UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :TA Engineering (General). Civil engineering (General)
Main Author :Mohammed Zorah Hassan
Title :Thermomechanical, thermal properties and structural morphology of poly (lactic acid) reinforced with titanium oxide nanofiller
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2020
Notes :with CD
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
The aim of this study was to investigate the thermomechanical, thermal properties and structural morphology of modified poly (lactic acid) (PLA) reinforced with titanium oxide (TiO2) nanofiller. The PLA composites were prepared by solvent casting followed by hot press method using tributyl citrate (TBC) as a plasticizer and TiO2 nanofiller for reinforcement. The thermomechanical, thermal behavior and structural morphology of PLA composites were characterized using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM). The crystallinity and transparency of the composites were studied using X-ray diffraction analysis and UV-Vis transmittance spectroscopy. Results showed TBC acts as a successful plasticizer that increased flexibility of the composite with improved crystallinity from 17.52 % to 38.56 % at the optimum loading of 7.0 w/w % TBC. The cross-section morphology of the composites revealed a good dispersion of TiO2 nanofiller in PLA matrix at low loading (0.5 to 3.5 w/w %). The presence of the nanofiller has improved the thermal stability and thermomechanical properties of the nanocomposites at low loading with 40 % improvement of storage modulus due to good dispersion of the nanofiller as shown in the SEM results. The glass transition temperature of the composites has shifted from 50.0 ?C to 54.2 ?C indicating restricted mobility of the polymer chains in the presence of the nanofiller. The transparency was excellent for plasticized PLA but decreased with the addition of the nanofiller as showed by the transmittance spectra. In conclusion, incorporation of plasticizer and the nanofiller improved the thermomechanical and thermal properties of PLA nanocomposites which exhibited optimum results at 3.5 w/w % TiO2.  The implication of this study is that the modified PLA reinforced with TiO2 nanoparticles offer promising application as a food packaging due to the improved thermomechanical properties, thermal stability and crystallinity.

References

Alsaheb, R. A. A., Aladdin, A., Othman, N. Z., Malek, R. A., Leng, O. M., Aziz, R., & El Enshasy, H. A. (2015). Recent applications of polylactic acid in pharmaceutical and medical industries. Chem Pharm Res, 7(12), 51–63.‏

 

Ahmad, A. F., Aziz, S. A., Abbas, Z., Obaiys, S. J., Matori, K. A., Zaid, M. H. M., & Aliyu, U. S. A. (2019). Chemically Reduced Graphene Oxide-Reinforced Poly (Lactic Acid)/Poly (Ethylene Glycol) Nanocomposites: Preparation, Characterization, and Applications in Electromagnetic Interference Shielding. Polymers, 11(4), 661–681.‏

 

Akindoyo, J. O., Beg, M. D. H., Ghazali, S., & Heim, H. P. (2018). Impact Modi Fi Ed PLA-Hydroxyapatite Composites Thermo-Mechanical Properties. Composites Part A, 107(10), 326–333. 

 

Akindoyo, J. O., Beg, M. D., Ghazali, S., Heim, H. P., & Feldmann, M. (2017). Effects of surface modification on dispersion, mechanical, thermal and dynamic mechanical properties of injection molded PLA-hydroxyapatite composites. Composites Part A: Applied Science and Manufacturing, 103(6), 96–105.‏

 

Alakoski, E., Jämsén, M., Agar, D., Tampio, E., & Wihersaari, M. (2016). From Wood Pellets to Wood Chips, Risks of Degradation and Emissions from the Storage of Woody Biomass - A Short Review. Renewable and Sustainable Energy Reviews, 54(6), 376–383.

 

Alakrach, A. M., Noriman, N. Z., Dahham, O. S., Al-Rashdi, A. A., Johari, I., Razlan, Z. M., & Khairunizam,W.(2019).Physical properties of plasticized PLA/HNTs bionanocomposites: effects of plasticizer type and content. In IOP Conference Series: Materials Science and Engineering, 557( 1), 012– 018. 

 

Alam, S., Mina, M. F., Rahman, M. J., Gafur, M. A., Maria, K. H., Mieno, T., & Beg, M. D. H. (2019). Effects of micrometre-sized graphite flake to reinforce the performances of poly (lactic acid) thermoplastic biocomposites. Polymers and Polymer Composites, 27(1), 20–32.‏

 

Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Materials Science and Engineering R: Reports, 28(1), 1–63. 

 

Alizadeh Sani, M., Ehsani, A., & Hashemi, M. (2017). Whey protein isolate/cellulose nanofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: Its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration. International Journal of Food Microbiology, 251, 8–14. 

 

Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977–1984. 

 

An?lovar, A., Kr?an, A., & ?agar, E. (2018). Degradation of PLA/ZnO and PHBV/ZnO composites prepared by melt processing. Arabian Journal of Chemistry, 11(3), 343–352.‏

 

Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., & Kenny, J. M. (2010). Biodegradable polymer matrix nanocomposites for tissue engineering?: A review. Polymer Degradation and Stability, 95(11), 2126–2146. 

 

Arora, A., & Padua, G. W. (2010). Review: Nanocomposites in food packaging. Journal of Food Science, 75(1), 43–49.

 

Arruda, L. C., Magaton, M., Bretas, R. E. S., & Ueki, M. M. (2015). Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polymer Testing, 43(5), 27–37. 

 

Athanasoulia, I. G. I., & Tarantili, P. A. (2019). Thermal transitions and stability of melt mixed TiO2/Poly (L?lactic acid) nanocomposites. Polymer Engineering & Science, 59(4), 704–713.‏

 

Auras, R., Harte, B., & Selke, S. (2004). Effect of water on the oxygen barrier properties of poly(ethylene terephthalate) and polylactide films. Journal of Applied Polymer Science, 92(3), 1790–1803. 

 

Auras, R., Harte, B., & Selke, S. (2006). Sorption of ethyl acetate and d-limonene in poly(lactide) polymers. Journal of the Science of Food and Agriculture, 86(4), 648–656. 

 

Avérous, L. (2008). Polylactic acid: synthesis, properties and applications. Monomers, polymers and composites from renewable resources, 433-450. 

 

Avinc, O., & Khoddami, A. (2009). Overview of Poly (lactic acid)(PLA) Fibre. Fibre Chemistry, 41(6), 391-401

 

Avérous, L., & Pollet, E. (2012). Environmental silicate nano-biocomposites. Springer,  13-39. 

 

Avolio, R., Castaldo, R., Avella, M., Cocca, M., Gentile, G., Fiori, S., & Errico, M. E. (2018). PLA-based plasticized nanocomposites: Effect of polymer/plasticizer/filler interactions on the time evolution of properties. Composites Part B: Engineering, 152(11), 267–274. 

 

Awale, R., Ali, F., Azmi, A., Puad, N., Anuar, H., & Hassan, A. (2018). Enhanced Flexibility of Biodegradable Polylactic Acid/Starch Blends Using Epoxidized Palm Oil as Plasticizer. Polymers, 10(9), 977.‏

 

Bang, G., & Kim, S. W. (2012). Biodegradable poly(lactic acid)-based hybrid coating materials for food packaging films with gas barrier properties. Journal of Industrial and Engineering Chemistry, 18(3), 1063–1068. 

 

Baran, E. H., & Erbil, H. Y. (2019). Surface Modification of 3D Printed PLA Objects by Fused Deposition Modeling: A Review. Colloids and Interfaces, 3(2), 43-68

 

Basu, A., Nazarkovsky, M., Ghadi, R., Khan, W., & Domb, A. J. (2017). Poly(lactic acid)-based nanocomposites. Polymers for Advanced Technologies, 28(8), 919–930. 

 

Bergström, J. S., & Hayman, D. (2016). An Overview of Mechanical Properties and Material Modeling of Polylactide (PLA) for Medical Applications. Annals of Biomedical Engineering, 44(2), 330–340. 

 

Bicas, J. L., & Pastore, G. M. (2007). Isolation and screening of D-limonene-resistant microorganisms. Brazilian Journal of Microbiology, 38(3), 563–567. 

 

Bijarimi, M., Ahmad, S., Rasid, R., Khushairi, M. A., & Zakir, M. (2016). Poly (lactic acid)/Poly (ethylene glycol) blends: Mechanical, thermal and morphological properties. In AIP Conference Proceedings, 1727( 1), 1727-1738

 

Bocchini, S., Fukushima, K., Di Blasio, A., Fina, A., Frache, A., & Geobaldo, F. (2010). Polylactic acid and polylactic acid-based nanocomposite photooxidation. Biomacromolecules, 11(11), 2919–2926. 

 

Broz, M. E., VanderHart, D. L., & Washburn, N. R. (2003). Structure and mechanical properties of poly(D,L-lactic acid)/poly(ε-caprolactone) blends. Biomaterials, 24(23), 4181–4190. 

 

Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly       ( lactic acid ) fi lms plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651–658. 

 

Burgos, N., Tolaguera, D., Fiori, S., & Jiménez, A. (2014). Synthesis and characterization of lactic acid oligomers: Evaluation of performance as poly (lactic acid) plasticizers. Journal of Polymers and the Environment, 22(2), 227-235.‏

 

Buzarovska, A. (2013). PLA Nanocomposites with Functionalized TiO2 Nanoparticles. Polymer - Plastics Technology and Engineering, 52(3), 280–286. 

 

Buzarovska, A., & Grozdanov, A. (2012). Biodegradable poly(L -lactic acid)/TiO2 nanocomposites: Thermal properties and degradation. Journal of Applied Polymer Science, 123(4), 2187–2193.

 

Cai, K., Yao, K., Hou, X., Wang, Y., Hou, Y., Yang, Z., Xie, H. (2002). Improvement of the functions of osteoblasts seeded on modified poly(D,L-lactic acid) with poly(aspartic acid). Journal of Biomedical Materials Research, 62(2), 283–291. 

 

Carbonell-verdu, A., Samper, M. D., Garcia-garcia, D., Sanchez-nacher, L., & Balart, R. (2017). Plasticization e ff ect of epoxidized cottonseed oil ( ECSO ) on poly ( lactic acid ). Industrial Crops & Products, 104(5), 278–286.

 

Carothers, W. H., Borough, G. L., & Natta, F. J. (1932). Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters. Journal of the American Chemical Society, 54(2), 761–772. 

 

Carré, G., Hamon, E., Ennahar, S., Estner, M., Lett, M. C., Horvatovich, P., Andre, P. (2014). TiO2 photocatalysis damages lipids and proteins in Escherichia coli. Applied and Environmental Microbiology, 80(8), 2573–2581. 

 

Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X., & Auras, R. (2016). Poly(lactic acid) Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 107(10), 333–366. 

 

Cava, D., Catala, R., Gavara, R., & Lagaron, J. M. (2005). Testing limonene diffusion through food contact polyethylene by FT-IR spectroscopy: Film thickness, permeant concentration and outer medium effects. Polymer Testing, 24(4), 483–489. 

 

Celebi, H., & Gunes, E. (2018). Combined effect of a plasticizer and carvacrol and thymol on the mechanical, thermal, morphological properties of poly(lactic acid). Journal of Applied Polymer Science, 135(8), 1–9. 

 

Chaos, A., Sangroniz, A., Gonzalez, A., Iriarte, M., Sarasua, J. R., del Río, J., & Etxeberria, A. (2019). Tributyl citrate as an effective plasticizer for biodegradable polymers: effect of plasticizer on free volume and transport and mechanical properties. Polymer International, 68(1), 125-133.‏

 

Chee, S. S., Jawaid, M., Sultan, M. T. H., Alothman, O. Y., & Abdullah, L. C. (2019). Thermomechanical and dynamic mechanical properties of bamboo/woven kenaf mat reinforced epoxy hybrid composites. Composites Part B: Engineering, 163(4), 165-174.‏

 

Chen, L., & Dou, Q. Influence of the combination of nucleating agent and plasticizer on the non-isothermal crystallization kinetics and activation energies of poly (lactic acid). Journal of Thermal Analysis and Calorimetry, 183(6)1-22.‏

 

Chen, Y., Mak, A. F. T., Wang, M., Li, J., & Wong, M. S. (2006). PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity. Surface and Coatings Technology, 201(3–4), 575–580. 

 

Chieng, B. W., Ibrahim, N. A., Then, Y. Y., & Loo, Y. Y. (2014). Epoxidized vegetable oils plasticized poly(lactic acid) biocomposites: Mechanical, thermal and morphology properties. Molecules, 19(10), 16024–16038. 

 

Chieng, B., Ibrahim, N., Yunus, W., & Hussein, M. (2014). Poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers, 6(1), 93-104.‏

 

Choi, K., Choi, M., Han, D., Park, T., & Ha, C. (2013). Plasticization of poly ( lactic acid )          ( PLA ) through chemical grafting of poly ( ethylene glycol ) ( PEG ) via in situ reactive blending. European Polymer Journal, 49(8), 2356–2364. 

 

Chorianopoulos, N. G., Tsoukleris, D. S., Panagou, E. Z., Falaras, P., & Nychas, G. J. E. (2011). Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiology, 28(1), 164–170. 

 

Chung, T.-J., Park, J.-W., Lee, H.-J., Kwon, H.-J., Kim, H.-J., Lee, Y.-K., & Tai Yin Tze, W. (2018). The Improvement of Mechanical Properties, Thermal Stability, and Water Absorption Resistance of an Eco-Friendly PLA/Kenaf Biocomposite Using Acetylation. Applied Sciences, 8(3), 376-389 

 

Claro, P. I. C., Neto, A. R. S., Bibbo, A. C. C., Mattoso, L. H. C., Bastos, M. S. R., & Marconcini, J. M. (2016). Biodegradable Blends with Potential Use in Packaging: A Comparison of PLA/Chitosan and PLA/Cellulose Acetate Films. Journal of Polymers and the Environment, 24(4), 363–371. 

 

Comani??, E. D., Ghinea, C., Hlihor, R. M., Simion, I. M., Smaranda, C., Favier, L., Gavrilescu, M. (2015). Challenges and oportunities in green plastics: An assessment using the electre decision-aid method. Environmental Engineering and Management Journal, 14(3), 689–702.

 

Coppola, B., Cappetti, N., Di Maio, L., Scarfato, P., & Incarnato, L. (2018). 3D Printing of PLA/clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties. Materials, 11(10), 1947-1964.‏

 

Costa, R. G. F., Brichi, G. S., Ribeiro, C., & Mattoso, L. H. C. (2016). Nanocomposite fibers of poly(lactic acid)/titanium dioxide prepared by solution blow spinning. Polymer Bulletin, 73(11), 2973–2985.

 

Curia, S., Biundo, A., Fischer, I., Braunschmid, V., Gübitz, G. M., & Stanzione, J. F. (2018). Towards Sustainable High-Performance Thermoplastics: Synthesis, Characterization, and Enzymatic Hydrolysis of Bisguaiacol-Based Polyesters. ChemSusChem, 11(15), 2529–2539.

 

da Luz, C. M., Boyles, M. S. P., Falagan-Lotsch, P., Pereira, M. R., Tutumi, H. R., de Oliveira Santos, E.,& Leite, P. E. C. (2017). Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts. Journal of Nanobiotechnology, 15(1), 11. 

 

da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., & Schroeder, A. (2018). Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 340(5), 9–14. 

 

Dadashi, S., MousFarhoodi, M., Avi, S. M. A., Sotudeh-Gharebagh, R., Emam-Djomeh, Z., Oromiehie, A., & Hemmati, F. (2012). Influence of TiO2 nanoparticle filler on the properties of PET and PLA nanocomposites. Polymer (Korea), 36(6), 745–755. 

 

Dalrymple, O. K., Stefanakos, E., Trotz, M. A., & Goswami, D. Y. (2010). A review of the mechanisms and modeling of photocatalytic disinfection. Applied Catalysis B: Environmental, 98(2), 27–38. 

 

Dang, N., Jeong, H., Kim, T., Nguyen, N., Mai, T., Nguyen, L.& Gun, H. (2019). Polyethylene glycol functionalized graphene oxide and its in fl uences on properties of Poly ( lactic acid ) biohybrid materials. Composites Part B, 161(1), 651–658. 

 

DeJong, E. S., DeBerardino, T. M., Brooks, D. E., & Judson, K. (2004). In Vivo Comparison of a Metal Versus a Biodegradable Suture Anchor. Arthroscopy - Journal of Arthroscopic and Related Surgery, 20(5), 511–516. 

 

Demirel, B., Yara?, A., & Elçiçek, H. (2011). Crystallization Behavior of PET Materials. BAÜ Fen Bil. Enst. Dergisi Cilt, 13(1), 26–35.

 

Díez-Pascual, A. M., & Díez-Vicente, A. L. (2014). Poly(3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties. International Journal of Molecular Sciences, 15(6), 10950–10973. 

 

Díez-Pascual, A. M., & Díez-Vicente, A. L. (2015). Development of linseed oil-TiO2 green nanocomposites as antimicrobial coatings. Journal of Materials Chemistry B, 3(21), 4458–4471. 

 

Dishisha, T., Pyo, S. H., & Hatti-Kaul, R. (2015). Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis. Microbial Cell Factories, 14(1), 1–11.

 

Courgneau, C., Domenek, S., Guinault, A., Avérous, L., & Ducruet, V. (2011). Analysis of the structure-properties relationships of different multiphase systems based on plasticized poly (lactic acid). Journal of Polymers and the Environment, 19(2), 362-371.‏

 

Dorigato, A., Sebastiani, M., Pegoretti, A., & Fambri, L. (2012). Effect of Silica Nanoparticles on the Mechanical Performances of Poly(Lactic Acid). Journal of Polymers and the Environment, 20(3), 713–725. 

 

Elmowafy, E. M., Tiboni, M., & Soliman, M. E. (2019). Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. Journal of Pharmaceutical Investigation, 49(4),374-380.‏

 

Esposito, D., & Antonietti, M. (2015). Redefining biorefinery: the search for unconventional building blocks for materials. Chemical Society Reviews, 44(16), 5821–5835.

 

Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 107(12), 367–392. 

 

Farhoodi, M., Dadashi, S., Mousavi, S. M. A., Sotudeh-Gharebagh, R., Emam-Djomeh, Z., Oromiehie, A., & Hemmati, F. (2012). Influence of TiO2 nanoparticle filler on the properties of PET and PLA nanocomposites. Polymer Korea, 36(6), 745-755.‏

 

Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science, 37(11), 1552–1596. 

 

Feng, Y., Ma, P., Xu, P., Wang, R., Dong, W., Chen, M., & Joziasse, C. (2018). The crystallization behavior of poly(lactic acid) with different types of nucleating agents. International Journal of Biological Macromolecules, 106(1), 955–962. 

 

Ferrández-Montero, A., Lieblich, M., González-Carrasco, J. L., Benavente, R., Lorenzo, V., Detsch, R., & Ferrari, B. (2019). Development of biocompatible and fully bioabsorbable PLA/Mg films for tissue regeneration applications. Acta biomaterialia, 98(10), 114-124.‏

 

Ferri, J. M., Samper, M. D., García-Sanoguera, D., Reig, M. J., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly (lactic acid). Journal of materials science, 51(11), 5356-5366.‏

 

Fortelny, I., Ujcic, A., Fambri, L., & Slouf, M. (2019). Phase Structure, Compatibility, and Toughness of PLA/PCL Blends: A Review. Frontiers in Materials, 6(8), 1–13. 

 

Fortunati, E., Armentano, I., Iannoni, A., & Kenny, J. M. (2010). Development and thermal behaviour of ternary PLA matrix composites. Polymer Degradation and Stability, 95(11), 2200–2206. 

 

Fortunati, E., Armentano, I., Zhou, Q., Iannoni, A., Saino, E., Visai, L., Kenny, J. M. (2012). Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydrate Polymers, 87(2), 1596–1605. 

 

Fortunati, E., Peltzer, M., Armentano, I., Jiménez, A., & Kenny, J. M. (2013). Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. Journal of Food Engineering, 118(1), 117-124.‏

 

Foruzanmehr, Mr., Vuillaume, P. Y., Elkoun, S., & Robert, M. (2016). Physical and mechanical properties of PLA composites reinforced by TiO2 grafted flax fibers. Materials and Design, 106(9), 295–304.

 

Frone, A. N., Panaitescu, D. M., Chiulan, I., Gabor, A. R., Nicolae, C. A., Oprea, M.,  & Puitel, A. C. Thermal and mechanical behavior of biodegradable polyester films containing cellulose nanofibers. Journal of Thermal Analysis and Calorimetry, 138(4),2387-2398.‏ 

 

Fukushima, K., Giménez, E., Cabedo, L., Lagarón, J. M., & Feijoo, J. L. (2012). Biotic degradation of poly(dl-lactide) based nanocomposites. Polymer Degradation and Stability, 97(8), 1278–1284.

 

Furukawa, T., Sato, H., Murakami, R., Zhang, J., Duan, Y. X., Noda, I., Ozaki, Y. (2005). Structure, dispersibility and crystallinity of poly (hydroxybutyrate)/ poly(l-lactic acid) blends studied by FT-IR microspectroscopy and differential scanning calorimetry. Polymer Preprints, Japan, 54(2), 3593. 

 

Gao, H., Fang, X., Chen, H., Qin, Y., Xu, F., & Jin, T. Z. (2017). Physiochemical properties and food application of antimicrobial PLA film. Food Control, 73(5), 1522-1531.‏

 

González, E. A. S., Olmos, D., Lorente, M. Á., Vélaz, I., & González-Benito, J. (2018). Preparation and Characterization of Polymer Composite Materials Based on PLA/TiO2 for Antibacterial Packaging. Polymers, 10(12), 1365-1379. 

 

Gowman, A. C., Picard, M. C., Lim, L., Misra, M., & Mohanty, A. K. (2019). Fruit Waste Valorization for Biodegradable Biocomposite Applications: A Review. BioResources, 14(4), 1–46.

 

Graupner, N., Herrmann, A. S., & Müssig, J. (2009). Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Composites Part A: Applied Science and Manufacturing, 40(6), 810–821.

 

Grigore, M. (2017). Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers. Recycling, 2(4), 24-35. 

 

Guan, L. Z., Zhao, L., Wan, Y. J., & Tang, L. C. (2018). Three-dimensional graphene-based polymer nanocomposites: preparation, properties and applications. Nanoscale, 10(31), 14788–14811. 

 

Guo, C., Zhou, L., & Lv, J. (2013). Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polymers and Polymer Composites, 21(7), 449–456.

 

Gupta, M. K., & Singh, R. (2018). Flexural and Dynamic Mechanical Analysis (DMA) of Polylactic Acid (PLA) Coated Sisal Fibre Reinforced Polyester Composite. Materials Today: Proceedings, 5(2), 6109–6114. 

 

Haafiz, M. K. M., Hassan, A., Zakaria, Z., Inuwa, I. M., Islam, M. S., & Jawaid, M. (2013). Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydrate Polymers, 98(1), 139–145. 

 

Hahladakis, J. N., & Iacovidou, E. (2019). An overview of the challenges and trade-offs in closing the loop of post-consumer plastic waste (PCPW): Focus on recycling. Journal of Hazardous Materials, 380(7), 1-45. 

 

Haider, T. P., Völker, C., Kramm, J., Landfester, K., & Wurm, F. R. (2019). Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angewandte Chemie - International Edition, 58(1), 50–62. 

 

Hamad, K., Kaseem, M., Yang, H. W., Deri, F., & Ko, Y. G. (2015). Properties and medical applications of polylactic acid: A review. Express Polymer Letters, 9(5), 435–455. 

 

Haque, F. Z., Nandanwar, R., & Singh, P. (2017). Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds. Optik, 128(10), 191–200. 

 

Hasan, M. M., Zhou, Y., Mahfuz, H., & Jeelani, S. (2006). Effect of SiO2 nanoparticle on thermal and tensile behavior of nylon-6. Materials Science and Engineering A, 429(2), 181–188. 

 

Shukor, F., Hassan, A., Islam, M. S., Mokhtar, M., & Hasan, M. (2014). Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Materials & Design , 54(2), 425-429.‏

 

Hassan, M. M., Le Guen, M. J., Tucker, N., & Parker, K. (2019). Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA. Cellulose, 26(7), 4463–4478.

 

Hassouna, F., Raquez, J., Addiego, F., Dubois, P., Toniazzo, V., & Ruch, D. (2011). New approach on the development of plasticized polylactide ( PLA ): Grafting of poly ( ethylene glycol ) ( PEG ) via reactive extrusion. European Polymer Journal, 47(11), 2134–2144.

 

Hassouna, F., Raquez, J., Addiego, F., Toniazzo, V., Dubois, P., & Ruch, D. (2012). New development on plasticized poly ( lactide ): Chemical grafting of citrate on PLA by reactive extrusion. European Polymer Journal, 48(2), 404–415. 

 

Henton, D. E., Gruber, P., Lunt, J., & Randall, J. (2005). Polylactic acid technology. Natural fibers, biopolymers, and biocomposites, 16(1), 527-577.

 

Herrera, N., Salaberria, A. M., Mathew, A. P., & Oksman, K. (2015). Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties. Composites Part A. (2015).05-024.

 

Ho, B. T., Roberts, T. K., & Lucas, S. (2018). An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach. Critical Reviews in Biotechnology, 38(2), 308–320. 

 

Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling: Challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2115–2126.

 

Hu, Y., Daoud, W. A., Cheuk, K. K. L., & Lin, C. S. K. (2016). Newly developed techniques on polycondensation, ring-opening polymerization and polymer modification: Focus on poly (lactic acid). Materials, 9(3), 133-147.‏

 

Huang, J. W., Chang Hung, Y., Wen, Y. L., Kang, C. C., & Yeh, M. Y. (2009). Polylactide/nano?and micro?scale silica composite films. II. Melting behavior and cold crystallization. Journal of applied polymer science, 112(5), 3149-3156.‏

 

Huang, L. P., Jin, B., & Lant, P. (2005). Direct fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Bioprocess and Biosystems Engineering, 27(4), 229–238. 

 

Huang, Y., Wang, T., Zhao, X., Wang, X., Zhou, L., Yang, Y.,& Ju, Y. (2015). Poly(lactic acid)/graphene oxide-ZnO nanocomposite films with good mechanical, dynamic mechanical, anti-UV and antibacterial properties. Journal of Chemical Technology and Biotechnology, 90(9), 1677–1684.

 

Huang, Z., Noble, B. B., Corrigan, N., Chu, Y., Satoh, K., Thomas, D. S., & Boyer, C. (2018). Discrete and stereospecific oligomers prepared by sequential and alternating single unit monomer insertion. Journal of the American Chemical Society, 140(41), 13392-13406.‏

 

Hwang, S. W., Shim, J. K., Selke, S. E., Soto-Valdez, H., Matuana, L., Rubino, M., & Auras, R. (2012). Poly(L-lactic acid) with added α-tocopherol and resveratrol: Optical, physical, thermal and mechanical properties. Polymer International, 61(3), 418–425. 

 

Ibrahim, S. A., & Sreekantan, S. (2011). Effect of pH on TiO2 nanoparticles via sol-gel method. Advanced Materials Research, 173, 184–189. 

 

Iles, A., & Martin, A. N. (2013). Expanding bioplastics production: Sustainable business innovation in the chemical industry. Journal of Cleaner Production, 45(4), 38–49. 

 

Iwata, T. (2015). Biodegradable and bio-based polymers: Future prospects of eco-friendly plastics. Angewandte Chemie - International Edition, 54(11), 3210–3215. 

 

Jahandideh, A., & Muthukumarappan, K. (2017). Starshaped lactic acid based systems and their thermosetting resins; synthesis characterization potential opportunities and drawbacks. European Polymer Journal, 87(2), 360–379.

 

Jamshidian, M., Arab Tehrany, E., Cleymand, F., Leconte, S., Falher, T., & Desobry, S. (2012). Effects of synthetic phenolic antioxidants on physical, structural, mechanical and barrier properties of poly lactic acid film. Carbohydrate Polymers, 87(2), 1763–1773. 

 

Jamshidian, M., Tehrany, E. A., Imran, M., Akhtar, M. J., Cleymand, F., & Desobry, S. (2012). Structural, mechanical and barrier properties of active PLA-antioxidant films. Journal of Food Engineering, 110(3), 380–389. 

 

Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly?Lactic Acid: production, applications, nanocomposites, and release studies. Comprehensive reviews in food science and food safety, 9(5), 552-571.‏

 

Janjarasskul, T., & Krochta, J. M. (2010). Edible Packaging Materials. Annual Review of Food Science and Technology, 1(1), 415–448. 

 

Janorkar, A. V., Metters, A. T., & Hirt, D. E. (2004). Modification of poly(lactic acid) films: Enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process. Macromolecules, 37(24), 9151–9159. 

 

Jiang, A., Xi, J., & Wu, H. (2012). Effect of surface treatment on the morphology of sisal fibers in sisal/polylactic acid composites. Journal of Reinforced Plastics and Composites, 31(9), 621–630.

 

Jiang, L., Wolcott, M. P., & Zhang, J. (2006). Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules, 7(1), 199–207. 

 

Jing, J., Qiao, Q. A., Jin, Y., Ma, C., Cai, H., Meng, Y., & Feng, D. (2012). Molecular and mesoscopic dynamics simulations on the compatibility of PLA/plasticizer blends. Chinese Journal of Chemistry, 30(1), 133-138.‏

 

Kale, G., Auras, R., & Singh, S. P. (2007). Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions. Packaging Technology and Science, 20(1), 49–70.

 

Kamdem, D. P., Shen, Z., & Nabinejad, O. (2019). Development of biodegradable composite chitosan-based films incorporated with xylan and carvacrol for food packaging application. Food Packaging and Shelf Life, 21(6), 100344. 

 

Kang, H., Li, Y., Gong, M., Guo, Y., Guo, Z., Fang, Q., & Li, X. (2018). An environmentally sustainable plasticizer toughened polylactide. RSC advances, 8(21), 11643-11651.‏

 

Karamanlioglu, M., Preziosi, R., & Robson, G. D. (2017). Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): A review. Polymer Degradation and Stability, 137(5), 122–130.

 

Kfoury, G., Raquez, J.-M., Hassouna, F., Odent, J., Toniazzo, V., Ruch, D., & Dubois, P. (2013). Recent advances in high performance poly(lactide): from “green” plasticization to super-tough materials via (reactive) compounding. Frontiers in Chemistry, 1(12), 1–46. 

 

Kfoury, G., Raquez, J. M., Hassouna, F., Leclère, P., Toniazzo, V., Ruch, D., & Dubois, P. (2015). Toughening of poly (lactide) using polyethylene glycol methyl ether acrylate: Reactive versus physical blending. Polymer Engineering & Science, 55(6), 1408-1419.‏

 

Khairy, M., Amin, N. H., & Kamal, R. (2017). Optical and kinetics of thermal decomposition of PMMA/ZnO nanocomposites. Journal of Thermal Analysis and Calorimetry, 128(3), 1811–1824. 

 

Kolstad, J. J., Vink, E. T. H., De Wilde, B., & Debeer, L. (2012). Assessment of anaerobic degradation of IngeoTM polylactides under accelerated landfill conditions. Polymer Degradation and Stability, 97(7), 1131–1141.

 

Kong, J., & Han, C. (2018). Production and characterization of sustainable poly ( lactic acid )/ functionalized-eggshell composites plasticized by epoxidized soybean oil. Journal of Materials Science, 53(20), 14386–14397.

 

Krishnaiah, P., Ratnam, C. T., & Manickam, S. (2017). Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Applied Clay Science, 135(1), 583-595.‏

 

Kuila, T., Bose, S., Mishra, A. K., Khanra, P., Kim, N. H., & Lee, J. H. (2012). Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polymer Testing, 31(1), 31–38. 

 

Kukoyi, A. R. (2016). Economic Impacts of Natural Polymers. In Natural Polymers, (339-362). 

 

Kumar, M., Mohanty, S., Nayak, S. K., & Rahail Parvaiz, M. (2010). Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresource Technology, 101(21), 8406–8415. 

 

Kumar, N., Kaur, P., & Bhatia, S. (2017). Advances in bio-nanocomposite materials for food packaging: a review. Nutrition and Food Science, 47(4), 591–606. 

 

Kwietniewska, E., & Tys, J. (2014). Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and Sustainable Energy Reviews, 34(6), 491–500. 

 

Lee, J. C., Choi, M. C., Choi, D. H., & Ha, C. S. (2019). Toughness enhancement of poly(lactic acid) through hybridisation with epoxide-functionalised silane via reactive extrusion. Polymer Degradation and Stability, 160(2), 195–202. 

 

Lee, S., Lee, Y., & Lee, J. W. (2007). Effect of ultrasound on the properties of biodegradable polymer blends of poly(lactic acid) with poly(butylene adipate-co-terephthalate). Macromolecular Research, 15(1), 44–50. 

 

Li, H., & Huneault, M. A. (2007). Effect of nucleation and plasticization on the crystallization of poly (lactic acid). Polymer, 48(23), 6855-6866.‏

 

Li, W., Zhang, C., Chi, H., Li, L., Lan, T., Han, P.,& Qin, Y. (2017). Development of antimicrobial packaging film made from poly (lactic acid) incorporating titanium dioxide and silver nanoparticles. Molecules, 22(7), 1170.‏

 

Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment, 15(1), 25–33.

 

Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820–852. 

 

Liu, Q., Zhao, M., Zhou, Y., Yang, Q., Shen, Y., Gong, R. H., ... & Deng, B. (2018). Polylactide single-polymer composites with a wide melt-processing window based on core-sheath PLA fibers. Materials & Design, 139(2), 36-44.‏ 

 

Liu, Z., Hu, D., Huang, L., Li, W., Tian, J., Lu, L., & Zhou, C. (2018). Simultaneous improvement in toughness, strength and biocompatibility of poly(lactic acid) with polyhedral oligomeric silsesquioxane. Chemical Engineering Journal, 346(8), 649–661. 

 

Lizundia, E., Penayo, M. C., Guinault, A., Vilas, J. L., & Domenek, S. (2019). Impact of ZnO nanoparticle morphology on relaxation and transport properties of PLA nanocomposites. Polymer Testing, 75(5), 175–184. 

 

Ljungberg, N., & Wesslen, B. (2002). The effects of plasticizers on the dynamic mechanical and thermal properties of poly (lactic acid). Journal of Applied Polymer Science, 86(5), 1227-1234.‏

 

Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R., & Fernandez, A. (2012). Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends in Food Science and Technology, 24(1), 19–29. 

 

Lomelí-Rodríguez, M., Corpas-Martínez, J. R., Willis, S., Mulholland, R., & Lopez-Sanchez, J. A. (2018). Synthesis and characterization of renewable polyester coil coatings from biomass-derived isosorbide, FDCA, 1,5-pentanediol, succinic acid, and 1,3-propanediol. Polymers, 10(6), 1–19. 

 

Lopes, J., Tarso, P. De, Realinho, V., Antunes, M., Ignacio, J., & Rita, A. (2019). Applied Clay Science Influence of chemical composition of Brazilian organoclays on the morphological , structural and thermal properties of PLA-organoclay nanocomposites. Applied Clay Science, 180(6), 105186. 

 

López-Rubio, A., & Lagaron, J. M. (2010). Improvement of UV stability and mechanical properties of biopolyesters through the addition of β-carotene. Polymer Degradation and Stability, 95(11), 2162–2168.

 

Lou, C. W., Yao, C. H., Chen, Y. S., Hsieh, T. C., Lin, J. H., & Hsing, W. H. (2008). Manufacturing and Properties of PLA Absorbable Surgical Suture. Textile Research Journal, 78(11), 958–965. 

 

Lu, H., Madbouly, S. A., Schrader, J. A., Srinivasan, G., Mccabe, K. G., Grewell, D., Graves, W. R. (2014). Biodegradation behavior of poly(lactic acid) (PLA)/Distiller’s dried grains with solubles (DDGS) composites. ACS Sustainable Chemistry and Engineering, 2(12), 2699–2706.

 

Lule, Z., Ju, H., & Kim, J. (2018). Thermomechanical properties of alumina-filled plasticized polylactic acid: Effect of alumina loading percentage. Ceramics International, 44(18), 22767–22776. 

 

Luo, Y. B., Wang, X. L., Xu, D. Y., & Wang, Y. Z. (2009). Preparation and characterization of poly(lactic acid)-grafted TiO2 nanoparticles with improved dispersions. Applied Surface Science, 255(15), 6795–6801.

 

Luo, Y., Li, W., Wang, X., Xu, D., & Wang, Y. (2009). Preparation and properties of nanocomposites based on poly ( lactic acid ) and functionalized TiO2. Acta Materialia, 57(11), 3182–3191.

 

Lutz, J. F. (2017). Defining the Field of Sequence-Controlled Polymers. Macromolecular Rapid Communications, 38(24), 1–12. 

 

Luzi, F., Dominici, F., Armentano, I., Fortunati, E., Burgos, N., Fiori, S.,Torre, L. (2019). Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films. Carbohydrate Polymers, 223(11), 115-131.

 

Luzi, F., Torre, L., Kenny, J. M., & Puglia, D. (2019). Bio and fossil based polymeric blends and nanocomposites for packaging: Structure property relationship. Materials, 12(3), 471.‏

 

Mahmud, S., Long, Y., Abu Taher, M., Xiong, Z., Zhang, R., & Zhu, J. (2019). Toughening polylactide by direct blending of cellulose nanocrystals and epoxidized soybean oil. Journal of Applied Polymer Science, 136(46), 1-13.‏

 

Maiza, M., Benaniba, M. T., & Massardier-Nageotte, V. (2016). Plasticizing effects of citrate esters on properties of poly(lactic acid). Journal of Polymer Engineering, 36(4), 371–380. 

 

Maiza, M., Benaniba, M. T., Quintard, G., & Massardier-Nageotte, V. (2016). Biobased additive plasticizing Polylactic acid (PLA). Polímeros, 25(6), 581–590. 

 

Mallegni, N., Phuong, T., Coltelli, M. B., Cinelli, P., & Lazzeri, A. (2018). Poly (lactic acid)(PLA) based tear resistant and biodegradable flexible films by blown film extrusion. Materials, 11(1), 148.‏

 

Mallick, S., Ahmad, Z., Touati, F., Bhadra, J., Shakoor, R. A., & Al-Thani, N. J. (2018). PLA-TiO2 nanocomposites: Thermal, morphological, structural, and humidity sensing properties. Ceramics International, 44(14), 16507–16513. 

 

Man, C., Zhang, C., Liu, Y., Wang, W., Ren, W., Jiang, L., Dan, Y. (2012). Poly (lactic acid)/titanium dioxide composites: Preparation and performance under ultraviolet irradiation. Polymer Degradation and Stability, 97(6), 856–862. 

 

Manafi, P., Ghasemi, I., Karrabi, M., Azizi, H., Manafi, M. R., & Ehsaninamin, P. (2015). Thermal stability and thermal degradation kinetics (model-free kinetics) of nanocomposites based on poly (lactic acid)/graphene: the influence of functionalization. Polymer Bulletin, 72(5), 1095–1112. 

 

Mann, G. S., Singh, L. P., Kumar, P., Singh, S., & Prakash, C. (2019). On briefing the surface modifications of polylactic acid: A scope for betterment of biomedical structures. Journal of Thermoplastic Composite Materials,57(6) 1-29.‏

 

Manske Nunes, S., Josende, M. E., González-Durruthy, M., Pires Ruas, C., Gelesky, M. A., Romano, L. A.,Ventura-Lima, J. (2018). Different crystalline forms of titanium dioxide nanomaterial (rutile and anatase) can influence the toxicity of copper in golden mussel Limnoperna fortunei. Aquatic Toxicology, 205(10), 182–192. 

 

Marichelvam, M. K., Jawaid, M., & Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers, 7(4), 1–14.

 

Marion, P., Bernela, B., Piccirilli, A., Estrine, B., Patouillard, N., Guilbot, J., & Jérôme, F. (2017). Sustainable chemistry: How to produce better and more from less. Green Chemistry, 19(21), 4973–4989. 

 

Marler, J. J., Upton, J., Langer, R., & Vacanti, J. P. (1998). Transplantation of cells in matrices for tissue regeneration. Advanced Drug Delivery Reviews, 33(1–2), 165–182. 

 

Martino, V. P., Jiménez, A., Ruseckaite, R. A., & Avérous, L. (2011). Structure and properties of clay nano-biocomposites based on poly(lactic acid) plasticized with polyadipates. Polymers for Advanced Technologies, 22(12), 2206–2213. 

 

Mathur, V., & Arya, P. K. (2018). Dynamic mechanical analysis of PVC/TiO2 nanocomposites. Advanced Composites and Hybrid Materials, 1(4), 741-747.‏

 

Meriçer, Ç., Minelli, M., De Angelis, M. G., Baschetti, M. G., Stancampiano, A., Laurita, R., ... & Lindström, T. (2016). Atmospheric plasma assisted PLA/microfibrillated cellulose (MFC) multilayer biocomposite for sustainable barrier application. Industrial Crops and Products, 93, 235-243.‏

 

Mehta, R., Kumar, V., Bhunia, H., & Upadhyay, S. N. (2005). Synthesis of poly(lactic acid): A review. Journal of Macromolecular Science - Polymer Reviews, 45(4), 325–349. 

 

Mekonnen, T., Mussone, P., Khalil, H., & Bressler, D. (2013). Progress in bio-based plastics and plasticizing modifications. Journal of Materials Chemistry A, 1(43), 13379. 

 

Mihai, I., Hassouna, F., Fouquet, T., Laachachi, A., Raquez, J. M., Ibn El Ahrach, H., & Dubois, P. (2018). Reactive plasticization of poly (lactide) with epoxy functionalized cardanol. Polymer Engineering & Science, 58(1), 64-72.‏

 

Mitra, B. C. (2014). Environment friendly composite materials: biocomposites and green composites. Defence Science Journal, 64(3), 244-261.‏ 

 

Molinaro, S., Cruz Romero, M., Boaro, M., Sensidoni, A., Lagazio, C., Morris, M., & Kerry, J. (2013). Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. Journal of Food Engineering, 117(1), 113–123. 

 

Mooney, B. P. (2009). The second green revolution Production of plant-based biodegradable plastics. Biochemical Journal, 418(2), 219–232. 

 

Rezaei, F., Nikiforov, A., Morent, R., & De Geyter, N. (2018). Plasma modification of poly lactic acid solutions to generate high quality electrospun PLA nanofibers. Scientific reports, 8(1), 2241.‏

 

Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination Of Poly(lactic) acid and starch for biodegradable food packaging. Materials, 10(8), 1–22. 

 

Muller, J., Jiménez, A., González-Martínez, C., & Chiralt, A. (2016). Influence of plasticizers on thermal properties and crystallization behaviour of poly(lactic acid) films obtained by compression moulding. Polymer International, 65(8), 970–978. 

 

Mustapa, I. R., Shanks, R. A., & Kong, I. (2013). Melting Behaviour and Dynamic Mechanical Properties of Poly(lactic acid)-Hemp-Nanosilica Composites. Asian Transactions on Basic and Applied Sciences, 3(2), 29–37. 

 

Nadernezhad, A., Unal, S., Khani, N., & Koc, B. (2019). Material extrusion-based additive manufacturing of structurally controlled poly (lactic acid)/carbon nanotube nanocomposites. The International Journal of Advanced Manufacturing Technology, 102(5-8), 2119-2132.‏

 

Nampoothiri, K. M., Nair, N. R., & John, R. P. (2010). Bioresource Technology An overview of the recent developments in polylactide ( PLA ) research. Bioresource Technology, 101(22), 8493–8501. 

 

Negawo, T. A., Polat, Y., Buyuknalcaci, F. N., Kilic, A., Saba, N., & Jawaid, M. (2019). Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester composites. Composite Structures, 207, 589-597.‏

 

Nekhamanurak, B., Patanathabutr, P., & Hongsriphan, N. (2014). The influence of micro-/nano-CaCO3 on thermal stability and melt rheology behavior of poly (lactic acid). Energy Procedia, 56, 118-128.‏

 

Nieddu, E., Mazzucco, L., Gentile, P., Benko, T., Balbo, V., Mandrile, R., & Ciardelli, G. (2009). Preparation and biodegradation of clay composites of PLA. Reactive and Functional Polymers, 69(6), 371–379. 

 

Nielsen, T. D., Hasselbalch, J., Holmberg, K., & Stripple, J. (2019). Politics and the plastic crisis: A review throughout the plastic life cycle. Wiley Interdisciplinary Reviews: Energy and Environment, (5), 1–18. 

 

Ning, W., Jiugao, Y., & Xiaofei, M. (2007). Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polymer International, 56(7), 1440–1447. 

 

Nofar, M., Guo, Y., & Park, C. B. (2013). Double crystal melting peak generation for expanded polypropylene bead foam manufacturing. Industrial & Engineering Chemistry Research, 52(6), 2297-2303.

 

Nofar, M., Sacligil, D., Carreau, P. J., Kamal, M. R., & Heuzey, M. C. (2019). Poly (lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules, 125, 307–360. 

 

Oehlmann, J., Schulte-Oehlmann, U., Kloas, W., Jagnytsch, O., Lutz, I., Kusk, K. O., Tyler, C. R. (2009). A critical analysis of the biological impacts of plasticizers on wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2047–2062. 

 

Ohkita, T., & Lee, S. H. (2006). Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites. Journal of Applied Polymer Science, 100(4), 3009–3017. 

 

Packham, D. E. (2012). A crisis in the environment? The impact of polymers and adhesives. In polychar 20, World Forum on Advanced Materials 67(12), 1-12. 

 

Pagliano, G., Ventorino, V., Panico, A., & Pepe, O. (2017). Integrated systems for biopolymers and bioenergy production from organic waste and by-products: A review of microbial processes. Biotechnology for Biofuels, 10(1), 1–24. 

 

Pang, C., Shanks, R. A., & Daver, F. (2015). Characterization of kenaf fiber composites prepared with tributyl citrate plasticized cellulose acetate. Composites Part A: Applied Science and Manufacturing, 70, 52–58. 

 

Pantani, R., Gorrasi, G., Vigliotta, G., Murariu, M., & Dubois, P. (2013). PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics. European Polymer Journal, 49(11), 3471–3482. 

 

Patanwala, H. S., Hong, D., Vora, S. R., Bognet, B., & Ma, A. W. K. (2018). The microstructure and mechanical properties of 3D printed carbon nanotube-polylactic acid composites. Polymer Composites, 39, 1060–1071. 

 

Peelman, N., Ragaert, P., De Meulenaer, B., Adons, D., Peeters, R., Cardon, L., Devlieghere, F. (2013). Application of bioplastics for food packaging. Trends in Food Science and Technology, 32(2), 128–141. 

 

Peltzer, M., Wagner, J. R., & Jiménez, A. (2007). Thermal characterization of uhmwpe stabilized with natural antioxidants. Journal of Thermal Analysis and Calorimetry, 87(2), 493–497.

 

Perego, G., Cella, G. D., & Bastioli, C. (1996). Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. Journal of Applied Polymer Science, 59(1), 37–43. 

 

Pérez, A. G., Luaces, P., Oliva, J., Ríos, J. J., & Sanz, C. (2005). Changes in vitamin C and flavour components of mandarin juice due to curing of fruits. Food Chemistry, 91(1), 19–24. 

 

Petchwattana, N., Sanetuntikul, J., & Narupai, B. (2018). Plasticization of Biodegradable Poly ( Lactic Acid ) by Different Triglyceride Molecular Sizes?: A Comparative Study with Glycerol. Journal of Polymers and the Environment, 26(3), 1160–1168. 

 

Plackett, D. V., Holm, V. K., Johansen, P., Ndoni, S., Nielsen, P. V., Sipilainen?Malm, T., & Verstichel, S. (2006). Characterization of l?polylactide and l?polylactide–polycaprolactone co?polymer films for use in cheese?packaging applications. Packaging Technology and Science: An International Journal, 19(1), 1-24.‏

 

Pluta, M., & Piorkowska, E. (2015). Tough and transparent blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polymer Testing, 41(1), 209–218. 

 

Puchalski, M., Kwolek, S., Szparaga, G., Chrzanowski, M., & Kruci?ska, I. (2017). Investigation of the influence of PLA molecular structure on the crystalline forms (α’and α) and mechanical properties of wet spinning fibres. Polymers, 9(1), 18.‏

 

Rabnawaz, M., Wyman, I., Auras, R., & Cheng, S. (2017). A roadmap towards green packaging: The current status and future outlook for polyesters in the packaging industry. Green Chemistry, 19(20), 4737–4753. 

 

Raghunath, S., Kumar, S., Samal, S. K., Mohanty, S., & Nayak, S. K. (2018). PLA/ESO/MWCNT nanocomposite: a study on mechanical, thermal and electroactive shape memory properties. Journal of Polymer Research, 25(5), 126.‏

 

Rajan, K. P., Thomas, S. P., Gopanna, A., & Al-ghamdi, A. (2018). Polyblends and composites of poly (lactic acid) (PLA): a review on the state of the art. Journal of Polymer Science and Engineering, 1(4), 1–14. 

 

Râp?, M., Mitelu?, A. C., T?nase, E. E., Grosu, E., Popescu, P., Popa, M. E., & Vasile, C. (2016). Influence of chitosan on mechanical, thermal, barrier and antimicrobial properties of PLA-biocomposites for food packaging. Composites Part B: Engineering, 102(10), 112-121.‏ 

 

Raquez, J. M., Habibi, Y., Murariu, M., & Dubois, P. (2013). (PLA)-based nanPolylactideocomposites. Progress in Polymer Science, 38(10), 1504–1542. 

 

Rasal, R. M., Janorkar, A. V., & Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science , 35(3), 338–356. 

 

Reis, M. O., de Santana, H., Bilck, A. P., Grossmann, M. V. E., & Yamashita, F. (2018). Characterization of coated biodegradable trays by spectroscopic techniques. Industrial Crops and Products, 112(12), 511–514. 

 

Ren, X. (2002). Biodegradable plastics: A solution or a challenge. Journal of Cleaner Production, 11(1), 27–40. 

 

Ren, Z., Dong, L., & Yang, Y. (2006). Dynamic mechanical and thermal properties of plasticized poly(lactic acid). Journal of Applied Polymer Science, 101(3), 1583–1590. 

 

Rhim, J. W., & Kim, Y. T. (2014). Biopolymer-based composite packaging materials with nanoparticles. In Innovations in food packaging  ,413-442. 

 

Richbourg, N. R., Peppas, N. A., & Sikavitsas, V. I. (2019). Tuning the biomimetic behavior of scaffolds for regenerative medicine through surface modifications. Journal of Tissue Engineering and Regenerative Medicine, 13(8), 1275–1293. 

 

Riveiro, A., Maçon, A. L., del Val, J., Comesaña, R., & Pou, J. (2018). Laser surface texturing of polymers for biomedical applications. Frontiers in physics, 6, 16.‏

 

Roohi, Srivastava, P., Bano, K., Zaheer, M. R., & Kuddus, M. (2018). Biodegradable Smart Biopolymers for Food Packaging: Sustainable Approach Toward Green Environment. Bio-Based Materials for Food Packaging, 197–216.

 

Rydz, J., Sikorska, W., Kyulavska, M., & Christova, D. (2015). Polyester-based (bio) degradable polymers as environmentally friendly materials for sustainable development. International journal of molecular sciences, 16(1), 564-596.‏

 

Rynkowska, E., Fatyeyeva, K., Kujawa, J., Dzieszkowski, K., Wolan, A., & Kujawski, W. (2018). The effect of reactive ionic liquid or plasticizer incorporation on the physicochemical and transport properties of cellulose acetate propionate-based membranes. Polymers, 10(1), 86.‏

 

Saba, N., Jawaid, M., Alothman, O. Y., & Paridah, M. T. (2016). A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials, 106(3), 149–159.

 

Saba, N., Safwan, A., Sanyang, M. L., Mohammad, F., Pervaiz, M., Jawaid, M.,Sain, M. (2017). International Journal of Biological Macromolecules Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. International Journal of Biological Macromolecules, 102(9), 822–828. 

 

Sadat-Shojai, M., Khorasani, M. T., Jamshidi, A., & Irani, S. (2013). Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: A comprehensive study on the structural and in vitro biological properties. Materials Science and Engineering , 33(5), 2776–2787. 

 

Saeidlou, S., Huneault, M. A., Li, H., & Park, C. B. (2012). Poly(lactic acid) crystallization. Progress in Polymer Science, 37(12), 1657–1677. 

 

Sakka, S., Bouaziz, J., & Ben Ayed, F. (2014). Sintering and mechanical properties of the alumina-tricalcium phosphate-titania composites. Materials Science and Engineering , 40(7), 92–101.

 

Salazar, R., Domenek, S., Courgneau, C., & Ducruet, V. (2012). Plasticization of poly(lactide) by sorption of volatile organic compounds at low concentration. Polymer Degradation and Stability, 97(10), 1871–1880. 

 

Sanchez-Garcia, M. D., Lopez-Rubio, A., & Lagaron, J. M. (2010). Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends in Food Science and Technology, 21(11), 528–536. 

 

Santos, E. F., Oliveira, R. V., Reiznautt, Q. B., Samios, D., & Nachtigall, S. M. (2014). Sunflower-oil biodiesel-oligoesters/polylactide blends: Plasticizing effect and ageing. Polymer Testing, 39(10), 23-29.‏

 

Sato, S., Gondo, D., Wada, T., Kanehashi, S., & Nagai, K. (2013). Effects of various liquid organic solvents on solvent-induced crystallization of amorphous poly(lactic acid) film. Journal of Applied Polymer Science, 129(3), 1607–1617. 

 

Savioli Lopes, M., Jardini, A. L., & Maciel Filho, R. (2012). Poly (lactic acid) production for tissue engineering applications. Procedia Engineering, 42(10), 1402–1413. 

 

Nomai, J., Suksut, B., & Schlarb, A. K. (2015). Crystallization behavior of poly (lactic acid)/titanium dioxide nano 

 

Notta?Cuvier, D., Murariu, M., Odent, J., Delille, R., Bouzouita, A., Raquez, J. M., ... & Dubois, P. (2015). Tailoring Polylactide Properties for Automotive Applications: Effects of Co?Addition of Halloysite Nanotubes and Selected Plasticizer. Macromolecular Materials and Engineering, 300(7), 684-698

 

Shabanian, M., Hajibeygi, M., Hedayati, K., Khaleghi, M., & Ali, H. (2016). New ternary PLA / organoclay-hydrogel nanocomposites?: Design , preparation and study on thermal , combustion and mechanical properties. Jmade, 110(11), 811–820. 

 

Shah Alimuzzaman, 1 R. Hugh Gong, 1 Mahmudul Akonda. (2013). Nonwoven Polylactic Acid and Flax Biocomposites. Polymers and Polymer Composites, 16(2), 101–113. 

 

Sharma, S., Singh, A. A., Majumdar, A., & Butola, B. S. (2019a). Tailoring the mechanical and thermal properties of polylactic acid-based bionanocomposite films using halloysite nanotubes and polyethylene glycol by solvent casting process. Journal of Materials Science, 54(12), 8971–8983.

 

Shi, N., & Dou, Q. (2014). Crystallization behavior, morphology, and mechanical properties of poly (lactic acid)/tributyl citrate/treated calcium carbonate composites. Polymer Composites, 35(8), 1570-1582.‏

 

Shi, Q. F., Mou, H. Y., Gao, L., Yang, J., & Guo, W. H. (2010). Double-Melting Behavior of Bamboo Fiber/Talc/Poly (Lactic Acid) Composites. Journal of Polymers and the Environment, 18(4), 567–575.

 

Shi, X., Zhang, G., Phuong, T., & Lazzeri, A. (2015). Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly (lactic acid). Molecules, 20(1), 1579-1593.‏

 

Siakeng, R., Jawaid, M., Ariffin, H., & Sapuan, S. M. (2019). Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites. Polymer Composites, 40(5), 2000-2011.‏

 

Siengchin, S., Pohl, T., Medina, L., & Mitschang, P. (2013). Structure and properties of flax/polylactide/alumina nanocomposites. Journal of Reinforced Plastics and Composites, 32(1), 23–33. 

 

Silverajah, V. S., Ibrahim, N. A., Zainuddin, N., Yunus, W. M. Z. W., & Hassan, H. A. (2012). Mechanical, thermal and morphological properties of poly (lactic acid)/epoxidized palm olein blend. Molecules, 17(10), 11729-11747.‏

 

Singh, S., Maspoch, M. L., & Oksman, K. (2019). Crystallization of triethyl-citrate-plasticized poly(lactic acid) induced by chitin nanocrystals. Journal of Applied Polymer Science, 136(36), 1–12. 

 

Singhvi, M. S., Zinjarde, S. S., & Gokhale, D. V. (2019). Polylactic acid: synthesis and biomedical applications. Journal of Applied Microbiology, 127(6), 1612–1626. 

 

Siracusa, V., & Dalla, M. (2008). Biodegradable polymers for food packaging?: a review. Trends in Food Science & Technology, 19(12), 634–643.

 

Siakeng, R., Jawaid, M., Ariffin, H., Sapuan, S. M., Asim, M., & Saba, N. (2019). Natural fiber reinforced polylactic acid composites: A review. Polymer Composites, 40(2), 446-463.‏.‏

Sinha Ray, S. (2012). Polylactide-based bionanocomposites: a promising class of hybrid materials. Accounts of chemical research, 45(10), 1710-1720.‏

 

Smitthipong, W., Tantatherdtam, R., & Chollakup, R. (2015). Effect of pineapple leaf fiber-reinforced thermoplastic starch/poly(lactic acid) green composite: Mechanical, viscosity, and water resistance properties. Journal of Thermoplastic Composite Materials, 28(5), 717–729.

 

Soares, J. S., Moore, J. E., & Rajagopal, K. R. (2008). Constitutive framework for biodegradable polymers with applications to biodegradable stents. ASAIO Journal, 54(3), 295–301. 

 

Song, J. H., Murphy, R. J., Narayan, R., & Davies, G. B. H. (2009). Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2127–2139. 

 

Srithep, Y., & Pholharn, D. (2017). Plasticizer effect on melt blending of polylactide stereocomplex. Polymers, 17(5), 409-416.‏

 

Standau, T., Zhao, C., Murillo Castellón, S., Bonten, C., & Altstädt, V. (2019). Chemical modification and foam processing of polylactide (PLA). Polymers, 11(2), 306.‏

 

Stoleru, E., Dumitriu, R. P., Munteanu, B. S., Zaharescu, T., T?nase, E. E., Mitelut, A.,Vasile, C. (2016). Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization. Applied Surface Science, 367(3), 407–417. 

 

Šumigin, D., Tarasova, E., Krumme, A., & Viikna, A. (2012). Influence of cellulose content on thermal properties of poly (lactic) acid/cellulose and low-density polyethylene/cellulose composites. Proceedings of the Estonian Academy of Sciences, 61(3), 237-244.‏

 

Suryanegara, L., Nakagaito, A. N., & Yano, H. (2009). The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Composites Science and Technology, 69(8), 1187–1192. 

 

Taguchi, S., Yamada, M., Matsumoto, K., Tajima, K., Satoh, Y., Munekata, M., Obata, S. (2008). A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 17323–17327. 

 

Tanrattanakul, V., & Bunkaew, P. (2014). Effect of different plasticizers on the properties of bio-based thermoplastic elastomer containing poly(lactic acid) and natural rubber. Express Polymer Letters, 8(6), 387–396. 

 

Thompson, R. C., Moore, C. J., Saal, F. S. V., & Swan, S. H. (2009). Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153–2166. 

 

Valapa, R. B., Pugazhenthi, G., & Katiyar, V. (2015). Effect of graphene content on the properties of poly(lactic acid) nanocomposites. RSC Advances, 5(36), 28410–28423. 

 

Valdés, A., Mellinas, A. C., Ramos, M., Garrigós, M. C., & Jiménez, A. (2014). Natural additives and agricultural wastes in biopolymer formulations for food packaging. Frontiers in Chemistry, 2(2), 1–10. 

 

Van Aardt, M., Duncan, S. E., Marcy, J. E., Long, T. E., O’Keefe, S. F., & Sims, S. R. (2007). Release of antioxidants from poly(lactide-co-glycolide) films into dry milk products and food simulating liquids. International Journal of Food Science and Technology, 42(11), 1327–1337.

 

Van De Velde, K., & Kiekens, P. (2002). Biopolymers: Overview of several properties and consequences on their applications. Polymer Testing, 21(4), 433–442. 

 

Vasile, C., Râp?, M., ?tefan, M., Stan, M., Macavei, S., Darie-Ni??, R. N., Brebu, M. (2017). New PLA/ZnO:Cu/Ag bionanocomposites for food packaging. Express Polymer Letters, 11(7), 531–544.

 

Vieira, M. G. A., Da Silva, M. A., Dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254–263. 

 

Vink, E. T., Rábago, K. R., Glassner, D. A., Springs, B., O'Connor, R. P., Kolstad, J., & Gruber, P. R. (2004). The sustainability of NatureWorks™ polylactide polymers and Ingeo™ polylactide fibers: an update of the future. Macromolecular Bioscience, 4(6), 551-564.‏

 

Wang, S., Cui, W., & Bei, J. (2005). Bulk and surface modifications of polylactide. Analytical and Bioanalytical Chemistry, 381(3), 547–556. 

 

Wang, W. W., Man, C. Z., Zhang, C. M., Jiang, L., Dan, Y., & Nguyen, T. P. (2013). Stability of poly (L-lactide)/TiO2 nanocomposite thin films under UV irradiation at 254 nm. Polymer degradation and stability, 98(4), 885-893.‏

 

Wang, Y., Qin, Y., Zhang, Y., Yuan, M., Li, H., & Yuan, M. (2014). Effects of N-octyl lactate as plasticizer on the thermal and functional properties of extruded PLA-based films. International Journal of Biological Macromolecules, 67(6), 58–63. 

 

Weir, A., Westerhoff, P., Fabricius, L., von Goetz, N., & Sci Technol, E. (2012). Titanium Dioxide Nanoparticles in Food and Personal Care Products NIH Public Access Author Manuscript. Environ Sci Technol, 46(4), 2242–2250. 

 

Wiebe, J., Nef, H. M., & Hamm, C. W. (2014). Current status of bioresorbable scaffolds in the treatment of coronary artery disease. Journal of the American College of Cardiology, 64(23), 2541–2551. 

 

Wróblewska-Krepsztul, J., Rydzkowski, T., Borowski, G., Szczypi?ski, M., Klepka, T., & Thakur, V. K. (2018). Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization, 23(4), 383–395. 

 

Xiang, A., Wang, H., Liu, D., Ma, S., Zhang, X., & Tian, H. (2018). Melt processing of high alcoholysis poly(vinyl alcohol) with different polyol plasticizers. Journal of Polymer Engineering, 38(7), 659–665. 

 

Xiao, L., Wang, B., Yang, G., & Gauthier, M. (2012). Poly (lactic acid)-based biomaterials: synthesis, modification and applications. Biomedical science, engineering and technology, 247-279.‏

 

Xu, H., Yang, X., Xie, L., & Hakkarainen, M. (2016). Conformational Footprint in Hydrolysis-Induced Nanofibrillation and Crystallization of Poly(lactic acid). Biomacromolecules, 17(3), 985–995. 

 

Yang, J., Shi, G., Bei, J., Wang, S., Cao, Y., Shang, Q., Wang, W. (2002). Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. Journal of Biomedical Materials Research, 62(3), 438–446.

 

Yang, Z., Bi, H., Bi, Y., Rodrigue, D., Xu, M., & Feng, X. (2019). Comparison between polyethylene glycol and tributyl citrate to modify the properties of wood fiber/polylactic acid biocomposites. Polymer Composites, 40(4), 1384-1394.‏

 

Yang, Z., Peng, H., Wang, W., & Liu, T. (2010). Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science, 116(5), 2658–2667. 

 

Ye, Q. qiao, Huang, Z., Hao, Y. hua, Wang, J. wen, Yang, X. yu, & Fan, X. yue. (2016). Kinetic study of thermal degradation of poly(l-lactide) filled with β-zeolite. Journal of Thermal Analysis and Calorimetry, 124(3), 1471–1484. 

 

Yi, D. Y., Siddique, B. M., & Lai, J. C. (2018). Development of Biopolymer film with different ratios of Gelatine to Chitosan reinforced with Zinc Oxide Nanoparticles for food covering/preservation. In IOP Conference Series: Materials Science and Engineering , 429,  515-524.

 

Yokohara, T., & Yamaguchi, M. (2008). Structure and properties for biomass-based polyester blends of PLA and PBS. European Polymer Journal, 44(3), 677-685.‏

 

Yoo, B. M., Shin, H. J., Yoon, H. W., & Park, H. B. (2014). Graphene and graphene oxide and their uses in barrier polymers. Journal of Applied Polymer Science, 131(1), 1–23. 

 

Yu, F., & Huang, H. X. (2015). Simultaneously toughening and reinforcing poly(lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles. Polymer Testing, 45, 107–113. 

 

Yuzay, I. E., Auras, R., Soto-valdez, H., & Selke, S. (2010). Effects of synthetic and natural zeolites on morphology and thermal degradation of poly ( lactic acid ) composites. Polymer Degradation and Stability, 95(9), 1769–1777. 

 

Zhang, H., Huang, J., Yang, L., Chen, R., Zou, W., Lin, X., & Qu, J. (2014). Preparation , characterization and properties of PLA / TiO2 nanocomposites based on a novel vane extruder RSC Advances. RSC Advances, 5(10), 4639–4647. 

 

Zhang, L., Liu, W., Wen, X., Chen, J., Zhao, C., Rodríguez, M. C., & Wang, D. Y. (2019). Electrospun Submicron NiO Fibers Combined with Nanosized Carbon Black as Reinforcement for Multi-functional Poly (lactic acid) Composites. Composites Part A: Applied Science and Manufacturing, 129(2),105662.‏ 

 

Zhang, N., Wang, Q., Ren, J., & Wang, L. (2009). Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. Journal of Materials Science, 44(1), 250–256. 

 

Zhang, Q., Li, D., Zhang, H., Su, G., & Li, G. (2018). Preparation and properties of poly(lactic acid)/sesbania gum/nano-TiO2 composites. Polymer Bulletin, 75(2), 623–635. 

 

Zhao, Q., Wang, S., Kong, M., Geng, W., Li, R. K. Y., Song, C., & Kong, D. (2012). Phase morphology, physical properties, and biodegradation behavior of novel PLA/PHBHHx blends. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 100 (1), 23–31. 

 

Zhou, J. J., Wang, S. Y., & Gunasekaran, S. (2009). Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. Journal of food science, 74(7), 50-56.‏

 

Zhou, Y., Lei, L., Yang, B., Li, J., & Ren, J. (2018). Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites. Polymer Testing, 68(7), 34–38. 

 

Zhu, H., Ji, A., & Shen, J. (2002). Surface engineering of poly (DL-lactic acid) by entrapment of biomacromolecules. Macromolecular Rapid Communications, 23(14), 819–823..‏


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.