filler Concentration and Mechanical Properties of Posterior Composite Resins. Journal of Oral Rehabilitation, 17, 487-494.
Collares, F. M., Leitune, V. C., Rostirolla, F. V., Trommer, R. M., Bergmann, C. P., & Samuel, S. M. (2012). Nanostructured hydroxyapatite as filler for methacrylate-based root canal sealers. International Endodontic Journal, 45, 63- 67.
Denis, A. B., Diagone, C. A., Plepis, A. M. G., & Viana, R. B. (2016). Kinetic Parameters during Bis-GMA and TEGDMA Monomer Polymerization by ATR- FTIR : The Influence of Photoinitiator and Light Curing Source.
De Moraes, R. R., Marimon, J. L. M., Jochims Schneider, L. F., Sinhoreti, M. A. C., Correr-Sobrinho, L., & Bueno, M. (2008). Effects of 6 Months of Aging in Water on Hardness and Surface Roughness of Two Microhybrid Dental Composites. Journal of Prosthodontics, 17, 323-326.
Devaprakasam, D., Hatton, P. V., Möbus, G., & Inkson, B. J. (2008). Nanoscale tribology, energy dissipation and failure mechanisms of nano and micro-silica particle-filled polymer composites. Tribology Letters, 34, 11-19.
Dodes, J. E. (2001). The Amalgam Controversy: An Evidence-Based Analysis. Journal of the American Dental Association, 132, 348-356.
Domingo, C., Arcís, R. W., López-Macipe, A., Osorio, R., Rodríguez-Clemente, R., Murtra, J., Fanovich, M. A., & Toledano, M. (2001). Dental composites reinforced with hydroxyapatite: Mechanical behavior and absorption / elution characteristics. Journal of Biomedical Materials Research, 56, 297-305.
Dorozhkin, S. V. (2010). Nanosized and nanocrystalline calcium orthophosphates. Acta Biomaterialia, 6(3), 715-734.
Du, M., & Zheng, Y. (2008). Degree of Conversion and Mechanical Properties Studies of UDMA Based Materials for Producing Dental Posts. Polymer Composites, 623-630.
Fairuz, A. M., Sapuan, S. M., Zainudin, E. S., & Jaafar, C. N. A. (2016). Effect of filler loading on mechanical properties of pultruded kenaf fibre reinforced vinyl ester composites. Journal of Mechanical Engineering and Sciences, 10(1), 1931- 42.
Fara, A., Khalis, A. N., bin Yahya, M. A., & Abdullah, H. Z. (2015). Preparation and Characterization of Biological Hydroxyapatite (HAp) Obtained from Tilapia Fish Bone. Advanced Materials Research, 1087, 152-156.
Ferracane, J. L. (1995). Current Trends in Dental Composites. Critical Reviews in Oral Biology and Medicine, 6, 302-318.
Ferracane, J. L. (2011). Resin Composite - State of the Art. Dental Materials, 27, 29- 38.
Ferracane, J. L., Antonio, R. C., & Matsumoto, H. (1987). Variables Affecting the Fracture Toughness of Dental Composites. Journal of Dental Research, 66, 1140-1145.
Figueiredo, M., Fernando, A., Martins, G., Freitas, J., Judas, F., & Figueiredo, H. (2010). Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceramics International, 36(8), 2383-2393.
Gajewski, V. E. S., Pfeifer, C. S., Fróes-Salgado, N. R. G., Boaro, L. C. C., & Braga, R. R. (2012). Monomers Used in Resin Composites: Degree of Conversion, Mechanical Properties and Water Sorption / Solubility. Brazilian Dental Journal, 23(5), 508-514.
Gu, S., Zhou, J., Luo, Z., Wang, Q., & Ni, M. (2013). A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk. Industrial Crops and Products, 50, 540-549.
Guo, Y. J., Cheng, H., Zhang, S. P., & Li, X. R. (2010). Preparation of strontium- substituted hydroxyapatite nanoparticle and its influence on mechanical properties of dental resin. Journal of Clinical Rehabilitative Tissue Engineering, 14(38).
Habib, E., Wang, R., Wang, Y., Zhu, M., & Zhu, X. X. (2015). Inorganic Fillers for Dental Resin Composites - Present and Future. ACS Biomaterials Science and Engineering.
Heuer, G. A., Garman, T. A., Sherrer, J. D., & Williams, H. A. (1982). A Clinical Comparison of a Quartz- and Glass-Filled Composite with a Glass-Filled Composite. The Journal of the American Dental Association, 105, 246-247.
Hosseinalipour, M., Javadpour, J., Rezaie, H., Dadras, T., & Hayati, A. N. (2010). Investigation of mechanical properties of experimental Bis-GMA / TEGDMA dental composite resins containing various mass fractions of silica nanoparticles. Journal of Prosthodontics, 19, 112-117.
Hou, C., Hou, S., Hsueh, Y., Lin, J., Wu, H., & Lin, F. (2009). The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. Biomaterials, 30(23-24), 3956-3960.
Hoyer, B., Bernhardt, A., Heinemann, S., Stachel, I., Meyer, M., & Gelinsky, M. (2012). Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromolecules, 13(4), 1059-1066.
Husin, M. R., Wahit, M. U., Kadir, M. R. A., & Rahman, W. A. W. A. (2011). Effect of hydroxyapatite reinforced high density polyethylene composites on mechanical and bioactivity properties. Key Engineering Materials, 471, 303-308.
Iijima, M., Du, C., Abbott, C., Doi, Y., & Moradian-Oldak, J. (2006). Control of apatite crystal growth by the co-operative effect of a recombinant porcine amelogenin and fluoride. European Journal of Oral Sciences, 114, 304-307.
In-Gu, K., Cheon-ll, P., Hyun, L., Hyoun-Ee, K., & Sung-Mi, L. (2018). Hydroxyapatite Microspheres as an Additive to Enhance Radiopacity, Biocompatibility, and Osteoconductivity of Poly(methyl methacrylate) Bone Cement. Materials, 11(2), 258.
International Standard Organization (ISO), Specification No. 4049. (2000). Dentistry- Polymer-based filling, restorative and luting materials. Geneva, Switzerland: International Organization for Standardization.
International Standard Organization (ISO), 10993-5, (2009). Biological evaluation of medical devices - Part 5: Tests for in vitro cytotoxicity. Geneve: International Organization for Standardization.
Itokazu, M., Yang, W., Aoki, T., Ohara, A., & Kato, N. (1998). Synthesis of antibiotic-loaded interporous hydroxyapatite blocks by vacuum method and in vitro drug release testing. Biomaterials, 19, 817-819.
Izyan, K. M. I., Jaafar, C. N. A., Zainol, I., & Yusoff, M. Z. M. (2019). Preparation and Characterization of Hydroxyapatite from Black Tilapia Fish Scales using Spray-drying Method. Malaysian Journal of Microscopy, 15, 155-163.
Jafarzadeh, M., Rahman, I. A., & Sipaut, C. S. (2009). Synthesis of silica nanoparticles by modified sol-gel process: The effect of mixing modes of the reactants and drying techniques. Journal of Sol-Gel Science and Technology, 50(3), 328-336.
Jal, P. K., Sudarshan, M., Saha, A., Patel, S., & Mishra, B. K. (2004). Synthesis and characterisation of nanosilica prepared by precipitation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 240(1-3), 173-178.
Janus, J., Fauxpoint, G., Arntz, Y., Pelletier, H., & Etienne, O. (2010). Surface roughness and morphology of three nanocomposites after two different polishing treatments by a multitechnique approach. Dental Materials, 26(5), 416-425.
Jongwattanapisan, P., Charoenphandhu, N., Krishnamra, N., Thongbunchoo, J., Tang, I., Hoonsawat, R., Smith, S. M., & Pon-on, W. (2011). In vitro study of the SBF and osteoblast-like cells on hydroxyapatite / chitosan-silica nanocomposite. Materials Science and Engineering C, 31(2), 290-299.
Karabela, M. M., & Sideridou, I. D. (2008). Effect of the structure of silane coupling agent on sorption characteristics of solvents by dental resin-nanocomposites. Dental Materials, 24, 1631-1639.
Karabela, M. M., & Sideridou, I. D. (2011). Synthesis and study of properties of dental resin composites with different nanosilica particles size. Dental Materials, 27(8), 825-835.
Kim, K. H., Park, J. H., Imai, Y., & Kishi, T. (1994). Microfracture Mechanisms of Dental Resin Composites Containing Spherically-Shaped Filler Particles. Journal of Dental Research, 73, 499-504.
Klapdohr, S., & Moszner, N. (2005). New Inorganic Components for Dental Filling Composites. Monatshefte fur Chemie, 136, 21-45.
Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., & Chanthai, S., (2013). Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution. Chemical Engineering Journal, 215-216, 522-532.
Kusrini, E., Pudjiastuti, A. R., Astutiningsih, S., & Harjanto, S. (2012). Preparation of Hydroxyapatite from Bovine Bone by Combination Methods of Ultrasonic and Spray Drying.
Lang, B. R., Jaarda, M., & Wang, R. F. (1992). Filler Particle Size and Composite Resin Classification Systems. Journal of Oral Rehabilitation, 19, 569-584.
Latifi, S. M., Fathi, M. H., & Golozar, M. A. (2011). Preparation and characterisation of bioactive hydroxyapatite-silica composite nanopowders via sol-gel method for medical applications. Advances in Applied Ceramics, 110(1), 8-14.
Leitune, V. C. B., Collares, F. M., Trommer, R. M., Andrioli, D. G., Bergmann, C. P., & Samuel, S. M. W. (2013). The addition of nanostructured hydroxyapatite to an experimental adhesive resin. Journal of Dentistry, 41(4), 321-327.
Leprince, J. G., Palin, W. M., Hadis, M. A., Devaux, J., & Leloup, G. (2012). Progress in dimethacrylate-based dental composite technology and curing efficiency. Dental Materials, 29(2), 139-156.
Lezaja, M., Veljovic, D. N., Jokic, B. M., Cvijovic-Alagic, I., Zrilic, M. M., & Miletic, V. (2013). Effect of hydroxyapatite spheres, whiskers, and nanoparticles on mechanical properties of a model BisGMA / TEGDMA composite initially and after storage. Journal of Biomedical Materials Research Part B, 101B, 1469- 1476.
Li, W., Zhou, J., & Xu, Y. (2015). Study of The in Vitro Cytotoxicity Testing of Medical Devices. Biomedical reports, 3(5), 617-620.
Lin-Gibson, S., Sung, L., Forster, A. M., Hu, H., Cheng, Y., & Lin, N. J. (2009). Effects of filler type and content on mechanical properties of photopolymerizable composites measured across two-dimensional combinatorial arrays. Acta Biomaterialia, 5, 2084-2094.
Liou, T. (2004). Preparation and characterisation of nano-structured silica from rice husk. Materials Science and Engineering A, 364(1-2), 313-323.
Liu, F., Jiang, X., Bao, S., Wang, R., Sun, B., & Zhu, M. (2015). Effect of hydroxyapatite whisker surface graft polymerization on water sorption, solubility and bioactivity of the dental resin composite. Materials Science and Engineering C, 53, 150-155.
Liu, F., Jiang, X., Zhang, Q., & Zhu, M. (2014). Strong and bioactive dental resin composite containing poly(Bis-GMA) grafted hydroxyapatite whiskers and silica nanoparticles. Composites Science and Technology, 101, 86-93.
Liu, F., Wang, R., Cheng, Y., Jiang, X., Zhang, Q., & Zhu, M. (2013). Polymer grafted hydroxyapatite whisker as a filler for dental composite resin with enhanced physical and mechanical properties. Materials Science and Engineering C, 33(8), 4994-5000.
Liu, J., Ye, X., Wang, H., Zhu, M., Wang, B., & Yan, H. (2003). The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceramics International, 29(6), 629-633.
Lopes, G. C., De Souza Ferreira, R., Baratieri, L. N., Vieira, L. C. C., & Monteiro Jr, S. (2002). Direct Posterior Resin Composite Restorations: New Techniques and Clinical Possibilities. Case Reports. Quintessence International, 33, 337-346.
Lu, H., Lee, Y. K., Oguri, M., & Powers, J. M. (2006). Properties of a Dental Resin Composite with a Spherical Inorganic Filler. Operative Dentistry, 31(6), 734- 740.
Lundin, S. A. (1990). Studies on Posterior Composite Resins with Special Reference to Class Ii Restorations. Swedish dental journal. Supplement, 73, 1-41.
Lung, C. Y. L., Sarfraz, Z., Habib, A., Khan, A. S., & Matinlinna, J. P. (2016). Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite. Journal of the Mechanical Behavior of Biomedical Materials, 54, 283-294.
Macedo, C. L. R., Münchow, E. A., Lima, G., Zanchi, C. H., Ogliari, F. A., & Piva, E. (2015). Incorporation of inorganic fillers into experimental resin adhesives: Effects on physical properties and bond strength to dentin. International Journal of Adhesion and Adhesives, 62, 78-84.
Majhool, A. A., Zainol, I., Azziz, S. S. S. A., Jafaar, C. N. A., & Jahil, M. M. (2019). Mechanical properties improvement of epoxy composites by natural hydroxyapatite from fish scales as a fillers. International Journal of Research in Pharmaceutical Sciences, 10(2), 1424-1429.
Manhart, J., Kunzelmann, K. H., Chen, H. Y., & Hickel, R. (2000). Mechanical properties of new composite restorative materials. Journal of Biomedical Materials Research, 53(4), 353-61.
Mezahi, F. Z., Oudadesse, H., Harabi, A., Gal, Y. Le., & Cathelineau, G. (2011). Sintering Effects on Physico Chemical Properties of Bioactivity of Natural and Synthetic Hydroxyapatite. Journal of the Australian Ceramic Society, 47(1), 23- 27.
Mirsasaani, S. S., Manjili, M. H., Baheiraei, N. (2011). Dental Nanomaterials. Advances in Diverse Industrial Applications of Nanocomposites, 441-474.
Mitra, S. B., Wu, D., & Holmes, B. N. (2003). An Application of Nanotechnology in Advanced Dental Materials. Journal of the American Dental Association, 134, 1382-1390.
Mjor, I. (1999). Biological Side Effects to Materials Used in Dentistry. Journal of the Royal College of Surgeons of Edinburgh, 44, 146-149.
Mohsen, N. M., & Craig, R. G. (1995). Hydrolytic stability of silanated zirconia- silica-urethane dimethacrylate composites. Journal of Oral Rehabilitation, (22), 213-220.
Mondal, S., Mahata, S., Kundu, S., & Mondal, B. (2010). Processing of natural resourced hydroxyapatite ceramics from fish scale. Advances in Applied Ceramics, 109(4), 234-239.
Mori, H., Tone, Y., Shimizu, K., Zikihara, K., Tokutomi, S., Ida, T., Ihara, H., & Hara, M. (2013). Studies on fish scale collagen of Pacific saury (Cololabis saira). Materials Science & Engineering C, 33(1), 174-181.
Moshaverinia, A., Ansari, S., Moshaverinia, M., Roohpour, N., Darr, J. A., & Rehman, I. (2008). Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomaterialia, 4(2), 432-440.
Moszner, N., & Klapdohr, S. (2004). Nanotechnology for Dental Composites. International Journal of Nanotechnology, 1, 130-156.
Moszner, N., & Salz, U. (2001). New Developments of Polymeric Dental Composites. Progress in Polymer Science (Oxford), 26, 535-576.
Munksgaard, E. C., Hansen, E. K., & Kato, H. (1987). Wall-to-Wall Polymerization Contraction of Composite Resins Versus Filler Content. Scandinavian Journal of Dental Research, 95, 526-531.
Mustafa, N., Ibrahim, M. H. I., Asmawi, R., & Amin, A. M. (2015). Hydroxyapatite extracted from waste fish bones and scales via calcination method. Applied Mechanics and Materials, 773-774, 287-290.
Noohom, W., Jack, K. S., Martin, D., & Trau, M. (2009). Understanding the roles of nanoparticle dispersion and polymer crystallinity in controlling the mechanical properties of HA/PHBV nanocomposites. Biomedical Materials, 4, 015003.
O'Brien, W. J. (2002). Dental Materials and Their Selection. Chicago: London: Quintessence Pub. Co.
Oduncu, B. S., Yucel, S., Aydin, I., Sener, I. D., & Yamaner, G. (2010). Polymerisation Shrinkage of Light-Cured Hydroxyapatite (HA)-Reinforced Dental Composites. International Journal of Biomedical and Biological Engineering, 4(4), 130-135.
Okulus, Z., Buchwald, T., Szybowicz, M., & Voelkel, A. (2014). Study of a new resin-based composites containing hydroxyapatite filler using Raman and infrared spectroscopy. Materials Chemistry and Physics, 145, 304-312.
Okulus, Z., Héberger, K., & Voelkel, A. (2014). Sorption, solubility, and mass changes of hydroxyapatite-containing composites in artificial saliva, food simulating solutions, tea, and coffee. Journal of Applied Polymer Science, 131(3), 1-10.
Osborne, J. W. (1992). Dental Amalgam and Mercury Vapor Release. Advances in dental research, 6, 135-138.
Osborne, J. W., & Swift Jr, E. J. (2004). Safety of Dental Amalgam. Journal of Esthetic and Restorative Dentistry, 16, 377-388.
Oysaed, H., & Ruyter, I. E. (1986). Composites for Use in Posterior Teeth: Mechanical Properties Tested under Dry and Wet Conditions. Journal of Biomedical Materials Research, 20, 261-271.
Ozmen, M., Akin, I., & Marsoglu, M. (2012). Production and Characterisation of Hydroxyapatite-Zirconia Composites. High Temperature Materials and Processes, 31, 749-753.
Panda, N. N., Pramanik, K., & Sukla, L. B. (2014). Extraction and characterisation of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold. Bioprocess and Biosystems Engineering, 37, 433-440.
Park, S. W., Lee, Y-K., Kim, Y. U., Kim, M. C., Kim, K. N., Choi, B. J., & Choi, H. J. (2005). The effect of hydroxyapatite on the remineralization of dental fissure sealant. Key Engineering Materials, 284-286, 35-38.
Pati, F., Adhikari, B., & Dhara, S. (2010). Isolation and characterisation of fish scale collagen of higher thermal stability. Bioresource Technology, 101(10), 3737- 3742.
Peters, M. C., Bresciani, E., Barata, T. J. E., Fagundes, T. C., Navarro, R. L., Navarro, M. F. L., & Dickens, S. H. (2010). In vivo dentin remineralization by calcium- phosphate cement. Journal of Dental Research, 89(3), 286-291.
Peutzfeldt, A. (1997). Resin Composites in Dentistry: The Monomer Systems. European Journal of Oral Sciences, 105, 97-116.
Phillips, R. W., Avery, D. R., Mehra, R., Swartz, M. L., & McCune, R. J. (1972). Observations on a Composite Resin for Class Ii Restorations: Two-Year Report. The Journal of Prosthetic Dentistry, 28, 164-169.
Pijarn, N., Jaroenworaluck, A., Sunsaneeyametha, W., & Stevens, R. (2010). Synthesis and characterisation of nanosized-silica gels formed under controlled conditions. Powder Technology, 203, 462-468.
Pon-On, W., Suntornsaratoon, P., Charoenphandhu, N., Thongbunchoo, J., Krishnamra, N., & Tang, I. M. (2016). Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material. Materials Science and Engineering C, 62, 183-189.
Porto, I. C., de Aguiar, F. H., Brandt, W. C., & Liporoni, P. C. (2013). Mechanical and physical properties of silorane and methacrylate-based composites. Journal of Dentistry, 41, 732-739.
Rahim, T. N. A. T., Mohamad, D., Ismail, A. R., & Akil, H. M. (2011). Synthesis of nanosilica fillers for experimental dental nanocomposites and their characterisations. Journal of Physical Science, 22(1), 93-105.
Rahman, I. A., Masudi, S. M., Luddin, N., & Shiekh, R. A. (2014). One-pot synthesis of hydroxyapatite-silica nanopowder composite for hardness enhancement of glass ionomer cement (GIC). Bulletin of Materials Science, 37(2), 213-219.
Rahman, I. A., & Padavettan, V. (2012). Synthesis of Silica nanoparticles by Sol-Gel: Size-dependent properties, surface modification, and applications in silica- polymer nanocomposites - A review. Journal of Nanomaterials.
Rajan, G., Raju, R., Jinachandran, S., Farrar, P., & Xi, J. (2019). Polymerisation Shrinkage Profiling of Dental Composites using Optical Fibre Sensing and their Correlation with Degree of Conversion and Curing Rate. Scientific Reports, 1- 10.
Rastelli, A. N. S., Jacomassi, D. P., Faloni, A. N. A. P. S., Queiroz, T. P., Rojas, S. S., & Ine, M. (2011). The Filler Content of the Dental Composite Resins and Their Influence on Different Properties. 0(170), 1-8.
Roulet, J. (1997). Benefits and disadvantages of tooth-coloured alternatives to . Journal of Dentistry, 25(6), 459-473.
Ruyter, I. E., & Øysæd, H. (1982). Conversion in different depths of ultraviolet and visible light activated composite materials. Acta Odontologica Scandinavica, 40(3), 179-192.
Sadat-Shojai, M., Atai, M., Nodehi, A., & Khanlar, L. N. (2010). Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dental Materials, 26, 471-482.
Sadat-Shojai, M., Khorasani, M., Dinpanah-Khoshdargi, E., & Jamshidi, A. (2013). Synthesis Methods for Nanosized Hydroxyapatite with Diverse Structures. Acta Biomaterialia, 9(8), 7591-7621.
Salmoria, G. V., Fancello, E. A., Roesler, C. R., & Dabbas, F. (2013). Functional graded scaffold of HDPE/HA prepared by selective laser sintering: microstructure and mechanical properties. The International Journal of Advanced Manufacturing Technology, 65(9-12), 1529-1534.
Samuel, S. P., Li, S., Mukherjee, I., Guo, Y., Patel, A. C., Baran, G., & Wei, Y. (2009). Mechanical properties of experimental dental composites containing a combination of mesoporous and nonporous spherical silica as fillers. Dental Materials, 25, 296-301.
Santos, C., Clarke, R. L., Braden, M., Guitian, F., & Davy, K. W. M. (2002). Water absorption characteristics of dental composites incorporating hydroxyapatite filler. Biomaterials, 23, 1897-1904.
Santos, C., Luklinska, Z. B., Clarke, R. L., & Davy, K. W. M. (2001). Hydroxyapatite as a filler for dental composite materials: mechanical properties and in vitro bioactivity of composites. Journal of Materials Science: Materials in Medicine, 12, 565-573.
Sarrett, D. C., Soderholm, K. J., & Batich, C. D. (1991). Water and Abrasive Effects on Three-Body Wear of Composites. Journal of Dental Research, 70, 1074- 1081.
Schneider, L. F. J., Cavalcante, L. M., & Silikas, N. (2010). Shrinkage Stresses Generated during Resin-Composite Applications: A Review. Journal of Dental Biomechanics.
Seol, Y., Young, J., Kyun, E., Kim, S., & Cho, D. (2009). Microelectronic Engineering Fabrication of a hydroxyapatite scaffold for bone tissue regeneration using microstereolithography and molding technology. Microelectronic Engineering, 86(4-6), 1443-1446.
Shahdad, S. A., McCabe, J. F., Bull, S., Rusby, S., & Wassell, R. W. (2007). Hardness Measured with Traditional Vickers and Martens Hardness Methods. Dental Materials, 23, 1079-1085.
Shayegan, A., Atash, R., Petein, M., & Abbeele, A. V. (2010). Nanohydroxyapatite used as a pulpotomy and direct pulp capping agent in primary pig teeth. Journal of Dentistry for Children, 77, 77-83.
Shiekh, R. A., Rahman, I. A., Masudi, S. M., & Luddin, N. (2014). Modification of glass ionomer cement by incorporating hydroxyapatite-silica nano-powder composite: Sol-gel synthesis and characterisation. Ceramics International, 40(2), 3165-3170.
Sideridou, I., Tserki, V., & Papanastasiou, G. (2002). Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials, 23, 1819-1829.
Sideridou, I., Tserki, V., & Papanastasiou, G. (2003). Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials, 24, 655-665.
Sideridou, I. D., & Karabela, M. M. (2009). Effect of the amount of 3-methacylox- ypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites. Dental Materials, 25(11), 1315-1324.
Sideridou, I. D., Karabela, M. M., Micheliou, C. N., Karagiannidis, P. G., & Logothetidis, S. (2009). Physical Properties of a Hybrid and a Nanohybrid Dental Light-Cured Resin Composite. Journal of Biomaterials Science, Polymer Edition, 20, 1831-1844.
Skrtic, D., & Antonucci, J. M. (2007). Effect of chemical structure and composition of the resin phase on vinyl conversion of amorphous calcium phosphate-filled composites. Polymer International, 56, 497-505.
Sockalingam, K., Yahya, M. A., & Abdullah, H. Z. (2015). Preparations of Hydroxyapatite from Tilapia Scales. Advanced Materials Research, 1087, 30-34.
Soderholm, K. J. M. (1983). Leaking of Fillers in Dental Composites. Journal of Dental Research, 62, 126-130.
Soderholm, K. J. M. (1984). Influence of Silane Treatment and Filler Fraction on Thermal Expansion of Composite Resins. Journal of Dental Research, 63, 1321- 1326.
Soderholm, K. J., & Roberts, M. J. (1990). Influence of Water Exposure on the Tensile Strength of Composites. Journal of Dental Research, 69, 1812-1816.
Söderholm, K. J., Zigan, M., Ragan, M., Fischlschweiger, W., & Bergman, M. (1984). Hydrolytic Degradation of Dental Composites. Journal of Dental Research, 63, 1248-1254.
Srivastava, G. K., Alonso-Alonso, M. L., Fernandez-Bueno, I., Garcia-Gutierrez, M. T., Rull, F., Medina, J., & Pastor, J. C. (2018). Comparison between direct contact and extract exposure methods for PFO cytotoxicity evaluation. Scientific reports, 8(1), 1425.
Strietzel, F. P., Reichart, P. A., & Graf, H-L. (2007). Lateral alveolar ridge augmentation using a synthetic nano-crystalline hydroxyapatite bone substitution material (Ostim). Preliminary clinical and histological results. Clinical Oral Implants Research, 18, 743-751.
Sun, L., & Gong, K. (2001). Silicon-Based Materials from Rice Husks and Their Applications. Industrial & Engineering Chemistry Research, 40, 5861-5877.
Trombelli, L., Simonelli, A., Pramstraller, M., Wikesjö, U. M. E., & Farina, R. (2010). Single flap approach with and without guided tissue regeneration and a hydroxyapatite biomaterial in the management of intraosseous periodontal defects. Journal of Periodontology, 81(9), 1256-1263.
Van Dijken, J. W. V., Wing, K. R., & Ruyter, I. E. (1989). An Evaluation of the Radiopacity of Composite Restorative Materials Used in Class I and Class Ii Cavities. Acta Odontologica Scandinavica, 47, 401-407.
Venkatesan, J., Qian, Z. J., Ryu, B., Thomas, N. V., & Kim, S. K. (2011). A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomedical Materials, 6(3), 1-12.
Venkatesan, J., Pallela, R., Bhatnagar, I., & Kim, S. K. (2012). Chitosan- amylopectin/hydroxyapatiteand chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 51(5), 1033-1042.
Wang, A. J., Lu, Y. P., Zhu, R. F., Li, S. T., & Ma, X. L. (2009). Effect of process parameters on the performance of spray dried hydroxyapatite microspheres. Powder Technology, 191(1-2), 6.
Wang, P., Zhao, L., Liu, J., Weir, M. D., Zhou, X., & Xu, H. H. K. (2014). Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Research, 2, 14017.
Wang, X., Cai, Q., Zhang, X., Wei, Y., Xu, M., Yang, X., Ma, Q., Cheng, Y., & Deng, X. (2016). Improved performance of Bis-GMA / TEGDMA dental composites by net-like structures formed from SiO? nanofiber fillers. Materials Science and Engineering C, 59, 464-470.
Weir, M. D., Chow, L. C., & Xu, H. H. (2012). Remineralization of demineralized enamel via calcium phosphate nanocomposite. Journal of Dental Research, 91, 979-84.
White, A. A., Best, S. M., & Kinloch, I. A. (2007). Hydroxyapatite - Carbon Nanotube Composites for Biomedical Applications: A Review. International Journal of Applied Ceramic Technology, 4(1), 1-13.
Wiegand, A., Buchalla, W., & Attin, T. (2007). Review on fluoride-releasing restorative materials-fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dental Materials, 23(3), 343-362.
Wille, S., Hölken, I., Haidarschin, G., Adelung, R., & Kern, M. (2016). Biaxial flexural strength of new Bis-GMA / TEGDMA based composites with different fillers for dental applications. Dental Materials, 1-6.
Willems, G., Lambrechts, P., Braem, M., Celis, J. P., & Vanherle, G. A. (1992). Classification of Dental Composites According to Their Morphological and Mechanical Characteristics. Dental Materials, 8, 310-319.
Wilson, K. S., & Antonucci, J. M. (2006). Interphase Structure-Property Relationships in Thermoset Dimethacrylate Nanocomposites. Dental Materials, 22, 995-1001.
Xu, J. L., Khor, K. A., Dong, Z. L., Gu, Y. W., Kumar, R., & Cheang, P. (2004). Preparation and characterisation of nano-sized hydroxyapatite powders produced in a radio frequency (rf) thermal plasma. Materials Science and Engineering A, 374(1-2), 101-108.
Yamaguchi, R., Powers, J. M., & Dennison, J. B. (1989). Thermal Expansion of Visible-Light-Cured Composite Resins. Operative Dentistry, 14, 64-67.
Yap, A. U. J., Mah, M. K. S., Lye, C. P. W., & Loh, P. L. (2004). Influence of Dietary Simulating Solvents on the Hardness of Provisional Restorative Materials. Dental Materials, 20, 370-376.
Ye, Q., Ohsaki, K., Li, K., Li, D., Zhu, C., Ogawa, T., Tenshin, S., & Takano- Yamamoto, T. (2001). Histological reaction to hydroxyapatite in the middle ear of rats. Auris Nasus Larynx, 28, 131-136.
Yeong, K. C. B., Wang, J., & Ng, S. C. (2001). Mechanochemical Synthesis of Nanocrystalline Hydroxyapatite from CaO and CaHPO?. Biomaterials, 22(20), 2705-2712.
Zainol, I., Adenan, N. H., Rahim, N. A., & Jaafar, C. N. A. (2019). Extraction of natural hydroxyapatite from tilapia fish scales using alkaline treatment. Materials Today: Proceedings, 16, 1942-1948.
Zainol, I., Alwi, N. M., Abidin, M. Z., Haniza, H. M. Z., Ahmad, M. S., & Ramli, A. (2012). Physicochemical Properties of Hydroxyapatite Extracted from Fish Scales. Advanced Materials Research, 545, 235-239.
Zandinejad, A. A., Atai, M., & Pahlevan, A. (2006). The effect of ceramic and porous fillers on the mechanical properties of experimental dental composites. Dental Materials, 22, 382-387.
Zhang, H., & Darvell, B. W. (2012). Failure and behavior in water of hydroxyapatite whisker-reinforced bis-GMA-based resin composites. Journal of the Mechanical Behavior of Biomedical Materials, 10, 39-47.
Zhang, H., & Darvell, B. W. (2012). Mechanical properties of hydroxyapatite whisker-reinforced bis-GMA-based resin composites. Dental Materials, 28(8), 824-830.
Zhang, H., & Zhang, M. (2010). Effect of surface treatment of hydroxyapatite whiskers on the mechanical properties of bis-GMA-based composites. Biomedical Materials, 5(5), 054106.
Zhou, W. R., & Zheng, Y. F. (2015). Characterization of modified magnesium and magnesium alloys for biomedical applications. Surface Modification of Magnesium and its Alloys for Biomedical Applications, 263-282.
Zulkifli, N. S. C., Rahman, I. A., Mohamad, D., & Husein, A. (2013). A green sol-gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler. Ceramics International, 39(4), 4559-4567.
LIST OF PUBLICATIONS
1. Razali, R. A. C., Rahim, N. A., Zainol, I., & Sharif, A. M. (2018). Preparation of Dental Composite Using Hydroxyapatite from Natural Sources and Silica. Journal of Physics: Conference Series, 1097, 012050.
2. Razali, R. A. C., Zainol, I., & Rahim, N. A. (2020). Synthesis of Natural Hydroxyapatite from Fish Scales and Its Potential Application as Fillers in Dental Composites. American Journal of Engineering Research (AJER), 9(4), 166-170.
LIST OF CONFERENCES
1. The 5?? International Conference on Research, Implementation and Education of Mathematics and Sciences 2018 (5?? ICRIEMS). 7??-8?? May 2018. Faculty of Mathematics and Natural Science, Yogyakarta State University. Oral Presentation. “Preparation of Dental Composites Using Silica and Hydroxyapatite from Natural Sources”.
2. The 5?? International Postgraduate Conference on Science and Mathematics 2017 (IPCSM 2017). 7??-9?? October 2017 at Universiti Pendidikan Sultan Idris. Oral Presentation. “Preparation of Dental Composites Using Silica and Hydroxyapatite from Natural Sources”.
3. The 4?? International Postgraduate Conference on Science and Mathematics 2016 (IPCSM 2016). 19?? November 2016 at Universiti Pendidikan Sultan Idris. Oral Presentation. “Preparation of Dental Composites Using Silica and Hydroxyapatite from Natural Sources”.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |