UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This study aims to develop cascode low noise amplifier that operate at 5.8 GHz by
maximizing gain and minimize the noise figure for the topic of Development of
Cascode Low Noise Amplifier by using Double Feedback Technique Architecture for
Wireless Application. To verify the idea, FHX76LP Super Low Noise HEMT which
compliant with wireless application especially long-term evolution (LTE) standard
manage to outlines the possibility to improves the design of low noise amplifier within
parameters of gain, noise figure, bandwidth, sensitivity, stability, power consumption
and complexity. The cascode low noise amplifier used T-matching network for inputoutput
impedance matching and implementation an innovative double feedback
technique to compliant with circuit design. The study using the Advance Design System
(ADS) software in aid for collecting the data in smith chart and s-parameter that
practical tool used in designing and simulating the circuit and data. Based on
simulation, the approach compliant with gain (S21) of 20.887 dB with noise figure of
0.341 dB. The input return loss (S11) and output return loss (S22) are - 14.354 dB and
- 11.879 dB respectively. In conclusion, the outcome for this topic is good based on
comparison simulation with other circuit method. Implications, the use of this study
will contribute in providing a better wireless signal receiver especially for the LTE
standard and it potentially in addressing wireless communication issues in rural areas. |
References |
A. B. Ibrahim, & A. Z. M. Ali. (2016). Simulation of Single Stage LNA Based on Ladder Matching Networks for WiMAX Application. International Journal of Information and Electronics Engineering, 6(3), 161165.
A. B. Ibrahim, H. F. Hanafi, F. H. Yahya & N. H. A. Kahar. (2019). Low Noise Amplifier for LTE Application Using High-Performance Low Noise Pseudomorphic High Electron Mobility Transistor (PHEMT). International Journal of Advanced Science and Technology, 28(8), 806 811.
A.B. Ibrahim, M. N. Husain, A. R. Othman, & M. S. Johal. (2011). Design of LNA at 5.8GHz with Cascode and Cascaded Techniques Using T-Matching Network for Wireless Applications. International Journal on Advanced Science, Engineering and Information Technology, 1(1), 18.
A.B. Ibrahim, A.R. Othman, M. N. Husain, & M. S. Johal. (2012). The Cascode and Cascaded Techniques LNA at 5.8GHz Using T-Matching Network for WiMAX Applications. International Journal of Computer Theory and Engineering, 4(1), 93 97.
A. Grebenniov, N. Kumar, and B. S.Yarman. (2017). Broadband RF and microwave amplifiers. BocaRaton: CRC Press, Taylor & Francis.
A. H. Jarndal & A. M. Bassal. (2018). A Broadband Hybrid GaN Cascode Low Noise Amplifier for WiMAX Applications. International Journal of RF and Microwave Computer-Aided Engineering, e21456, 19.
A. R. Dehqan & S. Toofan. (2019). Resonance Gate Bias Cascode Class-E Power Amplifier in GaAs pHEMT Technology. Analog Integrated Circuits and Signal Processing, 98(3), 545553.
A. R. Dehqan, K. Mafinezhad, E. Kargaran, & H. Nabovati. (2011). Design of Low Voltage Low Power Dual-Band LNA with Forward Body Biasing Technique. 18th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 591594.
A. R. Hevner, S. T. March, J. Park, & S. Ram. (2004). Design Science Research in Information Systems. Management Information Systems Quarterly, 28(1), 75-105.
A. R. Othman, A. H. Hamidon, C. Abdul Wasil, M. F. Mustaffa, J.T.H. Ting & A.B.Ibrahim. (2010). Low Noise, High Gain RF Front End Receiver at 5.8GHz for WiMAX Application. Jtec, Vol. 2(No. 2), 4353.
A.R. Othman, I. M. Ibrahim, M. S. A. S. Samingan, A. A. A. Aziz, M. F. M. Selamat & H. C. Halim. (2007). Single Stage RF Amplifier at 5.8GHZ ISM Band with IEEE 802.11a Standard. 2007 Asia-Pacific Conference on Applied Electromagnetics Proceedings, APACE2007, 811.
A.Sherstneva. (2020). Design and Implementation RF Amplifier with Advanced Capabilities. International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, 1-6.
Abdelhamid, A. A., Ozgun, M. T., & Dogan, H. (2019). A fully integrated 2.4 dB NF capacitive cross coupling CG-LNA for LTE band. Analog Integrated Circuits and Signal Processing, 99(1), 159166.
Abu Bakar Ibrahim & Ashardi Abas. (2017). A Microwave Low Noise Amplifier for Long Term Evolution (LTE) Application. Journal of Engineering and Science Research, 1(2), 203208.
Agilent Technologies. (2010). Fundamentals of RF and Microwave Noise Figure Measurements. In Application Note (pp. 132). Retrieved from www.keysight.com/find/nf
Ahmad Sidik, Maulana Yusuf Fathany & Basuki Rahmatul Alam. (2015). Design of Broadband Low Noise Amplifier (LNA) 4G LTE TDD 2.3 GHz for Modem Application. International Symposium on Intelligent Signal Processing and Communication System (ISPACS), 26.
Alan Bensky. (2019). Receiver and Digital Radio Architecture in Radio System Design (3th Edition). In Short-Range Wireless Communication (pp.149162). United States, Cambrige:Elsevier Inc.
Andres G., & Victor C. (2015). A New Sizing Approach for Lifetime Improvement of Nanoscale Digital Circuits due to BTI Aging. 2015 IFIP/IEEE International Conference on Very Large-Scale Integration (VLSI-SoC), 297302.
Anishaziela Azizan, S. A. Z. Murad, R. C. Ismail, & M. N. M. Yasin. (2014). A Review of LNA Topologies for Wireless Applications. 2nd International Conference on Electronic Design, 375379.
Anuj Madan, Michael J. M., Christophe M., William V. & John D. C. (2012). A 5 GHz 0.98 dB NF Highly Linear Cascode Floating-Body LNA in 180nm SIO CMOS Technology. IEEE Microwave and Wireless Components Letters, 22(4), 200 202.
Ashwini Rajole. (2015). Low Noise Amplifier Design and Analysis for Wireless Voice Transmission. International Journal of Science and Research (IJSR), 4(7), 1308 1311.
Athira K. B., & Prameela B. (2018). Ultra-Wideband Low Noise Amplifier with Resistive Feedback and Shunt Inductive Peaking. Proceedings of 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 2018(January), 16.
Azman Ahmad, Abdul Hamid Hamidon, Abdul Rani Othman & Kamil Pongot. (2015). Australian Journal of Basic and Applied Sciences A High Gain and Low Noise Figure for Dual Band LNA with Notch Filter. Australian Journal of Basic and Applied Sciences Journal, 9(March), 5562.
B.Wang, & Z. Cao. (2019). A Review of Impedance Matching Techniques in Power Line Communications. Electronics, 8(9), 125.
Bhushan R. V., & M. M. Khanapurkar. (2015). Design of Ultra-Wideband Low Noise Amplifier with the Negative Feedback using Micro Strip Line Technique. IOSR Journal of VLSI and Signal Processing, 5(2), 3135.
C.A. Balanis. (2016). Antenna Theory: Analysis and Design (4th Edition). Hoboken, New Jersey: John Wiley & Sons Inc.
Cen M., & Song S. (2013). Design of a 0.97dB, 5.8GHz Fully Integrated CMOS Low Noise Amplifier. Advance Science and Technology Letters, 28(EEC 2013), 3442.
Cen M., & Song S. (2015). A Differential Cascode Low Noise Amplifier Based on a Positive Feedback Gain Enhancement Technique. Journal of Machine-to-Machine Communications, 1(3), 244229.
Chakkor Saad, Baghouri Mostafa, El Ahmadi Cheih & Hajraoiu Abderrahmane. (2014). Comparative Performance Analysis of Wireless Communication Protocols for Intelligent Sensors and Their Applications. International Journal of Advanced Computer Science and Applications, 5(4), 7685.
Chen SJ. & Hsieh YH. (2006) Transceiver Architecture Design. In: IQ Calibration Techniques for CMOS Radio Transceivers. Analog Circuits and Signal Processing. Dordrecht: Springer.
David M. Pozar. (2011). Microwave Engineering. In John Wiley & Sons Inc.
Deepa Pundir & Narinder Sharma (2019). Comparative Study of Microstrip Patch Antenna for Wireless Applications. International Journal of Electrical Engineering, 12(1), 61 72.
Desai Abhi R. & Nita T. Dave. (2017). Performance Analysis of Direct Conversion Based Multi Standard Receiver. International Journal for Scientific & Development (IJSRD), 5(1), 23210631.
Dwijendra Parashar & Nisha Chugh. (2013). Design of Low Noise Amplifier at 8.72 GHz. MIT International Journal of Electronics and Communication Engineering, 3(2), 69 75.
F. Gne, M.A. Belen, P. Mahouti, & S. Demirel. (2016). Signal and Noise Modeling Of Microwave Transistors using Characteristic Support Vector-Based Sparse Regression. Radio Engineering, 25(3), 490499.
F.Meng, H. Liu, M. Wang et al, (2016). RF Low Power Subsampling Architecture for Wireless Communication Application. Eurasip Journal on Wireless Communications and Networking, 2016(121),115.
Fan X., Zhang H., & E. Snchez-Sinencio. (2008). A Noise Reduction and Linearity Improvement Technique for a Differential Cascode LNA. IEEE Journal of Solid- State Circuits, 43(3), 588599.
G.O. Barraza, F.H. Gregorio, & J.E. Cousseau. (2017). High-gain differential-output CMOS LNA for the 700 MHz LTE band. 2017 XVII Workshop on Information Processing and Control (RPIC), 16.
Ge Tan. (2011). Impact of Scaling on Noise Behavior of Sub-100nm MOSFETs. (Masters thesis, McMaster University, Hamilton, Ontario). Retrieved from https://macsphere.mcmaster.ca/bitstream/11375/10975/1/fulltext.pdf
F.Aminzadeh, & M. A. Dashti. (2019). Dual Loop Cascode-Miller Compensation with Damping Factor Control Unit for Three-Stage Amplifiers Driving Ultralarge Load Capacitors. International Journal of Circuit Theory and Applications, 47(1), 1 18.
H. Khosravi, S. Zandian, A. Bijari, & N. Kandalaft. (2019). A Low Power, High Gain 2.4/5.2 GHz Concurrent Dual-Band Low Noise Amplifier. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, 788792.
Hamid Khatibi, Somayeh Khiyabani, & Ehsan Afshari. (2018). A 183 GHz Desensitized Unbalanced Cascode Amplifier With 9. 5-dB Power Gain and 10-GHz Band Width and 2 dBm Saturation Power. IEEE Solid-State Circuits Letters, 1(3), 58 61.
Hao Zheng. (2019). Designing 4 to 12 GHz Direct Conversion Receiver with LMX8410L IQ Demodulator. Retrieved from http://www.ti.com/lit/an/snaa329/snaa329.pdf
Hector J. De Los Santos. (2002). RF MEMS Circuit Design for Wireless Communications. In Artech House Microelectromechanical Systems Series. Boston, London: Artech House.
Hiroya Sato, Masao Yanagisawa, & Tashihiko Yoshimasu. (2017). A 28-GHz Band Highly Linear Power Amplifier with Novel Adaptive Bias Circuit for Cascode MOSFET in 56nm SOI CMOS. 13th IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 12.
International Telecommunication Union (2019). Measuring Digital Development Facts and Figures 2019. Geneva: ITU. Retrieved January 17, 2020 from https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2019.pdf
Ismat Aldmour. (2013). LTE and WiMAX: Comparison and Future Perspective.Communications and Network, 05(04), 360368.
Ivan Bastos, F. Querido, D. Amoedo, Luis B. Oliveira, J.P. Oliveira, Joao Goes , & Manuel M. Silva. (2013). A 1.2 V Low Noise Amplifier with Double Feedback for High Gain and Low Noise Figure. IFIP Advance in Information and Communication Technology, 394, 573581.
J. F. Nunamaker, M. Chen, & T. D. M. Purdin. (1991). Systems Development in Information Systems Research. Journal of Management Information Systems, 7(3), 89-106.
Jingjing Z., Mao W., Min H., Tingting X., Wenjie Y., & Xiaohu Y. (2018). LTE on License- Exempt Spectrum. IEEE Communications Surveys and Tutorials, 20(1), 647673.
Jun T., Zhaowen Y., Zhaoming N., Yaoxiang Z., & Yongcheng Z. (2018). A Design of 9kHz- 0. 5 GHz Low Noise Amplifier with High Gain and Smooth Flatness. 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), (2), 14.
K. Pongot, A. R. Othman, Z. Zakaria, M. K. Suaidi, & A. H. Hamidon. (2014). Low Noise Figure, High Gain Single LNA Cascaded with Cascoded LNA Amplifiers using Optimized Inductive Drain Feedback for Direct Conversion RF Front-end Receiver at Wireless Application. Research Journal of Applied Sciences, Engineering and Technology, 7(16), 32363247.
K. Raju, R. Sireesha, & K. Vijay Kumar. (2016). Double Feedback Technique for Reduction of Noise LNA with Gain Enhancement. International Journal of Computational Engineering Research (IJCER), 6(3), 4350.
Kamil Pongot, Abdul Rani Othman, Zahriladha Zakaria, Mohamad Kadim Suaidi, Abdul Hamid Hamidon, Azman Ahmad, & Mohamad Tarmizy Ahmad. (2015). Design of Triple-Stage Cascoded LNA Amplifiers using Inductive Drain Feedback (IDF) Technique for WiMAX application. International Journal on Electrical Engineering and Informatics, 7(2), 175192.
Kamil Pongot, Abdul Rani Othman, Zahriladha Zakaria, Mohamad Kadim Suaidi, & Abdul Hamid Hamidon. (2015). Double - Stage High Gain and Low Noise Cascoded LNA Amplifiers with Optimized Inductive Drain Feedback for Direct Conversion WiMAX RF Front-end Receiver. Australian Journal of Basic and Applied Sciences Journal, 7(7), 452460.
L. D. Manh, N. Huy Hoang, B. G Duong, & T. Chi Hieu. (2018). Design of An Independently Biased Cascode GaN HEMT Microwave Power Amplifier. International Conference on Advanced Technologies for Communications, 129 132.
L. D. Manh, N. Huy Hoang, B. G. Duong, & T. Chi Hieu. (2019). An Independently Biased 3-stack GaN HEMT Configuration for 5G Mobile Networks. 2019 26th International Conference on Telecommunications (ICT), 15.
Lee, I. G. (2018). Secure Inter-Frame Space Communications for Wireless LANs. Future Internet, 10(47), 110.
Li. C.Y., Chien K. H., Yen H. L., & Chiou H. K. (2017). A 5 11 GHz Wideband Low Noise Amplifier Using Transformer. 2017 Progress in Electromagnetics Research Symposium Spring (PIERS), St. Petersburg, Russia, 10391042.
M. Bansal & Jyoti. (2017). A Review of Various Applications of Low Noise Amplifier. 2017 International Conference on Innovations in Control, Communication and Information System (ICICCI), Greater Noida, India, pp 14.
M. Bansal Aditi. (2017). Design, Analysis, and Comparison of LNA Topologies. Conference on Information and Communication Technology (CICT), 17.
M. Charchian, B. Zakeri, & H. Miar-Naimi. (2016). Wideband Noise Figure Low Noise Amplifier Design for 3.5-4.5 GHz. Conference Proceedings of 2015 2nd International Conference on Knowledge-Based Engineering and Innovation, KBEI 2015, 589594.
M. D. Gall, W. R. Borg, & J. P. Gall. (2003). Educational Research: An Introduction (7th Edition). Boston, New York: Pearson Education Inc.
M. Ehmer Khan & Farmeena Khan. (2012). An Empirical Study of Different Modes of Wireless Network Communication and Ways to Optimize its Performance and Speed. International Journal of Computer Applications, 46(12), 4450.
M. S. Kusuma, S. Shanthala, & P. Cyril Prasanna Raj. (2018). Design of Common Source Low Noise Amplifier with Inductive Source Degeneration in Deep Submicron CMOS Processes. International Journal of Applied Engineering Research, 13(6), 41184123.
Maganti Akhil Chandra, & Rahul Enishetty Hochschule. (2013). Design of a Low Noise Amplifier using AWR Microwave Office. Conference Paper, 2013(July), 1-5.
Mahesh Mudavath & K. Harikishore. (2016). Design of CMOS Front-End of Low Noise Amplifier for LTE System Application. Asian Journal of Information Technology, 15(20), 4040 4047.
Manuel Reta-Hernndez. (2018). 14 Transmission Line Parameters. In Leonard L. Grigsby (3th Edition), Electric Power Generation, Transmission, and Distribution (pp. 14-1 14.36). Boca Raton, FL: CRC Press Taylor and Francis Group.
Mohit Dayal & Abhishek Kumar. (2015). S-Parameter Comparison of Common Source and Common Gate Low Noise Amplifier. International Journal of Computer Applications, 120(19), 1518.
Muhammad Arsalan & Falin Wu. (2019). LNA Design for Future S Band Satellite Navigation and 4G LTE Application. Computer Modeling in Engineering and Sciences (CMES), 119(2), 249261.
Muhammad Waqas Qadir, Muhammad Hunain Memon, Adeel Feroz Mirza, Syed Wajahat Ali, & Fujiang L. (2018). Multigrain Cascode Technique for Low Power BLE ISM Band 2.4 GHz Differential Inductive Source Degeneration based LNA. IEEE MTTS International Wireless Symposium (IWS), 14.
N.A. Majid, S. Mazer, M.E. Bekkali, C. Algani & M. Mehdi (2017). A Comparison Between Common-Source and Cascode Topologies For V-Band Millimeter-Wave MMIC Low Noise Amplifier Design. Mediterranean Telecommunication Journal. 6(1). 33- 39.
N. Milosevic, B. Dimitrijevic, D. Drajic, Z. Nikolic, & M. Tosic. (2017). LTE and WiFi coexistence in 5 GHz unlicensed band. Facta Universitatis - Series: Electronics and Energetics, 30(3), 363373.
Saifullah, Z. Zakaria, A. Salleh, M. F. Muhamad Fadzil, S. R. Ab Rashid, & A. Bruster. (2016). Low Noise Amplifier Application using Negative Feedback for Ultra- Wideband Applications. ARPN Journal of Engineering and Applied Sciences, 11(5), 32953299.
Nigel Gilbert & Klaus G. Troitzsch. (2005). Simulation as a Method. In Simulation for the Social Scientist (2nd Edition). New York: McGraw-Hill Education.
O. Memioglu & A. Gundel. (2018). A High Linearity Wide Bandwidth GSM/WCDMA/LTE Base Station LNA MMIC with Ultra Low Noise Figure. 2018 18th Mediterranean Microwave Symposium (MMS), 198201.
P.Boyland. (2019). The State of Mobile Network: Benchmarking Mobile On The Eve Of The 5G Evolution. Opensignal, 1-9.
Paolini M., & Fili S. (2015). LTE unlicensed and Wi-Fi: Moving Beyond Coexistance. In Senza Fili and RCR Wireless News.
Paschal A. Ochang & Philip J. Irving. (2016). Evolutionary Analysis of GSM , UMTS and LTE Mobile Network Architectures. World Scientific News, 54, 2739.
Prameela B. & Daniel A.E. (2016). Design of Low Noise Amplifier for IEEE Standard 802.11b using Cascode and Modified Cascode Techniques. Procedia Technology, 25(2016), 443449.
Quang D.H., Tweed, D., & Le-Ngoc, T. (2017). Long Term Evolution in Unlicensed Bands. In Springer International Publishing.
R. C. Richey, J. D. Klein, & W. A. Nelson. (2004). Developmental research: Studies of instructional design and development. In D. H. Jonassen (Ed.), Handbook of Research for Educational Communications and Technology (pp. 10991130). Lawrence Erlbaum Associates Publishers.
R. E. Collin. (2000). Foundations for Microwave Engineering (2nd Edition). New York: John Wiley & Sons Inc.
Ram Kumar, Anandini Devi, Abahan Sarkar, & F. A. Talukdar. (2016). Design of 5.5 GHz Linear Low Noise Amplifier using Post Distortion Technique with Body Biasing. Microsystem Technologies, 22(11), 26812690.
Reinaldo Perez. (1998). Wireless Communications Design Handbook: Aspects of Noise, Interference, and Environmental Concerns. Sang Diego, CA: Academic Press.
Ruchi Kumari, V. Vignesh, & Navin Kumar. (2018). Wideband Low Noise Amplifer Design for Microwave Frequency using CMOS 65nm Technology. 2018 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2018, 732736.
S. Azzouni, N. Khitouni & M.S. Bouhlel. (2019). Direct-Conversion Receiver Front-End for LTE wireless network. 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, STA 2019, 479 484.
S. Chrisben Gladson, S. Vijayalakshmi, M. Sowmya Lakshmi, & M. Bhaskar. (2019). Linearity Improvement of RF Mixer using Double-Linearization for 5 GHz Application. AEU International Journal of Electronics and Communication, 110(2019), 14348411.
S. Kolakaluri, S. S. Nagura, R. Kar, S. P. Ghoshal, & D. Mandal. (2016). Optimization of Low Noise Amplifier using Particle Swarm Optimization. Iternational Conference on Electrical, Electronics and Optimization Techniques (ICEEOT), 1(1), 2055 2058.
S. Radha, D. S. Shylu, P. Nagabushanam, & J. Mathew. (2019). Low Noise Amplifier with Resistive and Capacitive Feedback for 2.4 GHz RF Receiver Front End. Journal of High-Speed Networks, 25(2), 181203.
S. S. Mousavi Khaleghi, G. Moradi, R. Sarraf Shirazi, & A. Jafargholi. (2019). Microstrip Line Impedance Matching using ENZ Metamaterials, Design, and Application. IEEE Transactions on Antennas and Propagation, 67(4), 22432251.
S. Udaya Shankar, & M. Davidson K. D. (2015). Design and Performance Measure of 5.4 GHz CMOS Low Noise Amplifier using Current Reuse Technique in 0.18m Technology. Procedia Computer Science, 47(C), 135143.
Shahdon Chandhon Mohonta, M. Firoj Ali, & Golam Sadeque. (2015). Study of Different Types of Noise and Its Effects in Communication Systems. International Journal of Engineering and Management Research, 5(2), 410413.
Shayea Ibraheem, Hadri Azmi Marwan, Abd. Rahman Tharek, Ergen Mustafa, Han C. T., & Arsad Arsany. (2019). Spectrum gap analysis with practical solutions for future mobile data traffic growth in Malaysia. IEEE Access, 7, 2491024933.
Snehal Bharadi & K. U. Aade. (2015). A Review on Low Noise Amplifier. International Journal of Innovation Research in Science, Engineering and Technology, 4(7), 6470 6475.
Sonia Sharma, C. C. Tripathi, & Rahul Rishi. (2017). Impedance Matching Techniques for Microstrip Patch Antenna. Indian Journal of Science and Technology, 10(28), 116.
Sumathi Manicham. (2018). Design Concepts of Low Noise Amplifier for Radio Frequency Receiver. RF Systems, Circuits and Components (pp. 121). IntechOpen. Retrieved from https://www.intechopen.com/books/rf-systems-circuits-andcomponents/ design-concepts-of-low-noise-amplifier-for-radio- frequency-receivers
Syuhaimi Kassim & Fareq Malek. (2010). Microwave FET Amplifier Stability Analysis using Geometrically-Derived Stability Factors. 2010 International Conference on Intelligent and Advanced Systems (ICIAS), Manila, 2010, 15.
T. J. Ellis, & Y. Levy. (2010). A Guide for Novice Researchers: Design and Development Research Methods What Design and Development Research Is. Informing Science, 107118.
T. Van Hoi, N. T. Lanh, N. X. Truong, N. H. Duc, & B. G. Duong. (2016). Design of a Front- End for Satellite Receiver. International Journal of Electrical and Computer Engineering, 6(5), 22822290.
T.Liu. (2011). Design of a Now Noise Amplifier for Wireless Sensor Networks. (Masters thesis, University of Arkansas, Fayetteville). Retrieved from http://scholarworks.uark.edu/etd/140
Tim Das. (2013). Practical Considerations for Low Noise Amplifier Design. Freescale Semiconductor, 110.
Vikram Singh, Sandeep K. Arya, & Manoj Kumar. (2018). A 0 . 7 V , Ultra-Wideband Common Gate LNA with Feedback Body Bias Topology for Wireless Applications. Journal of Low Power Electronics and Applications, 8(42), 113.
W. Liao & J. Yang. (2016). A 0.5-3.5GHz Wideband CMOS LNA for LTE Application. IMFEDK 2016 - 2016 International Meeting for Future of Electron Devices, Kansai, (2), 56.
William H.Hayt, Jack E. Kemmerly, & Steven M. Durbin. (2012). Engineering Circuit Analysis (8th Edition). New York: McGraw-Hill.
Wu T.Y. & Yang J. R. (2017). A Multiband Fully Integrated High Linearity Power Amplifier Using a 0.18 CMOS Process for LTE Application. International SOC Design Conference, 3132.
Xin Yang, Tsuyoshi Sugiura, Norihisa Otani, Tadamasa Murakami, Eiichiro Otobe & Toshihiko Yoshimasu. (2015). A 5-GHz Band WLAN SiGe HBT Power Amplifier IC with Novel Adaptive-Linearizing CMOS Bias Circuit. IEICE Transactions on Electronics, E98.C(7), 651658.
Ying L.L., Teong C.C., Jonathan L., & Alexey V. (2014). Recent Advances In Radio Resource Management For Heterogeneous LTE/LTE-A Networks. IEEE Communications Surveys and Tutorials, 16(4), 21422180.
Youngoo Yang, Kevin Choi, & Kenneth P. W. (2004). DC Boosting Effect of Active Bias Circuits and Its Optimization for Class-AB InGaP-GaAs HBT Power Amplifiers. IEEE Transactions on Microwave Theory and Techniques, 52(5), 14551463.
Yu W., Jie C., & Renli Z. (2019). A C To Ku Band Ultra-wideband LNA With RLCFeedback And T-matching Network. IEEE MTT-S 2019 International Microwave Biomedical Conference, IMBioC 2019 - Proceedings, 1, 13.
Z. A. Yamayee & J. L.Jr. Bala. (1994). Electromechanical Energy Devices and Power Systems. New York: John Wiley & Sons Inc.
Z. H. Talukder, S.S. Islam, D. Mahjabeen, A. Ahmed, S. Rafique, & M.A. Rashid. (2013). Cell Coverage Evaluation for LTE and WiMAX in Wireless Communication System. World Applied Sciences Journal, 22(10), 14861491.
Z. Zhang. (2013). High Linearity Universal LNA Designs for Next Generation Wireless Application. (Doctoral Dissertation, University of Saskatchewan, Saskatoon, Canada). Retrieved from https://harvest.usask.ca/handle/10388/ETD-2013-12- 1337
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |