UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :thesis
Subject :QA76 Computer software
Main Author :Alrefooh Ali Mamduh Ghanem
Title :A model for acceptance of mobile based assessment among Jordanian students based on their intentions
Place of Production :Tanjong Malim
Publisher :Fakulti Seni, Komputeran dan Industri Kreatif
Year of Publication :2020
Notes :With cd
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
Studies have shown that, despite its many advantages, the use of mobile based assessment (MBA) in educational institutions has some limitations. As such, this study was carried out to   propose  an  acceptance  model  to  determine  factors  that  might  influence  students‘  acceptance  of  mobile  based  assessment  based  on  the  Technology  Acceptance  Model (TAM),   which  is  a  highly valid  technology  acceptance  model.  Essentially,  the  proposed model   consists  of  six  constructs,  namely  intention,  usefulness,  ease  of  use,  enjoyment, content   assessment,  and  navigation  system.  A  panel  consisting  of  21  experts  used  the Delphi   method  to  validate  the  proposed  model.  Also,  a  sample  study  consisting  of  90  undergraduates were given survey questionnaires to collect data for further analysis using the   Structural  Equation  Modeling  method.  The  findings  showed  usefulness,  ease  of  use, and   enjoyment  had  significant  relationships  with  students‘  intention  to  use  such  an  assessment.  Likewise,  content  assessment  had  significant  relationships  with  usefulness,  ease of use, and enjoyment. The findings also showed the navigation system had significant  relationships   with   ease   of   use   and   enjoyment.   Overall,   these   findings   suggest    that motivational   factors,   including   content   assessment   and   navigation   system,   play    an important   role   in   influencing   students‘   acceptance   of   mobile   based    assessment.   In summation, these findings can serve as a guideline to help all the stakeholders to  take into account all the above factors for the successful implementation of mobile based  assessment in  educational  institutions.  Further  studies  can  be  carried  out  by  focusing   on  other important psychological factors, such as trust and anxiety.  


Abu-Al-Aish, A., & Love, S. (2013). Factors influencing students‘ acceptance of m- learning:  An investigation  in  higher  education. The  International  Review  of Research in Open and Distributed Learning, 14(5).


Al-Emran,  M.,  &  Salloum,  S.  A.  (2017).  Students'  Attitudes  Towards  the  Use  of Mobile Technologies in e-Evaluation. iJIM, 11(5), 195-202.


Al-Emran, M., Elsherif, H. M., & Shaalan, K. (2016). Investigating attitudes towards the use of mobile   learning   in   higher   education. Computers   in   Human Behavior, 56, 93-102.


Alharbi, S., & Drew, S. (2014, August). Mobile learning-system usage: An integrated framework to measure   students'   behavioural   intention.   In Science   and Information Conference (SAI), 2014 (pp. 906-911). IEEE.


Aliev, A. N., & Gümrükçüoglu, A. E. (2004). Gravitational field equations on and off a 3-brane world. Classical and Quantum Gravity, 21(22), 5081.


Alioon, Y., & Delialioğlu, Ö. (2017). The effect of authentic m‐  learning activities on student engagement    and    motivation. British    Journal    of    Educational Technology


Almaiah,  M.  A.  (2018).  Acceptance  and  usage  of  a  mobile  information  system services in University of Jordan. Education and Information Technologies, 1- 23.


Almaiah, M. A., & Al Mulhem, A. (2018). Analysis of the essential factors affecting of  intention  to  use  of  mobile  learning  applications:  A  comparison  between universities adopters and     non-adopters. Education     and     Information Technologies, 1-36.


Almaiah, M. A., & Al Mulhem, A. (2019). Analysis of the essential factors affecting of  intention to  use  of  mobile  learning  applications:  A  comparison  between universities adopters and     non-adopters. Education     and     Information Technologies, 24(2), 1433-1468.


Almaiah, M. A., & Alismaiel, O. A. (2019). Examination of factors influencing the use of mobile learning system: An empirical study. Education and InformationTechnologies, 24(1), 885-909.


Almaiah, M. A., Jalil, M. A., & Man, M. (2016). Extending the TAM to examine the effects  of  quality  features  on  mobile learning acceptance. Journal of Computers in Education, 3(4), 453-485.


Almaiah, M. A., Jalil, M. A., & Man, M. (2016). Extending the TAM to examine the effects  of  quality  features  on  mobile learning acceptance. Journal of Computers in Education, 3(4), 453-485.


Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended  two-step  approach. Psychological bulletin, 103(3), 411.


Alrasheedi, M., & Capretz, L. F. (2013, August). A meta-analysis of critical success factors  affecting  mobile  learning.  In Teaching,  Assessment  and  Learning  for Engineering  (TALE), 2013 IEEE  International Conference on (pp. 262-267). IEEE.


Alrasheedi, M., Capretz, L. F., & Raza, A. (2015). A systematic review of the critical factors for success of mobile learning in higher education (university students' perspective). Journal of Educational Computing Research, 52(2), 257-276.


Althunibat, A. (2015). Determining the factors influencing students‘ intention to use m-learning in  Jordan  higher  education. Computers  in  Human  Behavior, 52, 65-71.


Avellis,  G.,  Scaramuzzi,  A.,  &  Finkelstein,  A.  (2004).  Evaluating  non-functional requirements   in   mobile   learning   contents   and   multimedia   educational software. Learning with mobile devices: Research and development. London: Learning and Skills Development Agency.


Bere, A. (2013, October). Toward assessing the impact of mobile security issues in pedagogical   delivery:   A   mobile  learning   case   study.   In Science   and Information Conference (SAI), 2013 (pp. 363-368). IEEE.


Bere,  A.  (2014,  April).  Exploring determinants  for mobile  learning user  acceptance and   use:   An   application   of   UTAUT.   In Information Technology:  New Generations  (ITNG),  2014  11th  International  Conference  on (pp.  84-90). IEEE.


Bogdanović,  Z.,  Barać,  D.,  Jovanić,  B.,  Popović,  S.,  &  Radenković,  B.  (2014). Evaluation of  mobile  assessment  in  a  learning  management  system. BritishJournal of Educational Technology, 45(2), 231-244.


Briz-Ponce,   L.,   &   Juanes-Méndez,   J.   A.   (2015).   Mobile   devices   and   apps,characteristics   and   current   potential   on   learning. Journal of Information Technology Research (JITR), 8(4), 26-37.


Briz-Ponce,  L.,  Juanes-Méndez,  J.  A.,  García-Peñalvo,  F.  J.,  &  Pereira,  A.  (2016). Effects   of   mobile    learning    in    medical    education: a counterfactual evaluation. Journal of medical systems, 40(6), 136.


Briz-Ponce, L., Pereira, A., Carvalho, L., Juanes-Méndez, J. A., & García-Peñalvo, F.J. (2017). Learning with mobile technologies–Students‘ behavior. Computers in Human Behavior, 72, 612-620.


Briz-Ponce, L., Pereira, A., Carvalho, L., Juanes-Méndez, J. A., & García-Peñalvo, F.J. (2017). Learning with mobile technologies–Students‘ behavior. Computers in Human Behavior, 72, 612-620.


Byrne, B. M. (2001). Structural equation modeling with AMOS, EQS, and LISREL: Comparative  approaches  to  testing  for  the  factorial  validity  of  a  measuring instrument. International journal of testing, 1(1), 55-86.


Campbell PhD, A., & Susan, J. (2014). Performance, assessment and communication in one app: Mobile tablet assessment is here to stay. eCULTURE, 7(1), 6.


Chao, K. H., Chang, K. E., Lan, C. H., Kinshuk, & Sung, Y. T. (2016). Integration of mobile ARtechnology in performance assessment. Educational Technology & Society,19(4), 239–251.


Chaveesuk, S., Vongjaturapat, S., & Chotikakamthorn, N. (2013, October). Analysis of   factors   influencing   the   mobile   technology   acceptance   for   library information services: Conceptual model. In 2013 International Conference on Information  Technology  and  Electrical  Engineering  (ICITEE)(pp.  18-24). IEEE.


Chen,  C.  H.  (2010).  The  implementation  and  evaluation  of  a  mobile  self-and  peer- assessment system. Computers & Education, 55(1), 229-236.


Chen, C. M., & Chen, M. C. (2009). Mobile formative assessment tool based on data mining techniques    for    supporting    web-based    learning. Computers    & Education, 52(1), 256-273.


Chen, N. S., Wei, C. W., & Huang, Y. C. (2013). The integration of print and digital content     for     providing     learners     with     constructive     feedback     usingsmartphones. British Journal of Educational Technology, 44(5), 837-845.


Chen, W., Gu, X., & Wong, L. H. (2017). To click or not to click: Effectiveness ofrating  classroom  behaviors  on  academic  achievement  with  tablets. British Journal of Educational Technology.


Cheng, Y. M. (2015). Towards an understanding of the factors affecting m-learning acceptance:  20(3), 109-119.


Cheon,  J.,  Lee,  S.,  Crooks,  S.  M.,  &  Song,  J.  (2012).  An  investigation  of  mobile learning  readiness   in   higher   education   based   on   the   theory  of   planned behavior. Computers & Education, 59(3), 1054-1064.


Childers,  T.  L.,  Carr,  C.  L.,  Peck,  J.,  &  Carson,  S.  (2001).  Hedonic  and  utilitarian motivations  for  online  retail  shopping  behavior. Journal  of  retailing, 77(4), 511-535.


Chin,  W.  W.,  &  Todd,  P.  A.  (1995).  On  the  use,  usefulness,  and  ease  of  use  of structural   equation   modeling   in   MIS   research:   a   note   of   caution. MIS quarterly, 237-246.


Chou, P. N., Chang, C. C., & Lin, C. H. (2017). BYOD or not: A comparison of two assessment strategies for student learning. Computers in Human Behavior, 74, 63-71.


Chu, H. C. (2014). Potential negative effects of mobile learning on students' learning achievement and cognitive load—A format assessment perspective. Journal of Educational Technology & Society, 17(1), 332-344.


Chu, H. C., Hwang, G. J., Tsai, C. C., & Tseng, J. C. (2010). A two-tier test approach to  developing  location-aware  mobile  learning  systems  for  natural  science courses. Computers & Education, 55(4), 1618-1627.


Chung, H. H., Chen, S. C., & Kuo, M. H. (2015). A study of EFL college students‘ acceptance of mobile learning. Procedia-Social and Behavioral Sciences, 176, 333-339.


Coulby,  C.,  Hennessey,  S.,  Davies,  N.,  &  Fuller,  R.  (2011).  The  use  of  mobile technology   for   work‐  based   assessment:   the   student   experience. British Journal ofEducational Technology, 42(2), 251-265.


Crompton, H., Burke, D., & Gregory, K. H. (2017). The use of mobile learning in PK-12 education: A systematic review. Computers & Education, 110, 51-63.


Crompton,  H.,  Burke,  D.,  Gregory,  K.  H.,  &  Gräbe,  C.  (2016).  The  use  of  mobilelearning  in  science:  A  systematic  review. Journal  of  Science  Education  and Technology, 25(2), 149-160.


Dalby,  D.,  &  Swan,  M.  (2018).  Using  digital  technology  to  enhance  formative assessment   in   mathematics   classrooms. British   Journal   of   Educational Technology.


Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology:    a comparison    of    two    theoretical    models. Management science, 35(8), 982-1003.


Davis,  F.  D.,  Bagozzi,  R.  P.,  &  Warshaw,  P.  R.  (1992).  Extrinsic  and  intrinsic motivation  to  use  computers  in  the  workplace  1. Journal  of  applied  social psychology, 22(14), 1111-1132.


Dearnley,   C.,  Haigh,   J.,  &  Fairhall,  J.  (2008).  Using  mobile  technologies   for assessment and learning in practice settings: a case study. Nurse education in practice, 8(3), 197-204.


Deci,  E.  L.,  &  Ryan,  R.  M.  (2002).  Overview  of  self-determination  theory:  An organismic dialectical  perspective. Handbook  of  self-determination  research, 3-33.


de-Marcos, L., Hilera, J. R., Barchino, R., Jiménez, L.,  Martínez, J. J., Gutiérrez, J. A., & Otón, S. (2010). An experiment for improving student‘s performance in secondary    and    tertiary  education    by    means    of    m-learning    auto- assessment. Computers & Education, 55(3), 1069-1079.


Fazlina,  S.,  Manap,  A.  A.,  &  Rias,  R.  M.  (2013,  September).  Mobile  learning awareness  Creative    Multimedia    (ICICM),    2013    International Conference on (pp. 226-229). IEEE.


Fernández-Alemán,  J.  L.,  Lopez-Gonzalez,  L.,  Gonzalez-Sequeros,  O.,  Jayne,  C., López-Jiménez, J. J., & Toval, A. (2016). The evaluation of i-SIDRA–a tool for   intelligent   feedback–in   a   course   on   the   anatomy   of   the   locomotor system. International journal of medical informatics, 94, 172-181.


Fuad, M., Deb, D., Etim, J., & Gloster, C. (2018). Mobile response system: a novel approach  to  interactive  and  hands-on  activity  in  the  classroom. EducationalTechnology Research and Development, 66(2), 493-514.


García Laborda, J. G., Magal-Royo, T. M., Litzler, M. F., & Giménez López, J. L. G.(2014).  Mobile  phones  for Spain's  university entrance  examination  language test.


García-Peñalvo,   F.   J.,   Ramírez-Montoya,   M.   S.,   &  García-Holgado,   A.   (2017, October). TEEM 2017 Doctoral Consortium Track. In Proceedings of the 5th International   Conference on   Technological   Ecosystems   for   Enhancing Multiculturality (p. 93). ACM.


Gikas,  J.,  &  Grant,  M.  M.  (2013).  Mobile  computing  devices  in  higher  education: Student perspectives  on  learning  with  cellphones,  smartphones  &  social media. The Internet and Higher Education, 19, 18-26.


Gu,  X.,  Gu,  F.,  &  Laffey,  J.  M.  (2011).  Designing  a  mobile  system  for  lifelong learning on the move. Journal of Computer Assisted Learning, 27(3), 204-215.


Ha,  I.,  Yoon,  Y.,  &  Choi,  M.  (2007).  Determinants  of  adoption  of  mobile  games under mobile    broadband    wireless    access    environment. Information & management, 44(3), 276-286.


Hao,  S.,  Dennen,  V.  P.,  &  Mei,  L.  (2017).  Influential  factors  for  mobile  learning acceptance   among   Chinese   users. Educational   Technology   Research   and Development, 65(1), 101-123.


Harchay, A., Cheniti-Belcadhi, L., & Braham, R. (2015). A Context-aware Approach for Personalized Mobile Self-Assessment. J. UCS, 21(8), 1061-1085.


Harchay,  A.,  Cheniti-Belcadhi,  L.,  &  Braham,  R.  (2017,  October).  MobiSWAP: Personalized  Mobile  Assessment  Tool  Based  on  Semantic  Web  and  Web Services.  In 2017  IEEE/ACS  14th  International  Conference  on  Computer Systems and Applications (AICCSA) (pp. 1406-1413). IEEE.


Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. Journal of marketing, 60(3), 50-68.


Hoyle, R. H. (1995). Structural  equation modeling:Concepts, issues, and applications. Sage.


Huang, C. Y. (2012, November). A comparison of fuzzy DNP and SEM in analyzing novel  mobile  learning  technology  acceptances  by  learners.  In Fuzzy  Theory and  it's  Applications  (iFUZZY),  2012  International  Conference  on (pp.  119-124). IEEE.


Huang,  Y.  M.,  Lin,  Y.  T.,  &  Cheng,  S.  C.  (2009).  An  adaptive  testing  system  forsupporting  versatile  educational  assessment. Computers  &  Education, 52(1), 53-67. Human Behavior, 27(2), 890e898.


Hung,  P.  H.,  Hwang,  G.  J.,  Lin,  Y.  F.,  Wu,  T.  H.,  &  Su,  I.  H.  (2013).  Seamless connection  between  learning  and  assessment-applying  progressive  learning tasks   in   mobile  ecology   inquiry. Journal   of   Educational   Technology   & Society, 16(1), 194-205.


Hung,  P.  H.,  Lin,  Y.  F.,  &  Hwang,  G.  J.  (2010).  Formative  assessment  design  for PDA   integrated      ecology     observation. Educational      Technology      & Society, 13(3), 33-42.


Hwang, G. J., & Chang, H. F. (2011). A formative assessment-based mobile learning approach    to    improving    the    learning    attitudes    and    achievements    of students. Computers & Education, 56(4), 1023-1031.


Igbaria,  M.,  Iivari,  J.,  &  Maragahh,  H.  (1995).  Why  do  individuals  use  computer technology?  A  Finnish  case  study. Information  &  management, 29(5),  227- 238.


Illingworth, A. J., Morelli, N. A., Scott, J. C., & Boyd, S. L. (2015). Internet-based, unproctored assessments   on   mobile   and   non-mobile   devices:   Usage, measurement    equivalence,    and    outcomes. Journal    of    Business     and Psychology, 30(2), 325-343.


Johnson,  L.,  Becker,  S.  A.,  Cummins,  M.,  Estrada,  V.,  Freeman,  A.,  &  Hall,  C. (2016). NMC  horizon  report:  2016  higher  education  edition (pp.  1-50).  The New Media Consortium.


Karadeniz,  Ş.  (2009).  The  impacts  of  paper,  web  and  mobile  based  assessment  on student‘s achievement and perceptions. Scientific Research and Essays, 4(10), 984-991.


Karadeniz,  S.  (2011).  Effects  of  gender  and  test  anxiety on  student  achievement  in mobile based assessment. Procedia-Social and Behavioral Sciences, 15, 3173- 3178.


Khalifa, M., & Ning Shen, K. (2008). Explaining the adoption of transactional B2C mobile commerce. Journal of enterprise information management, 21(2), 110- 124.


Kim, B., Choi, M., & Han, I. (2009). User behaviors toward mobile data services: The role    of    perceived    fee    and    prior    experience. Expert    Systems    withApplications, 36(4), 8528-8536.


Kitchenham,   B.,   &   Charters,   S.   (2007).   Guidelines   for   performing   systematicliterature reviews in software engineering.


Kuh, G. D., Jankowski, N., Ikenberry, S. O., & Kinzie, J. L. (2014). Knowing what students  know  and  can  do:  The  current  state  of  student  learning  outcomes assessment in US colleges and universities. Champaign, IL: National Institute for Learning Outcomes Assessment.


Laborda, J. G., Royo, T. M., Litzler, M. F., & López, J. L. G. (2014). Mobile phones for   Spain's  university   entrance   examination   language   test. Journal   of Educational Technology & Society, 17(2), 17-30.


Lai,   C.   L.,   &   Hwang,   G.   J.   (2015).   An   interactive   peer-assessment   criteria development  approach  to  improving  students'  art  design  performance  using handheld devices. Computers & Education, 85, 149-159.


Lai, C. L., Hwang, G. J., & Tu, Y. H. (2018). The effects of computer-supported self- regulation  in  science  inquiry  on  learning  outcomes,  learning  processes,  and self-efficacy. Educational Technology Research and Development, 1-30.


Lam,  L.  (2015,  July).  A  Qualitative  Study  to  Understand  the  Factors  Influencing Student  Acceptance  of  Mobile  Learning.  In Educational  Technology  (ISET), 2015 International Symposium on (pp. 158-162). IEEE.


Lee, M. K., Cheung, C. M., & Chen, Z. (2005). Acceptance of Internet-based learning medium:   the   role   of   extrinsic   and   intrinsic   motivation. Information   & management, 42(8), 1095-1104.


Lee,     Y.     E.,     &     Benbasat,     I.     (2003).     Interface     design     for     mobile commerce. Communications of the ACM, 46(12), 48-52.


Liu,  Y.,  &  Li,  H.  (2011).  Exploring  the  impact  of  use  context  on  mobile  hedonic services adoption: An empirical study on mobile gaming in China. Computers in Human Behavior, 27(2), 890-898.


Looi,  C.  K.,  Zhang,  B.,  Chen,  W.,  Seow,  P.,  Chia,  G.,  Norris,  C.,  &  Soloway,  E. (2011). 1: 1 mobile inquiry learning experience for primary science students: A    study    of    learning    effectiveness. Journal    of    Computer    Assisted Learning, 27(3), 269-287.


Lu,  A.,  Chen,  Q.,  Zhang,  Y.,  &  Chang,  T.  (2016,  December).  Investigating  the Determinants of Mobile Learning Acceptance in Higher Education Based on UTAUT.  In 2016  International  Computer  Symposium  (ICS) (pp.  651-655).IEEE.


Lu,  Q.,  Yu,  Y.,  Ma,  Q.,  Chen,  B.,  &  Zhang,  H.  (2016).  2D  transition‐  metal‐ dichalcogenide‐  nanosheet‐  based     composites     for     photocatalytic     and electrocatalytic   hydrogen   evolution   reactions. Advanced   Materials, 28(10), 1917-1933.


Mac Callum, K., & Jeffrey, L. (2014). Comparing the role of ICT literacy and anxiety in the adoption of mobile learning. Computers in Human Behavior, 39, 8-19.


Marangunić,  N.,  &  Granić,  A.  (2015).  Technology  acceptance  model:  a  literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81-95.


Merhi, M. I. (2015). Factors influencing higher education students to adopt podcast: An empirical study. Computers & Education, 83, 32-43.


Milošević, I., Živković, D., Manasijević, D., & Nikolić, D. (2015). The effects of the intended behavior of students in the use of M-learning. Computers in Human Behavior, 51, 207-215.


Miyasawa, Y., & Ueno, M. (2013, July). Mobile testing for authentic assessment in the    field.    In International    Conference    on    Artificial    Intelligence    in Education (pp. 619-623). Springer, Berlin, Heidelberg.


Nedungadi, P., & Raman, R. (2012). A new approach to personalization: integrating e-learning  and     m-learning. Educational     Technology     Research     and Development, 60(4), 659-678.


Nikou, S. A., & Economides, A. A. (2014, November). A model for MBA adoption based  on  Self-Determination  Theory  of  Motivation.  In Interactive  Mobile Communication   Technologies   and   Learning   (IMCL),   2014   International Conference on (pp. 86-90). IEEE.


Nikou,  S.  A.,  &  Economides,  A.  A.  (2015,  November).  The  effects  of  perceived mobility  and  satisfaction  on  the  adoption  of  MBA.  In Interactive  Mobile Communication   Technologies and   Learning   (IMCL),   2015   International Conference on (pp. 167-171). IEEE.


Nikou,  S.  A.,  &  Economides,  A.  A.  (2016).  An  outdoor  MBA  activity:  Measuring students'  motivation   and   acceptance. International   Journal   of   Interactive Mobile Technologies, 10(4), 11-17.


Nikou,  S.  A.,  &  Economides,  A.  A.  (2016).  The  impact  of  paper-based,  computer- based  and  mobile-based  self-assessment  on  students'  science  motivation  andt. Computers in Human Behavior, 55, 1241-1248.


Nikou,  S.  A.,  &  Economides,  A.  A.  (2017).  MBA:  Integrating  acceptance  and motivational factors into a combined model of Self-Determination Theory and Technology Acceptance. Computers in Human Behavior, 68, 83-95.


Nikou,  S.  A.,  &  Economides,  A.  A.  (2017).  MBA:  Investigating  the  factors  that influence 

behavioral intention to use. Computers & Education, 109, 56-73.


Nikou,  S.  A.,  &  Economides,  A.  A.  (2017,  April).  MBA:  Towards  a  motivational framework. In 2017    IEEE    Global    Engineering    Education    Conference (EDUCON) (pp. 1522-1526). IEEE.


Nikou, S. A., & Economides, A. A. (2019). Factors that influence behavioral intention to  use  mobile‐  based  assessment:  A  STEM  teachers‘  perspective. British Journal of Educational Technology, 50(2), 587-600.


Nikou, S. A., & Economides, A. A. (2018). MBA: A literature review of publications in  major  referred  journals  from  2009  to  2018. Computers  & Education, 125, 101-119.


Nikou,  S.  A.,  &  Economides,  A.  A.  (2018).  Mobile‐  Based  micro‐  Learning  and Assessment: Impact  on  learning  performance  and  motivation  of  high  school students. Journal of Computer Assisted Learning, 34(3), 269-278.


Nikou, S., & Economides, A. A. (2013). Student achievement in paper, computer/web and mobile based assessment.


Nitsche, K. (2013, July). Acceptance of mobile, classroom-bound e-Learning systems from   the   perspective   of   students   and   lectures.   In Advanced   Learning Technologies (ICALT), 2013 IEEE 13th International Conference on (pp. 508- 509). IEEE.


Norazah,  M.  N.,  Ridzwan,  C.  R.,  &  Arif,  A.  A.  (2013).  Relationship  between  the acceptance  of  mobile  learning  for  AutoCAD  course  and  learning  style  in polytechnic. Procedia-Social and Behavioral Sciences, 102, 177-187.


Ozdamli,   F.   (2012).   Pedagogical   framework   of   m-learning. Procedia-Social   andBehavioral Sciences, 31, 927-931.


Park, E., Baek, S., Ohm, J., & Chang, H. J. (2014). Determinants of player acceptance of  mobile  social  network  games:  An  application  of  extended  technologyacceptance model. Telematics and Informatics, 31(1), 3-15.


Park,  S.  Y.,  Nam,  M.  W.,  &  Cha,  S.  B.  (2012).  University  students'  behavioralintention   to   use   mobile   learning:   Evaluating   the   technology   acceptance model. British Journal of Educational Technology, 43(4), 592-605.


Paturusi, S., Chisaki, Y., Usagawa, T., & Lumenta, A. (2015, September). A study of students' acceptance toward mobile learning in higher education institution in Indonesia.     In 2015     International     Conference     on     Information     & Communication Technology and Systems (ICTS) (pp. 193-196). IEEE.


Pimmer, C., Mateescu, M., & Gröhbiel, U. (2016). Mobile and ubiquitous learning in higher      education     settings.     A     systematic     review     of      empirical studies. Computers in Human Behavior, 63, 490-501.


Poong,  Y.  S.,  Yamaguchi,  S.,  &  Takada,  J.  I.  (2017).  Investigating  the  drivers  of mobile learning acceptance among young adults in the World Heritage town of Luang Prabang, Laos. Information Development, 33(1), 57-71.


Pu,  Y.  H.,  Wu,  T.  T.,  Chiu,  P.  S.,  &  Huang,  Y.  M.  (2016).  The  design  and implementation  of  authentic  learning  with  mobile  technology  in  vocational nursing  practice course. British  Journal  of  Educational  Technology, 47(3), 494-509.


Roschelle,  J.,  Rafanan,  K.,  Bhanot,  R.,  Estrella,  G.,  Penuel,  B.,  Nussbaum,  M.,  & Claro, S. (2010). Scaffolding group explanation and feedback with handheld technology:     impact   on     students‘     mathematics     learning. Educational Technology Research and Development, 58(4), 399-419.


Rossing,  J.  P.,  Miller,  W.,  Cecil,  A.  K.,  &  Stamper,  S.  E.  (2012).  iLearning:  The future  of  higher  education?  Student  perceptions  on  learning  with  mobile tablets.


Sabah,  N.  M.  (2016).  Exploring  students'  awareness  and  perceptions:  Influencing factors and individual differences driving m-learning adoption. Computers in Human Behavior, 65, 522-533.


Salkind,  N.  J.,  &  Rasmussen,  K.  (2007).  Kruskal-Wallis  One-Way  Analysis  of Variance. Encyclopedia of Measurement and Statistics, 2, 519-521.


Samaie,  M.,  Mansouri  Nejad,  A.,  &  Qaracholloo,  M.  (2018).  An  inquiry  into  the efficiency  of  WhatsApp  for  self‐  and  peer‐  assessments  of  oral  language proficiency. British Journal of Educational Technology, 49(1), 111-126.


Sánchez-Prieto,   J.   C.,   Olmos-Migueláñez,   S.,   &   García-Peñalvo,   F.   J.   (2016).Informal  tools  in  formal  contexts:  Development  of  a  model  to  assess  theacceptance  of  mobile  technologies  among  teachers. Computers  in  HumanBehavior, 55, 519-528.


Sánchez-Prieto,   J.   C.,   Olmos-Migueláñez,   S.,   &   García-Peñalvo,   F.   J.   (2017). MLearning   and   pre-service   teachers:   An   assessment   of   the   behavioral intention using an expanded TAM model. Computers in Human Behavior, 72, 644-654.


Santos, P., Hernández-Leo, D., Pérez-Sanagustín, M., & Blat, J. (2012). Modeling the computing-based testing domain extending IMS QTI: Framework, models and exemplary  implementations. Computers   in   Human   Behavior, 28(5),   1648- 1662.


Santos,   P.,   PéRez-SanagustíN,   M.,   HernáNdez-Leo,   D.,   &   Blat,   J.   (2011). QuesTInSitu: From tests to routes for assessment in situ activities. Computers & Education, 57(4), 2517-2534.


Sarrab,   M.   (2015).   M-learning   in   education:   Omani   Undergraduate   students‘ perspective. Procedia-Social and Behavioral Sciences, 176, 834-839.


Sarrab, M., Al-Shihi, H., & Khan, A. I. (2015, December). An empirical analysis of mobile  learning (m-learning)  awareness  and  acceptance  in  higher  education. In Computing  and  Network  Communications  (CoCoNet),  2015  International Conference on (pp. 960-963). IEEE.


Sharma,  S.  K.,  Sarrab,  M.,  &  Al-Shihi,  H.  (2017).  Development  and  validation  of Mobile  Learning         Acceptance         Measure. Interactive         Learning Environments, 25(7), 847-858.


Shee,  D.  Y.,  &  Wang,  Y.  S.  (2008).  Multi-criteria  evaluation  of  the  web-based  e- learning   system:   A   methodology   based   on   learner   satisfaction   and   its applications. Computers & Education, 50(3), 894-905.


So, S. (2016). Mobile instant messaging support for teaching and learning in higher education. The Internet and Higher Education, 31, 32-42.


Song,  Y.,  &  Kong,  S.  C.  (2017).  RETRACTED:  Affordances  and  constraints  of BYOD   (Bring  Your   Own   Device)   for   learning   and   teaching   in   higher education: Teachers' perspectives.


Stowell,   J.   R.   (2015).   Use   of   clickers   vs.   mobile   devices   for   classroompolling. Computers & Education, 82, 329-334.


Sun,  J.  C.  Y.  (2014).  Influence  of  polling  technologies  on  student  engagement:  An analysis   of   student   motivation,   academic   performance,   and   brainwave data. Computers & Education, 72, 80-89.


Sung,  Y.  T.,  Chang,  K.  E.,  &  Liu,  T.  C.  (2016).  The  effects  of  integrating  mobile devices with teaching and learning on students' learning performance: A meta- analysis and research synthesis. Computers & Education, 94, 252-275.


Tamboli,  M.  A.,  &  Biswas,  P.  K.  (2015,  October).  Mobile  Learning  Applications' Acceptance     Model     (MLAAM).     In Computing     and     Communication (IEMCON), 2015 International Conference and Workshop on (pp. 1-6). IEEE.


Tan, G. W. H., Ooi, K. B., Leong, L. Y., & Lin, B. (2014). Predicting the drivers of behavioral intention to use mobile learning: A hybrid SEM-Neural Networks approach. Computers in Human Behavior, 36, 198-213.


Tarighat,   S.,   &  Khodabakhsh,   S.   (2016).   Mobile-assisted   language   assessment: Assessing speaking. Computers in Human Behavior, 64, 409-413.


Teo,  T.  S.,  Lim,  V.  K.,  &  Lai,  R.  Y.  (1999).  Intrinsic  and  extrinsic  motivation  in Internet usage. Omega, 27(1), 25-37.


Terzis, V., & Economides, A. A. (2011). The acceptance and use of computer-based assessment. Computers & Education, 56(4), 1032-1044.


Tucker,    S.    P.    (2008).    E-commerce    standard    user    interface:    an    E-menu system. Industrial Management & Data Systems, 108(8), 1009-1028.


Valencia,  S.  W.,  Martin,  S.  D.,  Place,  N.  A.,  &  Grossman,  P.  (2009).  Complex interactions  in  student  teaching:  Lost  opportunities  for  learning. Journal  of Teacher Education, 60(3), 304-322.


Van  der  Heijden,  H.  (2004).  User  acceptance  of  hedonic  information  systems. MIS quarterly, 695-704.


van  der  Schaaf,  M.,  Donkers,  J.,  Slof,  B.,  Moonen-van  Loon,  J.,  van  Tartwijk,  J., Driessen, E., & Ten Cate, O. (2017). Improving workplace-based assessment and feedback by an E-portfolio enhanced with learning analytics. Educational Technology Research and Development, 65(2), 359-380.


Venkatesh,  V.,  &  Bala,  H.  (2008).  Technology  acceptance  model  3  and  a  research agenda on interventions. Decision sciences, 39(2), 273-315.


Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.


Wang,   A.   I.   (2015).   The   wear   out   effect   of   a   game-based   student   response

system. Computers & Education, 82, 217-227.


Zbick, J., Nake, I., Milrad, M., & Jansen, M. (2015, July). A web-based framework to design   and   deploy   mobile   learning   activities:   Evaluating   its   usability, learnability  and  acceptance.  In Advanced  Learning  Technologies  (ICALT), 2015 IEEE 15th International Conference on (pp. 88-92). IEEE.


Zhai, X., Zhang, M., & Li, M. (2018). One‐  to‐  one mobile technology in high school physics  classrooms:  Understanding  its  use  and  outcome. British  Journal  of Educational Technology, 49(3), 516-532.


Zhang, J., Chang, C., & Zhou, P. (2015, October). Factors affecting the acceptance of mobile   devices   in   the   classroom.    In Educational   Innovation   through Technology (EITT), 2015 International Conference of (pp. 294-298). IEEE.


Zydney,  J.  M.,  &  Warner,  Z.  (2016).  Mobile  apps  for  science  learning:  Review  of research. Computers & Education, 94, 1-17.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at or Whatsapp +60163630263 (Office hours only)