UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :TP Chemical technology
Main Author :Nursuhaila Mohd Nor Rulhadi
Title :Characterisation of dental resin composite with natural and synthetic hydroxyapatite-yttria stabilised zirconia fillers
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2019
Notes :with cd
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
This  study aimed  to  prepare and  characterise  dental  resin  composite with hydroxyapatite-yttria stabilised zirconia (HAp-YSZ) fillers from natural and synthetic sources of  hydroxyapatite (HAp). The yttria stabilised zirconia (YSZ) and HAp were used as reinforcement  inorganic fillers, while the organic resin were the blended monomers of bisphenol A glycerolate  dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA) and diurethane dimethacrylate  (UDMA). The composites were thoroughly blended at ratio of 70:30 wt/wt of fillers and resin. The  mixing ratios of fillers (YSZ:HAp) were fixed at 0:100; 10:90; 25:75; 50:50 and 75:25 wt/wt. The  composites were moulded and crosslinked under UV-light for 60 s on the both sides of samples  surfaces. The degree of conversion, flexural strength (FS), compression strength (CS), Vickers  hardness (VH), surface roughness (SR), water sorption, water solubility and cytotoxicity of  composites were measured. The results exhibited that the mechanical properties of YSZ-natural HAp  composites with ratio of 10:90 wt/wt (FS = 65.61 MPa; CS = 160.34 MPa; VH = 50.80 HV; SR = 120.00  nm) were better performance than YSZ-synthetic HAp composites. Water sorption and solubility of this composite are  25.19 µg mm?³ and 5.58 µg mm?³, respectively. The cytotoxicity test showed that this compositeis  non-toxic. As a conclusion, HAp-YSZ dental resin composites were successfully prepared and  characterised. The implication of this study is that the composite produced shows a potential to be  used as dental resin composite.  

References

Abbas, F., Bahman, N.-T., & Reza, E.-K. (2012). Synthesis of calcium phosphate-

based composite nanopowders by mechanochemical process and subsequent thermal treatment. Ceramics 

International, 38(8), 6729–6738.

 

Abdulrahman, I., Hamzat Ibiyeye, T., Abubakar, B. M., Saidu, H., Hindatu, Y., Mohammed Ndejiko, J., 

& Sulaiman, M. (2014). From garbage to biomaterials: An overview on egg shell based hydroxyapatite. 

Journal of Materials, 2014, 1–6.

 

Abouelnaga, M. A. A. (2014). A comparison of gingival marginal adaptation and surface microhardness 

of class II resin based composites (conventional and bulk fill) placed in layering versus bulk fill 

techniques. University of Iowa.

 

Abuelenain, D. A., & Neel, E. A. A. (2015). Surface and mechanical properties of different dental 

composites. Austin Journal of Dentistry, 2(2), 1019–1023.

 

ADA Council on Scientific Affairs. (2003). Direct and indirect restorative materials.

The Journal of the American Dental Association, 134(April), 463–472.

 

Ahn, E. S., Gleason, N. J., & Ying, J. Y. (2005). The Effect of Zirconia Reinforcing Agents on the 

Microstructure and Mechanical Properties of Hydroxyapatite- Based Nanocomposites. Journal of the 

American Ceramic Society, 88(12), 3374– 3379.

 

Al-sanabani, J. S., Madfa, A. A., & Al-sanabani, F. A. (2013). Application of Calcium Phosphate 

Materials in Dentistry. International Journal of Biomaterials, 2013, 1– 12.

 

Albers, H. F. (2002). Tooth-colored Restoratives: Principles and Techniques (Ninth ed.). London: BC 

Decker INC. Hamilton.

 

Ali Doostmohammadi, Ahmad Monshi, Rasoul Salehi, Mohammad Hossein Fathi, Ehsan Seyedjafari, Abbas 

Shafieee, & Masoud Soleimani. (2011). Cytotoxicity evaluation of 63S bioactive glass and 

bone-derived hydroxyapatite  particles using human bone-marrow stem cell. Biomedical Papers of the 

Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 155(4), 323–326.

 

Alnazzawi, A. A. (2012). Temperature-dependent properties of resin-composites before and during the 

setting process. University of Manchester.

 

Alqap, A. S. F., & Sopyan, I. (2009). Low temperature hydrothermal synthesis of calcium phosphate 

ceramics: Effect of excess Ca precursor on phase behaviour.

Indian Journal of Chemistry, 48, 1492–1500.

 

Ângela, C., Volpato, M., Gustavo, L., Garbelotto, D. A., Fredel, M. C., Bondioli, F.,

… Bondioli, F. (2011). Application of Zirconia in Dentistry : Biological , Mechanical and Optical 

Considerations. In Advances in Ceramics (p. 550). Itali: InTech.

 

Ansteinsson, V. (2013). In vitro toxicity of filler particles and methacrylates used in dental 

composite materials. Nordic Institute of Dental Materials (NIOM).

 

Arkin, V. H., Lakhera, M., Manjubala, I., & Narendra Kumar, U. (2015). Solid state synthesis and 

characterization of calcium phosphate for biomedical application. International Journal of ChemTech 

Research, 8(6), 264–267.

 

Asmussen, E., & Peutzfeldt, A. (1998). Influence of UEDMA, BisGMA and TEGDMA on selected mechanical 

properties of experimental resin composites. Dental Materials.

 

Awan, M. (2010). A Study Investigating the Mechanical Testing of a Novel Dental Restorative 

Material and its Biocompatibility. University of Birmingham.

 

Azarhoosh, M. J. (2017). Application of Biomaterials in Dentistry. Current Trends in Biomedical 

Engineering & Biosciences, 2(3).

 

Balamurugan, A., Michel, J., Benhayoune, H., Wortham, L., Sockalingum, G., Banchet, V., … 

Balossier, G. (2006). Synthesis and structural analysis of sol gel derived stoichiometric 

monophasic hydroxyapatite. Ceramics−Silikáty, 50(1), 27–31.

 

Balazsi, C., Gergely, G., Sahin, F. C., & Goller, G. (2011). Spark Plasma Sintered 

Hydroxyapatite–Zirconia Composites: Structural and Mechanical Properties. In 18th International 

Conference on Composite Materials (pp. 1–4).

 

Baldissera, R. A., Corrêa, M. B., Schuch, H. S., Collares, K., Nascimento, G. G., Jardim, P. S., … 

Demarco, F. F. (2013). Are there universal restorative composites for anterior and posterior teeth? 

Journal of Dentistry, 41(11), 1027– 1035.

 

Bannach, G., Cavalheiro, C., Calixto, L., & Cavalheiro, E. (2015). Thermoanalytical study of 

monomers: BisGMA, BisEMA, TEGDMA, UDMA and their mixture. Brazilian Journal of Thermal Analysis, 

4(1–2), 28–34.

 

Baroudi, K., & Rodrigues, J. C. (2015). Flowable Resin Composites: A Systematic Review and Clinical 

 Considerations.  Journal of Cinical and Diagnostic Research, 9(6), 18–24.

 

Barszczewska-rybarek,  I.  M.  (2009).  Structure  –  property  relationships  in dimethacrylate 

networks based on Bis-GMA , UDMA and TEGDMA. Dental Materials, 25(9), 1082–1089.

 

Bayne, S. C., Thompson, J. Y., Swift, E. J., Stamatiades, P., & Wilkerson, M. (1998). A 

characterization of first-generation flowable composites. Journal of the American Dental 

Association, 129(5), 567–77.

 

Beun, S., Glorieux, T., Devaux, J., Vreven, J., & Leloup, G. (2007). Characterization of nanofilled 

compared to universal and microfilled composites.  Dental Materials, 23(1), 51–59.

 

Bittencourt, B. F., Gomes, G. M., Trentini, F. A., Azevedo, M. R. De, Gomes, J. C., Maria, O., & 

Gomes, M. (2014). Effect of finishing and polishing on surface roughness of composite resins after 

bleaching. Brazilian Journal of Oral Sciences, 13(2), 158–162.

 

Bollen, C. M., Lambrechts, P., & Quirynen, M. (1997). Comparison of surface roughness of oral hard 

materials to the threshold surface roughness for bacterial plaque  retention:  a  review  of  the  

literature.  Dental  Materials :  Official Publication of the Academy of Dental Materials, 13(4), 

258–69.

 

Braden, M., & Clarke, R. (1984). Water absorption characteristics of dental microfine composite 

filling materials: I. Proprietary materials. Biomaterials, 5(6), 369–372.

 

Calabrese, L., Fabiano, F., Currò, M., Borsellino, C., Bonaccorsi, L. M., Fabiano, V.,

… Proverbio, E. (2016). Hydroxyapatite Whiskers Based Resin Composite versus  Commercial  Dental  

Composites:  Mechanical  and  Biocompatibility Characterization. Advances in Materials Science and 

Engineering, 2016, 1–9.

 

Camposilvan, E., Marro, F. G., Mestra, A., & Anglada, M. (2015). Enhanced reliability of 

yttria-stabilized zirconia for dental applications. Acta Biomaterialia, 17, 36–46.

 

Cangul, S., & Adiguzel, O. (2017). The Latest Developments Related to Composite Resins. 

International Dental Research, 7(2), 32.

 

Ceci, M., Viola, M., Rattalino, D., Beltrami, R., Colombo, M., & Poggio, C. (2017). Discoloration 

of different esthetic restorative materials: A spectrophotometric evaluation. European Journal of 

Dentistry, 11(2), 149–156.

 

Chen, M. H. (2010). Update on Dental Nanocomposites. Journal of Dental Research, 89(6), 549–560.

 

Chevalier, J., Gremillard, L., Virkar, A. V., & Clarke, D. R. (2009). The Tetragonal- Monoclinic 

Transformation in Zirconia: Lessons Learned and Future Trends. Journal of the American Ceramic 

Society, 92(9), 1901–1920.

 

Ching, T. Y. (2017). The effects of various processing conditions on the properties of 

hydroxyapatite. University of Malaya.

 

Choi, K. K., Ferracane, J. L., Hilton, T. J., & Charlton, D. (2000). Properties of Packable Dental 

Composites. Journal of Esthetic and Restorative Dentistry, 12(4), 216–226.

 

Chuenarrom, C., Benjakul, P., & Daosodsai, P. (2009). Effect of Indentation Load and Time on Knoop 

and Vickers Microhardness Tests for Enamel and Dentin. Materials Research, 12(4), 473–476.

 

Coates, J. (2000). Interpretation of Infrared Spectra, A Practical Approach. In

Encyclopedia of Analytical Chemistry (pp. 1–23). John Wiley & Sons Ltd.

 

Cramer, N. B., Stansbury, J. W., & Bowman, C. N. (2011). Recent advances and developments in 

composite dental restorative materials. Journal of Dental Research, 90(4), 402–16.

 

Curtis, A. R., Shortall, A. C., Marquis, P. M., & Palin, W. M. (2008). Water uptake and strength 

characteristics of a nanofilled resin-based composite. Journal of Dentistry, 36(3), 186–193.

 

Dafar, M. (2014). Reinforcement of Flowable Dental Composites with Titanium Dioxide Nanotubes. The 

University of Western Ontario.

 

Darmani, H., & Al-hiyasat, A. S. (2006). The effects of BIS-GMA and TEG-DMA on female mouse 

fertility. Dental Materials, 22(4), 353–358.

 

de Moraes, R. R., Marimon, J. L. M., Jochims Schneider, L. F., Sinhoreti, M. A. C., 

Correr-Sobrinho, L., & Bueno, M. (2008). Effects of 6 Months of Aging in Water on Hardness and 

Surface Roughness of Two Microhybrid Dental Composites. Journal of Prosthodontics, 17(4), 323–326.

 

Della Bona, A., Pecho, O. E., & Alessandretti, R. (2015). Zirconia as a dental biomaterial. 

Materials, 8, 4978–4991.

 

Demir, F., Oktay, A., & Topcu, F. T. (2017). Smile and dental aesthetics: a literature review. 

Medicine Science, 6(1), 172–179.

 

Dewaele, M., Truffier-Boutry, D., Devaux, J., & Leloup, G. (2006). Volume contraction in photocured 

dental resins: the shrinkage-conversion relationship revisited. Dental Materials : Official 

Publication of the Academy of Dental Materials, 22(4), 359–65.

 

Dorozhkin,  S.  V.  (2012).  Nanodimensional  and  Nanocrystalline  Calcium Orthophosphates. 

American Journal of Biomedical Engineering, 2(3), 48–97.

 

Duc, O., Betrisey, E., Di Bella, E., Krejci, I., & Ardu, S. (2018). Staining susceptibility of 

recently developed resin composite materials. Journal of Clinical Advances in Dentistry, 2, 1–7.

 

Dudek, A., & Wlodarczyk, R. (2012). Composites Hydroxyapatite with Addition of

 

Zirconium Phase. In Feng Shi (Ed.), Ceramic Materials – Progress in Modern Ceramics (pp. 129–148). 

Shanghai, China: In Tech.

 

 

Elbishari, H. I. (2012). Characterisation of the effect of filler size on handling, mechanical  and 

 surface  properties  of  resin  composites.  University  of Manchester.

 

Erdal, S., & Orris, P. (2012). Mercury in Dental Amalgam and Resin-Based Alternatives : A 

Comparative Health Risk Evaluation. Health Care Without Harm. Reston.

 

Evis, Z. (2007). Reactions in hydroxylapatite–zirconia composites.  Ceramics International, 33(6), 

987–991.

 

Fengwei, L., Bin, S., Xiaoze, J., Aldeyab, S. S., Qinghong, Z., & Meifang, Z. (2014). Mechanical  

properties  of  dental  resin/composite  containing  urchin-like hydroxyapatite. Dental Materials, 

30, 1358–1368.

 

Fengwei, L., Ruili, W., Yanhua, C., Xiaoze, J., Qinghong, Z., & Meifang, Z. (2013). Polymer grafted 

hydroxyapatite whisker as a filler for dental composite resin with enhanced physical and mechanical 

properties. Materials Science and Engineering, 33, 4994–5000.

 

Fengwei, L., Xiaoze, J., Shuang, B., Ruili, W., Bin, S., & Meifang, Z. (2015). Effect of 

hydroxyapatite whisker surface graft polymerization on water sorption, solubility and bioactivity 

of the dental resin composite. Materials Science and Engineering C, 53, 150–155.

 

Ferracane, J. L. (2011). Resin composite—State of the art. Dental Materials, 27(1), 29–38.

 

Firdausy, M. D. (2015). Evaluation of experimental bioactive glass resin composites.

The University of Hong Kong.

 

Frazer, R. Q., Byron, R. T., Osborne, P. B., & West, K. P. (2005). PMMA: an essential material in 

medicine and dentistry. Journal of Long-Term Effects of Medical Implants, 15(6), 629–39.

 

Gajewski, V. E. S., Pfeifer, C. S., Froes-salgado, N. R. G., Boaro, L. C. C., & Braga,

R. R. (2012). Monomers Used in Resin Composites: Degree of Conversion, Mechanical Properties and 

Water Sorption/ Solubility. Brazilian Dental Journal, 23(5), 508–514.

 

Ganss, C., Lussi, A., & Schlueter, N. (2012). The histological features and physical properties of 

eroded dental hard tissues. In Erosive Tooth Wear: From Diagnosis to Therapy (pp. 99–107).

 

Goenka, S., Balu, R., & Sampath Kumar, T. S. (2012). Effects of nanocrystalline

calcium deficient hydroxyapatite incorporation in glass ionomer cements.

Journal of the Mechanical Behavior of Biomedical Materials, 7, 69–76.

 

 

Gouveia, T. H. N., Theobaldo, J. D., Vieira-Junior, W. F., Lima, D. A. N. L., & Aguiar, F. H. B. 

(2017). Esthetic smile rehabilitation of anterior teeth by treatment with biomimetic restorative 

materials: a case report. Clinical, Cosmetic and Investigational Dentistry, 9, 27–31.

 

Guo, H., Khor, K. A., Boey, Y. C., & Miao, X. (2003). Laminated and functionally graded 

hydroxyapatite/yttria stabilized tetragonal zirconia composites fabricated by spark plasma 

sintering. Biomaterials, 24(4), 667–675.

 

Hambire, U. V., & Tripathi, V. K. (2012). Experimental evaluation of different fillers in dental 

composites in terms of mechanical properties. ARPN Journal of Engineering and Applied Sciences, 

7(2), 147–151.

 

Hannink, R. H. J., Kelly, P. M., & Muddle, B. C. (2004). Transformation Toughening in 

Zirconia-Containing Ceramics. Journal of the American Ceramic Society, 83(3), 461–487.

 

Harda, F. (2008). Zirconia Reinforced Hydroxyapatite Biocomposite for Strength and Toughness 

Improvement.

 

Heintze, S. D., Forjanic, M., Ohmiti, K., & Rousson, V. (2010). Surface deterioration of dental 

materials after simulated toothbrushing in relation to brushing time and load. Dental Materials, 

26(4), 306–319.

 

Herrero, A. A., Yaman, P., & Dennison, J. B. (2005). Polymerization shrinkage and depth of cure of 

packable composites. Quintessence International (Berlin, Germany : 1985), 36(1), 25–31.

 

Höland, W., Schweiger, M., Watzke, R., Peschke, A., & Kappert, H. (2008). Ceramics as biomaterials 

for dental restoration. Expert Review of Medical Devices, 5(6), 729–745.

 

Holzapfel, B. M., Reichert, J. C., Schantz, J.-T., Gbureck, U., Rackwitz, L., Nöth, U.,

… Hutmacher, D. W. (2013). How smart do biomaterials need to be? A translational science and 

clinical point of view. Advanced Drug Delivery Reviews, 65(4), 581–603.

 

Jillavenkatesa, A., & Condrate, R. A. (1998). Sol–gel processing of hydroxyapatite.

Journal of Materials Science, 33(16), 4111–4119.

 

Khalaf Al-Khazraji, K., Asim Hanna, W., & Suhbat Ahmed, P. (2010). Effect of Sintering Temperature 

on Some Physical  And Mechanical Properties of Fabricated Hydroxyapatite Used For Hard Tissue 

Healing. Journal, 28(10), 1880–1892.

 

Khoo, W., Nor, F. M., Ardhyananta, H., & Kurniawan, D. (2015). Preparation of Natural 

Hydroxyapatite from Bovine Femur Bones Using Calcination at Various Temperatures. Procedia 

Manufacturing, 2, 196–201.

 

Khoroushi, M., & Mansoori, M. (2012). Marginal Sealing Durability of Two Contemporary Self-Etch 

Adhesives, 2012.

 

Kim, S. W., Khalil, K. A., Cockcroft, S. L., Hui, D., & Lee, J. H. (2013). Sintering behavior and 

mechanical properties of HA-X% mol 3YSZ composites sintered by high frequency induction heated 

sintering. Composites Part B, 45(1), 1689– 1693.

 

Klapdohr, S., & Moszner, N. (2005). New Inorganic Components for Dental Filling Composites. 

Monatshefte for Chemie - Chemical Monthly, 136(1), 21–45.

 

Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., & Chanthai, S. (2013). Nanocrystalline  

hydroxyapatite  from  fish  scale  waste:  Preparation, characterization and application for 

selenium adsorption in aqueous solution. The Chemical Engineering Journal, 215–216, 522–532.

 

Kumar Mishra, V., Nath Bhattacharjee, B., Kumar, D., Rai, S. B., & Parkash, O. (2015). Effect of 

Chelating Agent at Different pH on Spectroscopic and Structural Properties of Microwave Derived 

Hydroxyapatite Nanoparticles: A Bone Mimetic Material. New Journal of Chemistry, 0, 1–3.

 

Laila, A. D. (2010). The effect of filler on the mechanical properties of a novel resin- based 

calcium phosphate cement. Indiana University School of Dentistry.

 

Le Révérend, B. J. D., Edelson, L. R., & Loret, C. (2014). Anatomical, functional, physiological 

and behavioural aspects of the development of mastication in early childhood. The British Journal 

of Nutrition, 111(3), 403–14.

 

Lee, S.-Y., Regnault, W. F., Antonucci, J. M., & Skrtic, D. (2007). Effect of particle size of an 

amorphous calcium phosphate filler on the mechanical strength and ion release of polymeric 

composites. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 80B(1), 11–17.

 

Leitune, V., Collares, F., Trommer, R., Andriolia, D., Bergmann, C., & Samuela, S. (2013). The 

addition of nanostructured hydroxyapatite to an experimental adhesive resin. Journal of Dentistry, 

41(1), 321–327.

 

Leong, C. H., Muchtar, A., Tan, C. Y., Razali, M., & Noor Faeizah, A. (2014). Sintering of 

hydroxyapatite/yttria stabilized zirconia nanocomposites under nitrogen  gas  for  dental  

materials.  Advances  in  Materials  Science  and Engineering, 2014, 1–6.

 

Lim, K. F., Andanastuti, M., Rusnah, M., & Yong Tan, C. (2014). Synthesis and characterization of 

hydroxyapatite-zirconia composites for dental application. Asian Journal of Scientific Research, 

7(4), 609–615.

 

Lindberg, A. (2005). Resin composites: Sandwich restorations and Curing techniques.

Umea University.

 

Liuyun, J., Yubao, L., & Chengdong, X. (2009). Preparation and biological properties of a novel 

composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue. Journal 

of Biomedical Science, 16(1), 65.

 

Lukic, M. J., Veselinovic, L., Stevanovic, M., Nunic, J., Drazic, G., Markovic, S., & Uskokovic, D. 

(2014). Hydroxyapatite nanopowders prepared in the presence of zirconium ions. Material S Letters, 

122, 296–300.

 

Maas, M. S., Alania, Y., Natale, L. C., Rodrigues, M. C., Watts, D. C., & Braga, R. R. (2017). 

Trends in restorative composites research: what is in the future? Brazilian Oral Research, 31, 

23–36.

 

Madhav, V. N. . (2012). Nanocomposites - A Step Towards Improved Restorative Dentistry. Indian 

Journal of Dental Sciences, 3(4), 123–126.

 

Miletic, V. (2017). Dental Composite Materials for Direct Restorations - Google Books.

 

Mohammed, A. H. (2011). Polimerisation kinetics and optical phenomena of photoactive dental resins. 

University of Birmingham.

 

Moharam, L. M., Sherief, M. A., & Nagi, S. M. (2016). Mechanical properties of resin composite  

reinforced  with  synthesized  nano-structured  hydroxyapatite. International Journal of ChemTech 

Researc, 9(7), 634–644.

 

Morks, M., & Kobayashi, A. (2007). Microstructure and mechanical properties of HA/ZrO2 coatings by 

gas tunnel plasma spraying. Transactions of JWRI, 36(1), 47–51.

 

Mousavinasab, S. M. (2011). Effects of Filler Content on Mechanical and Optical Properties of 

Dental Composite Resin. In Metal, Ceramic and Polymeric Composites for Various Uses (pp. 421–429). 

InTech.

 

Muddugangadhar, B. C., Amarnath, G. S., Tripathi, S., Dikshit, S., & Ms, D. (2012). Biomaterials 

for Dental Implants: An Overview International Journal of Oral Implantology and Clinical Research. 

International Journal of Oral Implantology and Clinical Research, 2(1), 13–24.

 

Murugan, R., & Ramakrishna, S. (2003). Effect of zirconia on the formation of calcium phosphate 

bioceramics under microwave irradiation, 58, 230–234.

 

Musanje, L., Ferracane, J. L., & Sakaguchi, R. L. (2009). Determination of the optimal 

photoinitiator concentration in dental composites based on essential material properties. Dental 

Materials, 25(8), 994–1000.

 

Mustafa, N., Ibrahim, M. H. I., Asmawi, R., & Amin, A. M. (2015). Hydroxyapatite extracted from 

waste fish bones and scales via calcination method. Applied Mechanics and Materials, 773–774, 

287–290.

 

Nakamura, K. (2015). Mechanical and Microstructural Properties of Monolithic Zirconia.

 

Nascimento, M. M., Gordan, V. V, Qvist, V., Litaker, M. S., Rindal, D. B., Williams,

O. D., … Gilbert, G. H. (2010). Reasons for Placement of Restorations on Previously Unrestored 

Tooth Surfaces by Dental PBRN Dentists. Journal of the American Dental Association, 141(4), 441–8.

 

Nayak, A. K. (2010). Hydroxyapatite Synthesis Methodologies: An Overview.

International Journal of ChemTech Research, 2(2), 974–4290.

 

Nayak, Y., Rana, R. P., Pratihar, S. K., & Bhattacharyya, S. (2008). Pressureless sintering of 

dense hydroxyapatite-zirconia composites. Journal of Materials Science: Materials in Medicine, 

19(6), 2437–2444.

 

O’Brien, W. J. (2002). Dental materials and their selection (3rd ed.). Quintessence Publishing Co.

O’Brien, W. J. (2009). Dental Materials and Their Selection. Quintessence Pub. Co. Oduncu, B. S., 

Yucel, S., Aydin, I., Sener, I. D., & Yamaner, G. (2010).

Polymerisation Shrinkage of Light − Cured Hydroxyapatite ( HA ) − Reinforced Dental Composites, 

4(4), 130–135.

 

Okulus, Z., Buchwald, T., Szybowicz, M., & Voelkel, A. (2014). Study of a new resin-based 

composites containing hydroxyapatite filler using Raman and infrared spectroscopy. Materials 

Chemistry and Physics, 145(3), 304–312.

 

Oliveira, M., & Sander Mansur, H. (2007). Synthetic Tooth Enamel : SEM Characterization  of  a  

Fluoride  Hydroxyapatite  Coating  for  Dentistry Applications. Material Research, 10(2), 115–118.

 

Pankaew, P., Hoonnivath, E., Limsuwan, P., & Naemchanth, K. (2010). Temperature Effect  on  Calcium 

 Phosphate  Synthesized  from  Chicken  Eggshells  and Ammonium Phosphate. Journal of Applied 

Sciences, 10(24), 3337–3342.

 

Patel, N., & Gohil, P. (2012). A review on biomaterials: scope, applications & human anatomy 

significance. International Journal of Emerging Technology and, 2(4), 91–101.

 

Pavlovic, M. (2015). What are biomaterials? In Bioengineering (pp. 229–244). Cham: Springer 

International Publishing.

 

Peskersoy, C., & Culha, O. (2017). Comparative Evaluation of Mechanical Properties of Dental 

Nanomaterials. Journal of Nanomaterials, 2017, 1–8.

 

Petrik, J., & Palfy, P. (2009). The Quality of Hardness Tester Calibration. Quality Innovation 

Prosperity, 1(13), 34–44.

 

Pittayachawan, P. (2009). Comparative study of physical properties of zirconia based dental 

ceramics.

 

Pittayachawan, P., McDonald, A., Young, A., & Knowles, J. C. (2009). Flexural strength, fatigue 

life, and stress-induced phase transformation study of Y-TZP dental ceramic. Journal of Biomedical 

Materials Research Part B: Applied Biomaterials, 88B(2), 366–377.

 

Qahtani, M. Q. A. L. (2010). R Estorative D Entistry Water Sorption and Desorption of Different 

Types of Direct Tooth-Colored Restorative Materials. Pakistan Oral & Dental, 30(2), 476–480.

 

Quan, R., Yang, D., Wu, X., Wang, H., Miao, X., & Li, W. (2008). In vitro and in vivo 

biocompatibility of graded hydroxyapatite-zirconia composite bioceramic. Journal of Materials 

Science: Materials in Medicine, 19(1), 183–187.

 

Rahim, T., Mohamad, D., & Ismail, A. (2011). Synthesis of Nanosilica Fillers for Experimental 

Dental Nanocomposites and Their Characterisations. Journal of Physical Science, 22(1), 93–105.

 

Rajabzadeh, G., Salehi, S., Nemati, A., Tavakoli, R., & Hashjin, M. S. (2013). Enhancing glass 

ionomer cement features by using the HA/YSZ nanocomposite: A feed forward neural network modelling. 

Journal of the Mechanical Behavior of Biomedical Materials, 29, 317–327.

 

Rameshbabu, A. P., Mohanty, S., Bankoti, K., Ghosh, P., & Dhara, S. (2015). Effect of alumina, silk 

and ceria short fibers in reinforcement of Bis-GMA/TEGDMA dental resin. Composites: Part B, 70, 

238–246.

 

Raya, I., Mayasari, E., Yahya, A., Syahrul, M., & Latunra, A. I. (2015). Shynthesis and 

Characterizations of Calcium Hydroxyapatite Derived from Crabs Shells ( Portunus  pelagicus  )  and 

 Its  Potency  in  Safeguard  against  to  Dental Demineralizations, 2015.

 

Ricca, C., Ringuedé, A., Cassir, M., Adamo, C., & Labat, F. (2015). A comprehensive DFT 

investigation of bulk and low-index surfaces of ZrO2 polymorphs. Journal of Computational 

Chemistry, 36(1), 9–21.

 

Rueggeberg, F. A. (2002). From vulcanite to vinyl, a history of resins in restorative dentistry. 

The Journal of Prosthetic Dentistry, 87(4), 364–79.

 

Rueggeberg, F. A. (2011). State-of-the-art: Dental photocuring—A review. Dental Materials, 27(1), 

39–52.

 

Saha, S., & Pal, S. (1984). Mechanical properties of bone cement: A review. Journal of Biomedical 

Materials Research, 18(4), 435–462.

 

Sahin, E. (2006). Synthesis and characterization of hydroxyapatite-alumina-zirconia biocomposites.

Sakaguchi, R. L., Ferracane, J. L., & Powers, J. M. (2018). Craig’s restorative dental materials. 

(R. L. Sakaguchi, Ed.) (Fourth Edi). Missouri: Elsevier, Inc.

 

Saxena, P., Pant, A., Gupta, S., & Pant, V. (2012). Release and toxicity of dental resin composite. 

Toxicology International, 19(3), 225.

 

Schneider, L. F. J., Cavalcante, L. M., & Silikas, N. (2010). Shrinkage Stresses Generated during 

Resin-Composite Applications: A Review. Journal of Dental Biomechanics, 14.

 

Shah, P. K. (2012). Investigation and Control of Filler-Matrix Interactions Applied to Dental 

Composites. University of Colorado, Boulder.

 

Sideridou, I. D., & Achilias, D. S. (2005). Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and 

Bis-EMA from light-cured dental resins and resin composites using HPLC. Journal of Biomedical 

Materials Research Part B: Applied Biomaterials, 74B(1), 617–626.

 

Silva, C. M., & Dias, K. R. H. C. (2009). Compressive strength of esthetic restorative materials 

polymerized with quartz-tungsten-halogen light and blue  LED. Brazilian Dental Journal, 20(1), 

54–7.

 

Silva, E. M. da, Almeida, G. S., Poskus, L. T., & Guimarães, J. G. A. (2008). Relationship between 

the degree of conversion, solubility and salivary sorption of a hybrid and a nanofilled resin 

composite. Journal of Applied Oral Science, 16(2), 161–166.

 

Silva, V. V., Lameiras, F. S., & Lobato, Z. I. P. (2002). Biological reactivity of 

zirconia-hydroxyapatite composites. Journal of Biomedical Materials Research, 63(5), 583–590.

 

Siraparapu, Y., Bassa, S., & Sanasi, P. (2013). A review on recent applications of biomaterials. 

International Journal of Science and Research, 70–75.

 

Skrtic, D., & Antonucci, J. (2007). Effect of chemical structure and composition of the resin phase 

on vinyl  conversion of amorphous calcium phosphate-filled composites. Polymer International, 

56(4), 497–505.

 

Sopyan, I., Singh, R., & Hamdi, M. (2008). Synthesis of nano sized hydroxyapatite powder using 

sol-gel technique and its conversion to dense and porous bodies. Indian Journal of Chemistry, 47A, 

1626–1631.

 

St-pierre, L. (2011). Effect of finishing and polishing direction on the marginal adaptation of 

resin-based composite restorations in vitro. The University of Iowa.

 

Sukaryo, S. G., Purnama, A., & Hermawan, H. (2016). Structure and Properties of Biomaterials. In H. 

H. Ferdiansyah Mahyudin (Ed.), Biomaterials and Medical Devices: A Perspective from an Emerging 

Country (pp. 1–22). Switzerland: Springer International Publishing Switzerland.

 

Sung, Y.-M., Shin, Y.-K., & Ryu, J.-J. (2007). Preparation of hydroxyapatite/zirconia bioceramic 

nanocomposites for orthopaedic and dental prosthesis applications. Nanotechnology, 18(6), 6.

 

Tathe, A., Ghodke, M., & Pratima Nikalje, A. (2010). A brief review: Biomaterials and their 

application. International Journal of Pharmacy and Pharmaceutical Sciences, 2(4), 19–23.

 

Tham, W., Chow, W., & Ishak, Z. (2010). Simulated body fluid and water absorption effects on poly 

(methyl methacrylate)/hydroxyapatite denture base composites. Express Polymer Letters, 4(9), 

517–528.

 

Thornton, I. (2014). Mechanical properties of dental resin composite cad/cam blocks.

University Ottawa. The Univesity of British Columbia.

 

Trautmann, R. (2010). Effect of composition on adhesion strength between particle filled composite 

and fiber reinforced composite. Brno University of Technology.

 

Vagkopoulou, T., Koutayas, S. O., Koidis, P., & Strub, J. R. (2009). Zirconia in dentistry: Part 1. 

Discovering the nature of an upcoming bioceramic. The European Journal of Esthetic Dentistry, 4(2), 

130–151.

 

Venkatesan, J., & Kim, S. K. (2010). Effect of Temperature on Isolation and Characterization  of  

Hydroxyapatite  from  Tuna  (Thunnus  obesus)  Bone. Materials, 3(10), 4761–4772.

 

Victor, O., Ajibola, V. O., Agbaji, E. B., & Giwa, A. A. (2015). Synthesis of Calcium 

Hydroxyapatite  Nanocrystals  using  Chemical  Precipitation  Technique :  A Review. International 

Journal of Nano and Material Sciences, 4(1), 39–54.

 

Vitalariu, A., Tatarciuc, M., Cotaie, G., & Diaconu, D. (2015). In vitro testing-An esential method 

for evaluating the performance of dental materials and devices. International Journal of Medical 

Dentistry, 5(2), 92–7.

 

Wang, R., Zhu, M., Bao, S., Liu, F., Jiang, X., & Zhu, M. (2013). Synthesis of Two Bis-GMA 

Derivates with Different Size Substituents as Potential Monomer to Reduce the Polymerization 

Shrinkage of Dental Restorative Composites. Journal of Materials Science Research, 2(4).

 

Williams, D., & Jong, W. De. (2008). The Safety of Dental Amalgam and Alternative

Dental Restoration Materials for Patients and Users. Health and Consumer Protection 

Directorate-General. Europian Commision.

 

Wilson, K. S., & Antonucci, J. M. (2006). Interphase structure-property relationships in  thermoset 

 dimethacrylate  nanocomposites.  Dental  Materials :  Official Publication of the Academy of 

Dental Materials, 22(11), 995–1001.

 

Wong, J. D. C., Kei Lung, C. Y., Tsoi, J. K. H., & Matinlinna, J. P. (2014). Effects of a zirconate 

coupling agent incorporated into an experimental resin composite on its compressive strength and 

bonding to zirconia. Journal of the Mechanical Behavior of Biomedical Materials, 29, 171–176.

 

Wopenka, B., & Pasteris, J. D. (2005). A mineralogical perspective on the apatite in bone. 

Materials Science and Engineering, 25, 131–143.

 

Zadpoor, A. A. (2015). Mechanics of biological tissues and biomaterials: Current trends. Materials, 

8(7), 4505–4511.

 

Zainol, I., Alwi, N. M., Abidin, M. Z., Haniza, H. M. Z., Ahmad, M. S., & Ramli, A. (2012). 

Physicochemical Properties of Hydroxyapatite Extracted from Fish Scales. Advanced Materials 

Research, 545, 235–239.

 

Zena Joma, H. A.-B. (2014). Evaluation the effect of incorporated hydroxyapatite prepared from 

dried egg shell on some properties of relief denture base. University of Mosul.

 

Zhang, H., & Darvell, B. W. (2012). Mechanical properties of hydroxyapatite whisker-reinforced 

bis-GMA-based resin composites. Dental Materials, 28(8),

824–830.

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.