UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :thesis
Subject :QD Chemistry
Main Author :Azlina Yahya
Title :Optical properties of neodymmium and erbium doped tellurite glass coated with graphene oxide
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2020
Notes :with cd
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
This study aimed to enhance the optical properties on neodymium oxide (Nd2O3) and erbium oxide (Er2O3) doped tellurite-based glass coated with graphene oxide (GO). The two series of  tellurite glasses with chemical composition of {[(TeO2)0.7 (B2O3)0.3]0.7 (ZnO)0.3}1?y (Nd2O3)y and  {[(TeO2)0.7 (B2O3)0.3]0.7 (ZnO)0.3}1?y (Er2O3)y with varying concentrations of Nd³+ and Er³+ ions from y=0.005, 0.01, 0.02, 0.03, 0.04, and 0.05 mol% were  prepared and coated with GO using melt-quenching and spray coating methods. The physical,  structural and optical properties of prepared glasses were characterized using densimeter, scanning  electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR),  Ellipsometer, and ultraviolet- visible (UV- Vis) spectrophotometer. The structural analysis  determined by XRD pattern proved an amorphous structure for the glass samples. The obtained results  through FT-IR analysis showed the formation of non-bridging oxygens (NBOs) in the glass network  system. The SEM images revealed the surface morphology of GO on the glass surface. The values of  the refractive index were escalated with the increasing concentration of neodymium from 2.301 to 2.332, and erbium from 2.275 to 2.299 with the existence of GO. This was due to the  presence of a high degree number of oxygen atoms consisted in GO structure. The values of optical  bandgap energy were enhanced with the increasing concentrations of neodymium from 3.315 to 3.381 eV  while for erbium from 3.392 to 3.495 eV. The increment of optical bandgap energy was due to the  high in GO optical absorptions. The electronic polarizability values of glass samples were enhanced  for neodymium from 8.815 to 8.887 ų while for erbium from 8.815 to 8.894 ų due to high surface  area and low particle density in GO. In conclusion, the synthesized GO is a good candidate for use  as a coating material on tellurite-based glass surfaces. This study may contribute to the potential uses for high optical performance of fiber optics applications.  

References

Abdel-Baki, M. & El-Diasty, F. (2007). Optical properties of oxide glasses containing transition 

metals : Case of titanium- and chromium-containing glasses. Current Opinion in Solid State and 

Materials Science, 10(5–6), 217–229.

 

Abdul, H., Sidek, A., Chow, S. P., & Talib, Z. A. (2004). Formation and Elastic Behavior of 

Lead-Magnesium Chlorophosphate Glasses. Turk. J. Pyhs, 28, 65–71.

 

Abdullahi, I., Hashim, S., & Ghoshal, S. K. (2019). Waveguide laser potency of samarium doped 

BaSO4-TeO2-B2O3 glasses : Evaluation of structural and optical qualities. Journal of Luminescence, 

216, 116686.

 

Abid, Sehrawat, P., Islam, S. S., Mishra, P., & Ahmad, S. (2018). Reduced graphene oxide (rGO) 

based wideband optical sensor and the role of Temperature, Defect States and Quantum Efficiency. 

Scientific Reports, 8(1).

 

Abushahab, W. S., Moustafa, E. B., Hammad, A. H., Ramadan, R. M., & Wassel, A. R. (2019). 

Enhancement the structural, optical and nonlinear optical properties of cadmium phosphate glasses 

by nickel ions. Journal of Materials Science: Materials in Electronics.

 

Adel, G., & Mokhtar, H. M. (2018). Physical Properties of Nb2O5BaO TeO2 Glass System with 

Compositional Variations. Egyptian Journal of Physics, 46, 23–28.

 

Ahmed, E. M., Youssif, M. I., & Elzelaky, A. A. (2019). Structural, thermal and photoemission 

properties of erbium doped phosphate glass. Ceramics International, 45(18), 24014–24021.

 

Akbari, E., Akbari, I., & Ebrahimi, M. R. (2019). sp²/ sp³ bonding ratio dependence of the band-gap 

in graphene oxide. The European Physical Journal B, 92(4).

 

Al-azzawi, A. A., Almukhtar, A. A., Hamida, B. A., Das, S., Dhar, A., & Paul, M. C. (2019). 

Wideband and flat gain series erbium doped fiber amplifier using hybrid active fiber with backward 

pumping distribution technique. Results in Physics, 13, 102186.

 

Al-hiti, A. S., Rahman, M. F. A., Harun, S. W., Yupapin, P., & Yasin, M. (2019). Holmium oxide thin 

fi lm as a saturable absorber for generating Q-switched and mode-locked erbium-doped fiber lasers. 

Optical Fiber Technology, 52, 101996.

 

Alazoumi, S. H., Aziz, S. A., El-Mallawany, R., Aliyu, U. S., Kamari, H. M., Zaid, M. H.

M. M., Matori, K. M., Ushah, A. (2018). Optical properties of zinc lead tellurite

. Results in Physics, 9, 1371–1376.

 

Alvarez-Ramos, M. E., Alvarado-Rivera, J., Zayas, M. E., Caldiño, U., & Hernández- Paredes, J. 

(2018). Yellow to orange-reddish glass phosphors: Sm³+, Tb³+and Sm³+/Tb³+in zinc 

tellurite-germanate glasses. Optical Materials, 75, 88–93.

 

Anashkina, E. A., Dorofeev, V. V, Koltashev, V. V, & Kim, A. V. (2017). Development of Er³+-doped 

high-purity tellurite glass fibers for gain-switched laser operation at

2.7 μm. Optical Materials Express, 7(12), 235–238.

 

Anita, K., & Singh, N. R. (2011). Spectrochimica Acta Part A : Molecular and Biomolecular 

Spectroscopy Absorption spectral analysis of 4f–4f transitions for the complexation of Pr (III) and 

Nd (III) with thiosemicarbazide in absence and presence of Zn (II) in aqueous and organics. 

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81(1), 117–121.

 

Anjaiah, J. (2019). Influence Of Modifier Oxide On Spectroscopic Characteristics Of Neodymium Ion 

In Lithium Borate Glass System. International Journal of Research in Advent Technology, 7(3), 

1450–1457.

 

Arashloo, B. A., Ahmadi, M. T., & Afrang, S. (2017). The Band Energy Engineering on High Epoxy 

(Hydroxyl) Content Graphene Oxide. Surface Review and Letters, 26(1), 1–8.

 

Assadi, A. A., Damak, K., Lachheb, R., Herrmann, A., Yousef, E., Rüssel, C., & Maâlej,

R. (2015). Spectroscopic and luminescence characteristics of erbium doped TNZL glass for lasing 

materials. Journal of Alloys and Compounds, 620, 129–136.

 

Augustine, S., Singh, J., Srivastava, M., Sharma, M., Das, A., & D. Malhotra, B. (2017). 

Biomaterials Science Recent advances in carbon based nanosystems for cancer theranostics. 

Biomaterials Science, 5, 901–952.

 

Ayuni, J. N., Halimah, M. K., Talib, Z. A., Sidek, H. A. A., Daud, W. M., Zaidan, A. W., & 

Khamirul, A. M. (2011). Optical properties of ternary TeO2-B2O3-ZnO glass system. IOP Conference 

Series: Materials Science and Engineering, 17, 012027.

 

Azlan, M. N., & Halimah, M. K. (2018). Role of Nd³+ nanoparticles on enhanced optical efficiency in 

borotellurite glass for optical fiber. Results in Physics, 11, 58–64.

 

Azlan, M. N., Halimah, M. K., Baki, S. O., & Daud, W. M. (2016). Effect of Neodymium Concentration 

on Structural and Optical Properties of Tellurite Based Glass System. Materials Science Forum, 846, 

183–188.

 

Azlan, M. N., Halimah, M. K., Shafinas, S. Z., & Daud, W. M. (2014). Polarizability and optical 

basicity of Er³+ ions doped tellurite based glasses. Chalcogenide Letters, 11(7), 319–335.

 

Azlan, M. N., Halimah, M. K., Shafinas, S. Z., & Daud, W. M. (2015). Electronic polarizability of 

zinc borotellurite glass system containing erbium nanoparticles. Materials Express, 5(3), 211–218.

 

Bachvarova-nedelcheva, A., Iordanova, R., Ganev, S., & Dimitriev, Y. (2018). Glass formation and 

structural studies of glasses in the TeO-ZnO-Bi2O3–NbO5 system. Journal of Non-Crystalline Solids.

 

Balachander, L., Ramadevudu, G., Sayanna, R., & Venudhar, Y. C. (2013). IR analysis of borate 

glasses containing three alkali oxides. Science Asia, 39, 278–283.

 

Bhatia, B., Meena, S. L., Parihar, V., & Poonia, M. (2015). Optical Basicity and Polarizability of 

Nd³+-Doped Bismuth Borate Glasses. New Journal of Glass and Ceramics, 5, 44–52.

 

Bhatia, V., Kumar, D., Kumar, A., Mehta, V., Chopra, S., & Vij, A. (2018). Mixed transition  and  

rare  earth  ion  doped  borate  glass :  structural,  optical  and thermoluminescence study. 

Journal of Materials Science: Materials in Electronics.

 

Bilir, G., Kaya, A., Cinkaya, H., & Eryürek, G. (2016). Spectroscopic investigation of zinc 

tellurite glasses doped with Yb³+ and Er³+ ions. Spectrochimica Acta Part A: Molecular and 

Biomolecular Spectroscopy, 165, 183–190.

 

Bolundut, L., Pop, L., Bosca, M., Tothazan, N., Borodi, G., Culea, E., Pascuta, P., Stefan,

R. (2017). Structural, spectroscopic and magnetic properties of Nd³+ doped lead tellurite glass 

ceramics containing silver. Journal of Alloys and Compounds, 692, 934–940.

 

Boucher, Y. G., Zur, L., & Ferrari, M. (2018). Modal properties of an Erbium-doped asymmetric 

single-mode slab waveguide in the glass-ceramics SnO2-SiO2 system. Optical Materials.

 

Brodie, B. C. (1859). On the atomic weight of graphite. Philosophical Transactions of the Royal 

Society of London, 149(0), 249–259.

 

Bulus, I., Hussin, R., Ghoshal, S. K., Tamuri, A. R., & Jupri, S. A. (2019). Enhanced elastic and 

optical attributes of boro-telluro-dolomite glasses : Role of CeO2 doping. Ceramics International, 

45(15), 18648–18658.

 

Bunch, J. S., Verbridge, S. S., Alden, J. S., Zande, A. M. Van Der, Parpia, J. M., Craighead, H. 

G., & Mceuen, P. L. (2008). Impermeable Atomic Membranes from 2008. Nano Letters, 8(8), 2458–2462.

 

Cao, R., Lu, Y., Tian, Y., Huang, F., Guo, Y., Xu, S., & Zhang, J. (2016). 2 μm emission properties 

and nonresonant energy transfer of Er³+ and Ho³+ codoped silicate glasses. Scientific Reports, 

6(1), 1–11.

 

Cervantes-juárez, E., Meza-rocha, A. N., Romero-romo, W., Caldiño, U., Falcony, C., Alvarez, E., 

Palomino-Ovando, M., Lozada-morales, R. (2018). Up and down- shifting emission properties of novel 

Er³+-doped CdO-V2O -P2O5 glass system. Ceramics International.

 

Chanthima, N., Kiwsakunkran, N., Kaewkhao, J., & Sangwaranatee, N. (2019). Optical and luminescence 

investigation of Er³+ doped in Na2O-Al2O3-P2O5 glasses for photonics material application. Journal 

of Metals, Materials and Minerals, 29(2), 58–63.

 

Chavan, V. K., & Sreenivasulu, M. (2019). Physical, optical and morphological studies of V2O5 doped 

zinc lead lithium phosphate (ZnPbLiP) glasses. Materials Today: Proceedings.

 

Chopra, N., Kaur, S., Kaur, M., Singla, S., Marwaha, R., Sharma, G., & Heer, M. S. (2018). Optical, 

Physical and Structural Properties of Er³+ Doped Low-Phonon Energy Vitreous Matrix: ZnO-B2O3-TeO2. 

Physica Status Solidi (A), 215(13), 1700934.

 

Costa, F. B., Yukimitu, K., Nunes, L. A. O., Figueiredo, M. S., Andrade, L. H. C., Lima,

S. M., & Moraes, J. C. S. (2015). Spectroscopic properties of Nd³+ -doped tungsten- tellurite 

glasses. Journal of Physical and Chemistry of Solids, 88, 54–59.

 

Damodaraiah, S., Prasad, V. R., & Ratnakaram, Y. C. (2019). Investigations on spectroscopic 

properties of Nd³+ doped alkali bismuth phosphate glasses for 1.053 μm laser applications. Optics 

and Laser Technology, 113, 322–329.

 

Dato, A., & Frenklach, M. (2010). Substrate-free microwave synthesis of graphene: experimental 

conditions and hydrocarbon precursors. New Journal of Physics, 12(12), 125013.

 

Deb, S. K., Wilding, M., Somayazulu, M., & Mcmillan, P. F. (2001). an amorphous ± amorphous 

transition in densi ® ed porous silicon. Nature, 414(6863), 528–530.

 

Deepa, A. V, Murugasen, P., Muralimanohar, P., Sathyamoorthy, K., & Vinothkumar, P. (2018). A 

comparison on the Structural and Optical Properties of Different Rare Earth Doped Phosphate 

Glasses. Optik - International Journal for Light and Electron Optics.

 

Deopa, N., & Rao, A. S. (2017). Spectroscopic studies of Sm³+ ions activated lithium lead alumino 

borate glasses for visible luminescent device applications. Optical Materials, 72, 31–39.

 

Devaraja, C., Gowda, G. V. J., & Keshavamurthy, K. (2019). The optical and physical properties of 

holmium (Ho³+) ions doped bismuth–tellurite glasses. Proceedings of the International Conference on 

Advanced Materials: Icam 2019, 2162, 020172.

 

Dimitrov, V., & Sakka, S. (1996). Electronic oxide polarizability and optical basicity of simple 

oxides. Journal of Applied Physics, 79(3), 1736–1740.

 

Dimitrov, V, & Komatsu, T. (2010). An Interpretation of Optical Properties of Oxides and Oxide 

Glasses in terms of the Electronic Ion Polarizability and Average Single Bond Strength (Review). 

Journal of the University of Chemical Technology and Metallurgy, 45(3), 219–250.

 

Dimitrov, Vesselin, & Komatsu, T. (1999). Electronic polarizability, optical basicity and 

non-linear optical properties of oxide glasses, 249, 160–179.

 

Dimitrov, Vesselin, & Komatsu, T. (2005). Classification of oxide glasses : A polarizability 

approach. Journal of Solid State Chemistry, 178(3), 831–846.

 

Ding, L., Xu, C., Xia, Z., Xu, B., & Huang, J. (2017). Controlling polarization-dependent optical 

absorption of graphene through its thickness. Optik - International Journal for Light and Electron 

Optics, 137, 59–64.

 

Divina, R., Marimuthu, K., Sayyed, M. I., Tekin, H. O., & Agar, O. (2019). Physical, structural, 

and radiation shielding properties of B2O3–MgO–K2O–Sm2O3 glass network modified with TeO2. 

Radiation Physics and Chemistry, 160, 75–82.

 

Dousti, M. R. (2017). Enhanced 1.06 μm emission in Nd³+-doped lead-tellurite glasses doped with 

silver nanoparticles. Journal of Nanophotonics, 10(4), 046010.

 

Dreyer, D. R., Ruoff, R. S., & Bielawski, C. W. (2010). From Conception to Realization : An 

Historial Account of Graphene and Some Perspectives for Its Future. Angewandte Chemie International 

Edition, 49(49), 9336–9344.

 

Dubois, S. M., Zanolli, Z., Declerck, X., & Charlier, J. (2009). Electronic properties and quantum 

transport in Graphene-based nanostructures. The European Physical Journal B, 72(1), 1–24.

 

Duffy, J. A., & Ingram, M. D. (1971). Establishment of an Optical Scale for Lewis Basicity in 

Inorganic Oxyacids, Molten Salts, and Glasses, 1(2), 6448–6454.

 

Duffy, J. A., & Ingram, M. D. (1992). Comment. Journal of Non-Crystalline Solids, 144, 76–80.

Duffy, J. A. (1989). Optical Basicity of Titanium( IV] Oxide and Zirconium( IV) Oxide.

Journal of the American Ceramic Society, 72(10), 2012–2013.

 

Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., & Chhowalla, M. (2009). Insulator to Semimetal 

Transition in Graphene Oxide. The Journal of Physical Chemistry C, 113(35), 15768–15771.

 

Edwards, R. S., & Coleman, K. S. (2013). Graphene synthesis : relationship to applications. 

Nanoscale, 5(1), 38–51.

 

El-Maaref, A. A., Shimaabadr, Shaaban, K. S., Abdel Wahab, E. A., & Elokr, M. M. (2018). Optical 

Properties and Radiative Rates of Nd³+ Doped Zinc-Sodium Phosphate Glasses. Journal of Rare Earths.

 

Elbadawi, N. I. A., Abdallah, M. D., Elhai, R. A., & Ahmed, S. A. E. (2018). The Effect of 

Oxidation Number on Refractive Index Based on String Theory. International Journal of Engineering 

Sciences and Research Technology, 7(1), 122–129.

 

Elgazery, M., Ali, A. A., & El-Mallawany, R. (2019). Ultrasonic and Thermal Properties of Bismuth 

Borotellurite Glasses Doped with NdCl3. Egyptian Journal of Chemistry, 62(4), 655–664.

 

Elkhoshkhany, N., Essam, O., & Embaby, A. M. (2018). Optical, thermal and antibacterial properties 

of tellurite glass system doped with ZnO. Materials Chemistry and Physics, 214, 489–498.

 

Emiru, T. F., & Ayele, D. W. (2016). Controlled synthesis , characterization and reduction of 

graphene oxide : A convenient method for large scale production. Egyptian Journal of Basic and 

Applied Sciences, 4(1), 74–79.

 

Ennouri, M., Jlassi, I., Habib, E., & Bernard, G. (2019). Improvement of spectroscopic properties 

and luminescence of Er³+ ions in phospho-tellurite glass ceramics by formation of ErPO4 

nanocrystals. Journal of Luminescence, 216, 116753.

 

Fang, M., Xiong, X., Hao, Y., Zhang, T., & Wang, H. (2019). Journal of Materials Science & 

Technology Preparation of highly conductive graphene-coated glass fibers by sol-gel and dip-coating 

method. Journal of Materials Science & Technology, 35(9), 1989–1995.

 

Farouk, M., Abdallauh, K., Attallah, M., & El-fattah, Z. M. A. (2019). Influence of different 

alkaline oxide modifiers on VO²+ ions doped zinc borate glasses. Journal of Non-Crystalline Solids, 

523, 119607.

 

Faznny, M. F., Halimah, M. K., & Azlan, M. N. (2016). Effect of Lanthanum Oxide on Optical 

Properties of Zinc Borotellurite Glass System. Journal of Optoelectronics and Biomedical Materials, 

8(2), 49–59.

 

Fu, S., Zhu, X., Wang, J., Wu, J., Tong, M., Zong, J., Li, M., Wiersma K., Chavez- Pirson, A., & 

Peyghambarian, N. (2019). L-band wavelength-tunable Er³+-doped tellurite fiber lasers. Journal of 

Lightwave Technology, 8724, 1–5.

 

Fuks-janczarek, I., Miedzinski, R., Reben, M., & Sayed, E. (2019). Linear and non-linear optical 

study of fluorotellurite glasses as function of selected alkaline earth metals doped with Er³+. 

Optics and Laser Technology, 111, 184–190.

 

Gaikwad, D. K., Sayyed, M. I., Botewad, S. N., Shamsan, S. O., Khattari, Z. Y., Gawai,

U. P., Afaneh, F., Shirshat, M. D., & Pawar, P. P. (2018). Physical, structural, optical 

investigation and shielding features of tungsten bismuth tellurite based glasses. Journal of 

Non-Crystalline Solids.

 

Gangwar, H., Singh, V., Tewari, B. S., Gupta, H., & Purohit, L. P. (2019). Study of zinc doped  

tellurite  glasses  using  XRD,  UV-Vis  and  FTIR.  Materials  Today: Proceedings, 17, 329–337.

 

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191.

 

Georgakilas, V., Perman, J. A., Tucek, J., & Zboril, R. (2015). Broad Family of Carbon 

Nanoallotropes : Classification, Chemistry, and Applications of Fullerenes, Carbon Dots,  

Nanotubes,  Graphene,  Nanodiamonds,  and  Combined  Superstructures. Chemical Reviews, 115(11), 

4744–4822.

 

Gökçe, M., & Koçyigit, D. (2018). Optical and luminescence characteristics of Sm³+ doped 

B2O3-GeO2-Gd2O3 glasses. Optical Materials, 83, 233–240.

 

Gomes, J. F., Lima, A. M. O., Sandrini, M., Medina, A. N., Steimacher, A., Pedrochi, F., & Barboza, 

M. J. (2017). Optical and spectroscopic study of erbium doped calcium borotellurite glasses. 

Optical Materials, 66, 211–219.

 

Gordon, R. (1997). Chemical vapor deposition of coatings on glass. Journal of Non- Crystalline 

Solids, 218, 81–91.

 

Gorni, G., Vel, J. J., Mosa, J., Balda, R., Fern, J., Dur, A., & Castro, Y. (2018). Transparent 

Glass-Ceramics Produced by Sol-Gel : A Suitable Alternative for Photonic Materials. Materials, 

11(2), 212.

 

Greer, A. L. (2015). New horizons for glass formation and stability. Nature Materials, 14(6), 

542–546.

 

Guo, C., Zhang, J., Xu, W., Liu, K., Yuan, X., Qin, S., & Zhu, Z. (2018). Graphene- Based Perfect 

Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications. 

Nanomaterials, 8(12), 1033.

 

Gupta, P. K. (1996). Non-crystalline solids: glasses and amorphous solids. Journal of 

Non-crystalline solids, 195, 158-164.

 

Gupta, V., Sharma, N., Singh, U., Arif, M., & Singh, A. (2017). ( Revised Manuscript ) Synthesis 

and characterization of Graphene Oxide. Optik.

 

Hajer, S. S., Halimah, M. K., Azmi, Z., & Azlan, M. N. (2014). Optical properties of 

Zinc-Borotellurite doped samarium. Chalcogenide Letters, 11(11), 553–566.

 

Halimah, M. K., Umar, S. A., Chan, K. T., Latif, A. A., Azlan, M. N., Abubakar, A. I., & Hamza, A. 

M. (2019). Study Of Rice Husk Silicate Effects On The Elastic, Physical And Structural Properties 

Of Borotellurite Glasses. Materials Chemistry and Physics.

 

Hamza, A. M., Halimah, M. K., Muhammad, F. D., Chan, K. T., Usman, A., Faznny, M. F., Zaitizila, 

I., & Tafida, R. A. (2019). Structural, optical and thermal properties of Er³+ -Ag codoped 

bio-silicate borotellurite glass. Results in Physics, 14, 102457.

 

Han, J. W., & Kim, J. (2013). Green synthesis of graphene and its cytotoxic effects in human breast 

cancer cells. International Journal of Nanomedicine, 8, 1015–1027.

 

Hasan, T., Senger, B. J., Ryan, C., Culp, M., Gonzalez-rodriguez, R., Coffer, J. L., & Naumov, A. 

V. (2017). Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment. Scientific Reports, 

7(1).

 

He, W., Zhang, W., Zhu, L., Lou, X., & Dong, M. (2018). C-band switchable multi- wavelength 

erbium-doped fiber laser based on Mach–Zehnder interferometer employing seven-core fiber. Optical 

Fiber Technology, 46, 30–35.

 

Hegde, V., Prabhu, N., Wagh, A., Sayyed, M. I., Agar, O., & Kamath, S. D. (2019). Influence of 1.25 

MeV gamma rays on optical and luminescent features of Er³+ doped zinc bismuth borate glasses. 

Results in Physics, 12, 1762–1769.

 

Hernaez, M., Zamarreño, C. R., Melendi-Espina, S., Bird, L. R., Mayes, A. G., & Arregui, F. J. 

(2017). Optical fibre sensors using graphene-based materials: A review. Sensors, 17(12), 155.

 

Hivrekar, M. M., Sable, D. B., Solunke, M. B., & Jadhav, K. M. (2018). Different property studies 

with network improvement of CdO doped alkali borate glass. Journal of Non-Crystalline Solids, 491, 

14–23.

 

Honma, T., Sato, R., Benino, Y., & Komatsu, T. (2000). Electronic polarizability, optical basicity 

and XPS spectra of Sb2O3-B2O3 glasses. Journal of Non-Crystalline Solids, 272, 1–13.

 

Hu, L., He, D., Chen, H., Wang, X., Meng, T., Wen, L., Hu, J., Xu, Y., Li, S., Chen, Y.,

Chen, W., Chen, S., Tang, J., & Wang, B. (2016). Research and development of neodymium phosphate 

laser glass for high power laser application. Optical Materials, 62, 34–41.

 

Huang, F., Fei, E., Lei, R., Li, Y., Li, B., Ye, R., & Xu, S. (2019). Enhancing the Er³+: Infrared 

and mid-infrared emission performance in germanosilicate-zinc glasses. Journal of Luminescence, 

213, 370–375.

 

Huang, Y., Sutter, E., Shi, N. N., Zheng, J., Yang, T., Englund, D., Gao, H., & Sutter, P. (2015). 

Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional 

Materials. ACS Nano, 9(11), 10612–10620.

 

Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American 

Chemical Society, 80(6), 1339.

 

Ibrahim, A. M., Hammad, A. H., Abdelghany, A. M., & Rabie, G. O. (2018). Mixed alkali effect and 

samarium ions effectiveness on the structural, optical and non- linear optical properties of borate 

glass. Journal of Non-Crystalline Solids, 495, 67– 74.

 

Ichoja, A., Hashim, S., Ghoshal, S. K., Hashim, I. H., & Omar, R. S. (2018). Physical, Structural  

and  Optical  Studies  onMagnesium  Borate  Glasses  Doped  with Dysprosium Ion. Journal of Rare 

Earths.

 

Ismail, Mahmoud M, Batisha, I. K., Zur, L., Chiasera, A., Ferrari, M., & Lukowiak, A. (2020). 

Optical properties of Nd³+-doped phosphate glasses. Optical Materials, 99, 109591.

 

Jamalaiah, B. C. (2018). GeO2 activated tellurite tungstate glass : A new candidate for solid state 

lasers and fiber devices. Journal of Non-Crystalline Solids.

 

Jastrzebska, A. M., Kurtycz, P., & Olszyna, A. R. (2012). Recent advances in graphene family 

materials toxicity investigations. Journal of Nanoparticle Research, 14(12).

 

Jearnkulprasert, N., Chaemlek, O., & Wantana, N. (2017). Physical Optical Properties of 

20CaO-(80-x)B2O3-xZnO Glass System. Journal of Metals, Materials and Minerals, 27(2), 43–47.

 

Jha, A., Shen, S., & Naftaly, M. (2000). Structural origin of spectral broadening of 1.5- µm 

emission in Er³+-doped tellurite glasses, 62(10).

 

Jha, K., Jayasimhadri, M., Haranath, D., & Jang, K. (2019). Influence of modifier oxides on 

spectroscopic properties of Eu³+ doped oxy-fluoro tellurophosphate glasses for visible photonic 

applications. Journal of Alloys and Compounds, 789, 622–629.

 

Ji, Y., Xiao, Y. B., Wang, W. C., Huang, S. J., Liu, J. L., & Zhang, Q. Y. (2019). Optical 

properties of Nd³+-doped fluoro-sulfo-phosphate glasses. Journal of Non-Crystalline Solids, 512, 

155–160.

 

Jimenez, J. A., Sendova, M., & Manchini, M. (2020). Thermal and spectroscopic characterization  of  

copper  and  erbium  containing  aluminophosphate  glass. Spectrochimica Acta Part A: Molecular and 

Biomolecular Spectroscopy, 226, 117546.

 

Jlassi, I., Fares, H., & Elhouichet, H. (2018). Enhancement of spectroscopic and luminescence 

properties of Er³+ doped tellurite glasses by adding P2O5 for lasing materials. Journal of 

Luminescence, 194, 569–578.

 

Jupri, S. A., Ghoshal, S. K., Omar, M. F., & Yusof, N. N. (2018). Spectroscopic traits of holmium 

in magnesium zinc sulfophosphate glass host: Judd-Ofelt evaluation. Journal of Alloys and 

Compounds, 753, 446–456.

 

Kaewnum, E., Wantana, N., & Kaewkhao, J. (2018). Luminescence study and Judd-Ofelt analysis of Nd³+ 

doped lithium lanthanum borate glass for green laser device. Materials Today: Proceedings, 5(6), 

13954–13962.

 

Kaky, K. M., Farah, M. I. S., Alyaa, L., Tekin, H. A. H. O., & Baki, S. O. (2019).

Stuctural, optical and radiation shielding properties of zinc boro- tellurite alumina glasses. 

Applied Physics A.

 

Kalampounias, A. G., Nasikas, N. K., & Papatheodorou, G. N. (2011). Journal of Physics and 

Chemistry of Solids tellurite glasses : A composition dependent Raman spectroscopic study. Journal 

of Physical and Chemistry of Solids, 72(9), 1052–1056.

 

Kang, S., Wang, X., Xu, W., Wang, X., He, D., & Hu, L. (2017). Effect of B2O3 content on structure 

and spectroscopic properties of neodymium-doped calcium aluminate glasses. Optical Materials, 66, 

287–292.

 

Kashif, I., Ratep, A., & Adel, G. (2018). Polarizability, optical basicity and optical properties 

of SiO2B2O3Bi2O3TeO2 glass syetm. Applied Physics A, 124(7), 486.

 

Kaur, A., & Khanna, A. (2019). Thermal, optical and Raman spectroscopy studies of lithium tellurite 

glasses containing molybdenum and tungsten ions. DAE Solid State Physics Symposium 2018, 2115, 

030253.

 

Kesavulu, C. R., Suresh, K., Santos, J. F. M., Catunda, T., Kim, H. J., & Jayasankar, C.

K. (2017). Spectroscopic investigations of 1.06 µm emission and time resolved Z- scan studies in 

Nd³+-doped zinc tellurite based glasses. Journal of Luminescence, 192, 1047–1055.

 

Khan, M. A., Amjad, R. J., Ahmad, M. A., Sattar, A., Hussain, S., Yasmeen, S., & Dousti, M. R. 

(2019). Structural and Optical Study of Erbium Doped Borophosphate Glasses. Optik - International 

Journal for Light and Electron Optics, 163707.

 

Kilic, G., Issever, U. G., & Ilik, E. (2019). Characterization of -Er³+ doped ZnTeTa semiconducting 

oxide glass. Journal of Materials Science: Materials in Electronics, 30(9), 8920–8930.

 

Kindrat, I. I., Padlyak, B. V, Lisiecki, R., & Adamiv, V. T. (2019). Optical spectroscopy and 

luminescence properties of a Tm³+-doped LiKB4O7 glass. Journal of Non- Crystalline Solids, 521, 

119477.

 

Kibrisli, O., Ersundu, A. E., & Ersundu, M. Ç. (2019). Dy³+ doped tellurite glasses for solid-state 

lighting : An investigation through physical, thermal, structural and optical spectroscopy studies. 

Journal of Non-Crystalline Solids, 513, 125–136.

 

Klimesz, B., Lisiecki, R., & Ryba-Romanowski, W. (2018). Oxyfluorotellurite glasses doped with 

neodymium and ytterbium-thermal and spectroscopic properties as well as energy transfer phenomena. 

Journal of Luminescence, 199, 310–318.

 

Kolavekar, S. B., & Ayachit, N. H. (2019). Synthesis of praseodymium trioxide doped 

lead-boro-tellurite glasses and their optical and physical properties. Journal of Materiomics.

 

Kragh, H. (2018). The Lorenz-Lorentz Formula : Origin and Early History. Substantia.

An International Journal of the History of Chemistry, 2(2), 7–18.

 

Kruskopf, M., Pierz, K., Pakdehi, D. M., Stosch, R., Bakin, A., & Schumacher, H. W. (2018). A 

morphology study on the epitaxial growth of graphene and its buffer layer. Thin Solid Films.

 

Kumar, D., Rao, S. M., & Singh, S. P. (2019). Effect of Er³+ on NaSrB glass : thermoluminescence 

and structural analysis. Applied Physics A, 125(38), 1–10.

 

Kuroda, K., & Yoshikuni, Y. (2017). Optical Fiber Technology Two-wavelength pump- probe technique 

using single distributed feedback laser array to probe gain recovery of an erbium-doped fiber 

amplifier. Optical Fiber Technology, 34, 20–22.

 

Lai, Q., Zhu, S., Luo, X., Zou, M., & Huang, S. (2012). Ultraviolet-visible spectroscopy of 

graphene oxides. AIP Advances, 2(3), 3–8.

 

Lakshmi, Y. A., Swapna, K., Rama, K. S., Reddy, K., Venkateswarlu, M., Mahamuda, S., & Rao, A. S. 

(2019). Structural, optical and NIR studies of Er³+ ions doped bismuth boro  tellurite  glasses  

for  luminescence  materials  applications.  Journal  of Luminescence, 211, 39–47.

 

Lakshminarayana, G., Kityk, I. V, Mahdi, M. A., & Plucinski, K. J. (2017). Er/Pr- codoped 

borotellurite glasses as efficient laser operated nonlinear optical materials. Materials Letters, 

214, 23–25.

 

Laopaiboon, R., Thumsa-ard, T., & Bootjomchai, C. (2018). The thermoluminescence properties and 

determination of trapping parameters of soda lime glass doped with erbium oxide. Journal of 

Luminescence, 197, 304–309.

 

Lau, K. Y., Bakar, M. H. A., Zain, A. R., Abas, A. F., Alresheedi, M. T., & Mahdi, M. A. (2018). 

Stable multi-wavelength erbium-doped fiber laser assisted by graphene/ PMMA thin film. Optics and 

Laser Technology, 105, 129–134.

 

Leal, J. J., Narro-garcía, R., Ríos, J. P. F. L., Gutierrez-mendez, N., Ramos-Sánchez, V. H., 

González-Castillo, J. R., & Rodríguez, E. (2019). Effect of TiO2 on the thermal and optical 

properties of Er³+/Yb³+ co-doped tellurite glasses for optical sensor. Journal of Luminescence, 

208, 342–349.

 

Lee, X. J., Hiew, B. Y. Z., Lai, K. C., Lee, L. Y., Gan, S., Thangalazhy-Gopakumar, S., & Rigby, S. 

(2018). Review on graphene and its derivatives : Synthesis methods and potential industrial 

implementation. Journal of the Taiwan Institute of Chemical Engineers.

 

Lee, K. H., Kim, T. H., Kim, Y. S., Jung, Y. J., Na, Y. H., & Ryu, B. K. (2008).

Structural  Modification  of  Alkali  Tellurite  Binary  Glass  System  and  Its Characterization. 

Korean Journal of Materials Research, 18(5), 235–240.

 

Li, J., Xiao, X., Gu, S., Xu, Y., Zhou, Z., & Guo, H. (2017). Preparation and optical properties of 

TeO2-BaO-ZnO-ZnF2 fluoro-tellurite glass for mid-infrared fiber Raman laser applications. Optical 

Materials, 66, 567–572.

 

Li, L. X., Wang, W. C., Zhang, C. F., Liu, J. L., Zhang, Q. Y., & Jiang, Z. H. (2019).

Exploration of the new tellurite glass system for efficient 2 μm luminescence.

Journal of Non-Crystalline Solids, 508, 15–20.

 

Li, S., Tu, ?. K., Lin, ?. C., Chen, C., & Chhowalla, M. (2010). Solution-Processable Graphene 

Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells. ACS Nano, 4(6), 3169–3174.

 

Li, X., Ming, Y., Gui, W., Yang, C., Sanjayan, J. G., Hui, W., & Li, Z. (2017). Effects of graphene 

 oxide  agglomerates  on workability,  hydration,  microstructure  and compressive strength of 

cement paste. Construction and Building Materials, 145, 402–410.

 

Li, Z., Zhang, W., & Xing, F. (2019). Graphene Optical Biosensors. International Journal of 

Molecular Sciences, 20(10), 2461.

 

Lima, A. M. O., Gomes, J. F., Hegeto, F. L., Medina, A. N., Steimacher, A., & Barboza,

M. J. (2017). Evaluation of TeO2 content on the optical and spectroscopic properties of Yb³+-doped 

calcium borotellurite glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 

193, 212–218.

 

Liu, D., Li, C., Xu, Y., Zhou, D., Wang, H., Sun, P., & Jiang, H. (2017). Near-infrared luminescent 

erbium complexes with 8-hydroxyquinoline-terminated hyperbranched polyester. Polymer.

 

Loh, K. P., Bao, Q., Eda, G., & Chhowalla, M. (2010). Graphene oxide as a chemically tunable 

platform for optical applications. Nature Chemistry, 2(12), 1015–1024.

 

Luewarasirikul, N., Chanthima, N., Tariwong, Y., & Kaewkhao, J. (2018). Erbium-doped calcium barium 

phosphate glasses for 1.54 µm broadband optical amplifier. Materials Today: Proceedings, 5(6), 

14009–14016.

 

Lunt, A. J. G., Chater, P., & Korsunsky, A. M. (2018). On the origins of strain inhomogeneity in 

amorphous materials. Scientific Reports, 8(1).

 

Maaoui, A., Haouari, M., Bulou, A., Boulard, B., & Ouada, H. Ben. (2018). Effect of BaF2 on the 

structural and spectroscopic properties of Er³+/Yb³+ ions codoped fluoro-tellurite glasses. Journal 

of Luminescence, 196, 1–10.

 

Madhu, A., Eraiah, B., Manasa, P., & Srinatha, N. (2018). Nd³+ -doped lanthanum lead boro-tellurite 

glass for lasing and ampli fi cation applications. Optical Materials, 75, 357–366.

 

Maia, L. J. Q., Moura, A. L., Jerez, V., & Araújo, C. B. De. (2019). Structural properties and near 

infrared photoluminescence of Nd³+ doped YBO3 nanocrystals. Optical Materials, 95, 109227.

 

Manasa, P., & Jayasankar, C. K. (2019). Spectroscopic assessment of Dy³+ ions in lead 

fluorosilicate  glass as a  prospective  material  for  solid  state  yellow  laser. Spectrochimica 

Acta Part A: Molecular and Biomolecular Spectroscopy, 212, 315– 321.

 

Manning, S., Ebendorff-heidepriem, H., & Monro, T. M. (2012). Ternary tellurite glasses for the 

fabrication of nonlinear optical fibres Abstract : Optical Materials Express, 2(2), 305–308.

 

Marcano, D. C., Kosynkin, D. V, Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. 

B., Lu. W., & Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8).

 

Mariselvam, K., Kumar, R. A., & Manasa, P. (2018). Spectroscopic investigations of neodymium doped 

barium bismuth fluoroborate glasses. Infrared Physics and Technology, 91, 18–26.

 

Martynova, E., & Cebulla, H. (2018). Glass Fibers. Inorganic and Composite Fibers.

Elsevier Ltd.

 

Marzuki, A., & Fausta, D. E. (2018). Physical and Optical Studies of Bi³+-Modified Erbium Doped 

Tellurite Glasses. IOP Conference Series: Materials Science and Engineering, 333, 012015.

 

Masuno, A. (2019). High refractive index La-rich lanthanum borate glasses composed of isolated BO3 

units. Dalton Transactions, 48(10804), 10757–11146.

 

Mawlud, S. Q. (2018). Optical Properties of Tellurite Glasses Embedded with Gold Nanoparticles.

 

Mawlud, S. Q., Ameen, M. M., Sahar, R., Ashur, Z., Mahraz, S., & Ahmed, K. F. (2017). Spectroscopic 

properties of Sm³+ doped sodium-tellurite glasses : Judd-Ofelt analysis. Optical Materials, 69, 

318–327.

 

Mclaughlin, J. C., Tagg, S. L., Zwanziger, J. W., & Hae, D. R. (2000). The structure of tellurite 

glass : a combined NMR, neutron diffraction, and X-ray diffraction study. Journal of 

Non-Crystalline Solids, 274, 1–8.

 

Meejitpaisan, P., Phothong, K., & Kaewkhao, J. (2019). NIR emission of Nd³+-doped sodium barium 

borate oxyfluoride glasses for 1.07 µm laser materials. Journal of Thai Interdisciplinary Research, 

14(3), 54–59.

 

Meng, L., Cheng, F., Xu, Y., Zhang, J., & Zhao, X. (2019). 2.7 μm mid-infrared emission enhancement 

of Nd³+ and Er³+ ions co-doped Bi2O3-PbO-Ga2O3 heavy metal oxide glass. Journal of Non-Crystalline 

Solids, 517, 137–142.

 

Mhareb, M. H. A., Almessiere, M. A., Sayyed, M. I., & Alajerami, Y. S. M. (2019). Physical,  

structural,  optical  and  photons  attenuation  attributes  of  lithium- magnesium-borate glasses 

: Role of Tm2O3 doping. Optik - International Journal for Light and Electron Optics, 182, 821–831.

 

Miniscalco, W. J., & Andrews, L. J. (1988). Fiber Optic Lasers and Amplifiers for the 

Near-Infrared. Materials Science Forum, 33, 501–510.

 

Mohan, S., & Thind, S. K. (2017). Optical and spectroscopic properties of neodymium doped 

cadmium-sodium borate glasses. Optics and Laser Technology, 95, 36–41.

 

Mohan, V. B., Souri, H., Jayaraman, K., & Bhattacharyya, D. (2018). Mechanical properties of thin 

films of graphene materials: A study on their structural quality and functionalities. Current 

Applied Physics.

 

Mohd Zaid, M. H., Matori, K. A., Abdul Aziz, S. H., Zakaria, A., & Mohd Ghazali, M. S. (2012). 

Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass. 

International Journal of Molecular Sciences, 13(6), 7550– 7558.

 

Monshi, M. M., Aghaei, S. M., & Calizo, I. (2018). Band gap opening and optical absorption 

enhancement in graphene using ZnO nanocluster. Physics Letters A, 1, 3– 7.

 

Moon, I. K., Kim, J. Il, Lee, H., Hur, K., Kim, W. C., & Lee, H. (2013). 2D graphene oxide 

nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. 

Scientific Reports, 3, 1–7.

 

Moreira, L., Falci, R. F., Darabian, H., Anjos, V., Bell, M. J. V, Kassab, L. R. P., Bordon,

C. D. S., Doualan, J. L., Camy, P., & Moncorge, R. (2018). The effect of excitation intensity 

variation and silver nanoparticle codoping on nonlinear optical properties of mixed tellurite and 

zinc oxide glass doped with Nd2O3 studied through ultrafast z- scan spectroscopy. Optical 

Materials, 79, 397–402.

 

Morigaki, K., & Ogihara, C. (2006). Amorphous Semiconductors: Structure, Optical, and Electrical 

Properties. Springer Handbook of Electronic and Photonic Materials, 565–580.

 

Mosner, P., Kupetska, O., Koudelka, L., & Kalenda, P. (2019). Physical properties and structural 

studies of lithium borophosphate glasses containing TeO2. Journal of Solid State Chemistry, 270, 

547–552.

 

Mott, N. F., Davis, E. A., & Weiser, K. (1972). Electronic Processes in Non-Crystalline Materials. 

Physics Today, 25(12), 14–15.

 

Mun, S. C., Park, J. J., Park, Y. T., Kim, D. Y., Lee, S. W., Cobos, M., Ye, S. J.,

Macosko, C. W., & Park, O. O. (2017). High electrical conductivity and oxygen barrier property of 

polymer- stabilized graphene thin films. Carbon, 125, 492–499.

 

Munisudhakar, B., Raju, C. N., Babu, M. R., Reddy, N. M., & Moorthy, L. R. (2019). Materials Today 

: Proceedings Luminescence characteristics of Nd³+ doped bismuth borate glasses for photonic 

applications. Materials Today: Proceedings.

 

Musfir, P. N., Soumya, S., Mehaboob, C. V. A., Ali, V. R., & Thomas, S. (2019). Tunable  optical  

bandgap  in  ternary  Ge-As-S  chalcogenide  glass.  The  3rd International Conference on 

Optoelectronic and Nano Materials for Advanced Technology (IcONMAT 2019), 030024.

 

Mustafa, I., Kamari, H., Yusoff, W., Aziz, S., & Rahman, A. (2013). Structural and Optical 

Properties of Lead-Boro-Tellurrite Glasses Induced by Gamma-Ray. International Journal of Molecular 

Sciences, 14, 3201–3214.

 

Naftaly, M., & Jha, A. (2010). Nd³+-doped fluoroaluminate glasses for a 1.3 μm amplifier. Journal 

of Applied Physics, 87(5), 2098–2104.

 

Nanba, T. (2011). Characterization of glasses based on basicity. Journal of the Ceramic Society of 

Japan, 119[10], 720–725.

 

Nanda, K., Kundu, R. S., Punia, R., Mohan, D., & Kishore, N. (2019). Linear and nonlinear optical 

characterization of neodymium doped barium-zinc-borate glasses. DAE Solid State Physics Symposium, 

2115, 030266.

 

Nandi, P., Srinivasan, A., & Jose, G. (2009). Structural dependent thermal and optical properties 

of rare earth doped glass with mixed glass formers. Optical Materials, 31(4), 653–659.

 

Napotalino, S., Glynos, E., & Tito, B. N. (2017). Glass transition of polymers in bulk , confined 

geometries , and near interfaces. Reports on Progress in Physics, 80(3), 036602.

 

Naresh, P., Kavitha, B., Inamdar, H. K., Sreenivasu, D., Narsimlu, N., Srinivas, C., Sathe, V., & 

Kumar, K. S. (2019). Modifier role of ZnO on the structural and transport properties of lithium 

boro tellurite glasses. Journal of Non-Crystalline Solids, 514, 35–45.

 

Naseer, K. A., Arunkumar, S., & Marimuthu, K. (2019). The impact of Er³+ ions on the spectroscopic 

scrutiny of Bismuth bariumtelluroborate glasses for display devices and 1.53 μm amplification. 

Journal of Non-Crystalline Solids, 520, 119463.

 

Nasser, K., Aseev, V., Ivanov, S., Ignatiev, A., & Nikonorov, N. (2019). Optical , spectroscopic 

properties and Judd – Ofelt analysis of Nd³+ -doped. Journal of Luminescence, 213, 255–262.

 

Naumov, A. V. (2017). Optical Properties of Graphene Oxide.

Nazrin, S. N., Halimah, M. K., Muhammad, F. D., Yip, J. S., Hasnimulyati, L., Faznny,

M. F., Hazlin, M. A., & Zaitizila, I. (2018). The effect of erbium oxide in physical and structural 

properties of zinc tellurite glass system. Journal of Non-Crystalline Solids, 490, 35–43.

 

Neelima, G., Krishnaiah, K. V., Ravi, N., Suresh, K., Tyagarajan, K., & Prasad, T. J. (2019). 

Investigation of optical and spectroscopic properties of neodymium doped oxy fl 

uoro-titania-phosphate glasses for laser applications. Scripta Materialia, 162, 246–250.

 

Noguera, O., Mirgorodsky, A. P., Smirnov, M. B., & Thomas, P. (2003). Vibrational and structural 

properties of glass and crystalline phases of TeO2. Journal of Non- Crystalline Solids, 330, 50–60.

 

Nourbakhsh, A., Cantoro, M., Vosch, T., Pourtois, G., Clemente, F., Veen, M. H. Van Der, Hofkens, 

J., Heyns, M. M., Gendt, S. D. & Sels, B. F. (2010). Bandgap opening in oxygen plasma-treated 

graphene. Nanotechnology, 21(43), 435203.

 

Novatski, A., Somer, A., Gonçalves, A., Piazzetta, R. L. S., Gunha, J. V, Andrade, A. V. C., Lenzi, 

E. K., Medina, A. N., Astrath, N. G. C., & El-mallawany, R. (2019). Thermal and optical properties 

of lithium-zinc-tellurite glasses. Materials Chemistry and Physics, 231, 150–158.

 

Onodera, Y., Takimoto, Y., Hijiya, H., Taniguchi, T., Urata, S., Inaba, S., Fujita, S., Obayashi, 

I., Hiraoka, Y., & Kohara, S. (2019). Origin of the mixed alkali effect in silicate glass. NPG Asia 

Materials, 11(75).

 

Oueslati-omrani, R., & Hamzaoui, A. H. (2020). Effect of ZnO incorporation on the structural, 

thermal and optical properties of phosphate based silicate glasses. Materials Chemistry and 

Physics, 242, 122461.

 

Ouis, M. A., Batal, F. H., & Azooz, M. A. (2019). FTIR, optical, and thermal studies of cadmium 

borate glass doped with Bi2O3 and effects of gamma irradiation. Journal of Australian Ceramic 

Society.

 

Pach, K., Golis, E., Yousef, E. S., Sitarz, M., & Filipecki, J. (2018). Structural studies of 

tellurite glasses doped with erbium ions. Journal of Molecular Structure, 1164, 328– 333.

 

Pal, I., Agarwal, A., Sanghi, S., & Aggarwal, M. P. (2012). Structure and optical absorption of 

Sm³+ and Nd³+ ions in cadmium bismuth borate glasses with large radiative transition probabilities. 

Optical Materials, 34(7), 1171–1180.

 

Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes.

Nature Nanotechnology, 4, 45–47.

 

Patwari, R. D., & Eraiah, B. (2019). Optical and Plasmonic Properties of Er³+ and Silver Co-doped 

Borate Nano-composite Glasses. Materials Research Express.

 

Pavani, P. G., Sadhana, K., & Mouli, V. C. (2011). Optical, physical and structural studies of 

boro-zinc tellurite glasses. Physica B: Physics of Condensed Matter, 406(6–7), 1242–1247.

 

Pepe, Y., Erdem, M., Sennaroglu, A., & Eryurek, G. (2019). Enhanced gain bandwidth of Tm³+ and Er³+ 

doped tellurite glasses for broadband optical amplifier. Journal of Non-Crystalline Solids, 522, 

119501.

 

Pirouz, A. A., Karjiban, R. A., Bakar, F. A., & Selamat, J. (2018). A novel adsorbent magnetic 

graphene oxide modified with Chitosan for the simultaneous reduction of mycotoxins. Toxins, 10(9), 

361.

 

Pisarski, W. A., Pisarska, J., Lisiecki, R., & Ryba-romanowski, W. (2017). Opto- Electronics Review 

Erbium-doped lead silicate glass for near-infrared emission and temperature-dependent up-conversion 

applications. Opto-Electronics Review, 25(3), 238–241.

 

Polosan, S. (2019). Structure and low field magnetic properties in phosphate-tellurite glasses. 

Journal of Non-Crystalline Solids, 524, 119651.

 

Pop, L., Bolundut, L., Pascuta, P., & Culea, E. (2019). Influence of Er³+ ions addition on thermal 

and optical properties of phosphate–germanate system. Journal of Thermal Analysis and Calorimetry, 

4, 1–5.

 

Prabhu, N. S., Hegde, V., Sayyed, M. I., Sakar, E., & Kamath, S. D. (2019). Investigations on the 

physical, structural, optical and photoluminescence behavior of Er³+ ions  in  lithium zinc  

fluoroborate glass system.  Infrared  Physics and Technology, 98, 7–15.

 

Prasad, C., Liu, Q., Tang, H., Yuvaraja, G., Long, J., Rammohan, A., & Zyryanov, G. V. (2020).  An  

overview  of  graphene  oxide  supported  semiconductors  based photocatalysts: Properties, 

synthesis and photocatalytic applications. Journal of Molecular Liquids, 297, 111826.

 

Price, R. J., Ladislaus, P. I., Smith, G. C., & Davies, T. J. (2019). A novel ‘bottom-up’ synthesis 

of few- and multi-layer graphene platelets with partial oxidation via cavitation. Ultrasonics - 

Sonochemistry, 56, 466–473.

 

Qi, J., Xue, D., Ratajczak, H., & Ning, G. (2004). Electronic polarizability of the oxide ion and 

density of binary silicate, borate and phosphate oxide glasses. Physica B, 349, 265–269.

 

Queiroz, M. N., Dantas, N. F., Brito, D. R. N., Barboza, M. J., Steimacher, A., & Pedrochi, F. 

(2019). Optical and Spectroscopic Investigation of Sm³+-Doped Calcium Borotellurite Glasses. 

Journal of Electronic Materials.

 

Rajagukguk, J., Sinaga, B., & Kaewkhao, J. (2019). Molecular and Biomolecular Spectroscopy 

Structural and spectroscopic properties of Er³+ doped sodium lithium borate  glasses.  

Spectrochimica  Acta  Part  A:  Molecular  and  Biomolecular Spectroscopy, 223, 117342.

 

Rajesh, D., & Camargo, A. S. S. De. (2019). Nd³+ doped new oxyfluoro tellurite glasses and glass 

ceramics containing NaYF4 nano crystals−1.06 µm emission analysis. Journal of Luminescence, 207, 

469–476.

 

Ramachari, D., Yang, C., Wada, O., Uchino, T., & Pan, C. (2019). High-refractive index, low-loss 

oxyfluorosilicate glasses for sub-THz and millimeter wave applications. Journal of Applied Physics, 

125, 151609.

 

Rammah, Y. S., Ali, A. A., & Abdelghany, A. M. (2019). Optical properties of bismuth borotellurite 

glasses doped with NdCl3. Journal of Molecular Structure, 1175, 504– 511.

 

Rammah, Y. S., Sayyed, M. I., Abohaswa, A. S., & Tekin, H. O. (2018). FTIR, electronic 

polarizability and shielding parameters of B2O3 glasses doped with-SnO2. Applied Physics A, 124(9), 

650.

 

Rao, K. V., Babu, S., Balanarayana, C., & Ratnakaram, Y. C. (2019). Comparative impact of Nd³+ ion 

doping concentration on near-infrared laser emission in lead borate glassy materials. Optik - 

International Journal for Light and Electron Optics, 163562.

 

Rao, M. C. (2018). Effect of Al2O3 on structural and luminescent properties of neodymium (Nd³+) 

doped lead germanate glasses. Optik - International Journal for Light and Electron Optics, 172, 

509–518.

 

Ravangvong, S., Chanthima, N., Rajaramakrishna, R., Kim, H. J., & Kaewkhao, J. (2020). Effect of 

sodium oxide and sodium fluoride in gadolinium phosphate glasses doped with Eu2O3 content. Journal 

of Luminescence, 116950.

 

Rout, S. S. G. C. (2017). Band gap opening in graphene : a short theoretical study.

International Nano Letters, 7(2), 81–89.

 

Sajna, M. S., Perumbilavil, S., Prakashan, V. P., Sanu, M. S., Joseph, C., Biju, P. R., & 

Unnikrishnan, N. V. (2018). Enhanced resonant nonlinear absorption and optical limiting in Er³+ 

ions doped multicomponent tellurite glasses. Materials Research Bulletin.

 

Sakida, S., Hayakawa, S., & Yoko, T. (2001). Ga NMR Study of M2O3– TeO2 ( M ? Al and Ga) Glasses, 

42, 836–842.

 

Sanjay, Kishore, N., Sheoran, M. S., & Devi, S. (2018). Study of Boro-Tellurite Glasses Doped With 

Neodymium Oxide. 2nd International Conference on Condensed Matter and Applied Physics.

 

Saudi, H. A., & Adel, G. (2018). Study on Mass Attenuation Coefficients and Optical Properties for 

Boro-Tellurite Glass doped with Barium. American Journal of Astronomy and Astrophysics, 6(1), 

21–25.

 

Sekiya, T., Mochida, N., & Ohtsuka, A. (1994). Raman spectra of MO-TeO2 ( M = Mg , Sr , Ba and Zn) 

glasses, 168, 106–114.

 

Selvaraju, K., & Marimuthu, K. (2012). Structural and spectroscopic studies on concentration 

dependent Er³+ doped boro-tellurite glasses. Journal of Luminescence, 132(5), 1171–1178.

 

Shaaban, K. S. (2019). Optical properties of Bi2O3 doped boro tellurite glasses and glass ceramics. 

Optik - International Journal for Light and Electron Optics, 163976.

 

Shang, J., Li, J., Ai, W., Yu, T., & Gurzadyan, G. G. (2012). The Origin of Fluorescence from 

Graphene Oxide. Scientific Reports, 2(1), 1–8.

 

Shekhawat, M. S., Basha, S. K. S., & Rao, M. C. (2018). Spectroscopic Studies on Samarium Oxide 

(Sm2O3) Doped Tungsten Tellurite Glasses. 2nd International Conference on Condensed Matter and 

Applied Physics (ICC 2017).

 

Shen, C., Jia, Y., Yan, X., Zhang, W., Li, Y., Qing, F., & Li, X. (2018). Effects of Cu 

contamination on system reliability for graphene synthesis by chemical vapor deposition method. 

Carbon, 127, 676–680.

 

Shin, D. S., Kim, H. G., Ahn, H. S., Jeong, H. Y., Kim, Y., Odkhuu, D., Tsogbadrakh, N., Lee, H., & 

Kim, B. H. (2017). Distribution of oxygen functional groups of graphene oxide obtained from 

low-temperature atomic layer deposition of titanium oxide. Royal Society of Chemistry, 7, 

13979–13984.

 

Shoaib, M., Chanthima, N., Rooh, G., Sangwaranatee, N., & Kaewkhao, J. (2019). Physical and 

Luminescence Study of Nd³+ ions doped Phosphate Glass for Lasing Applications. Materials Today: 

Proceedings, 17, 1800–1808.

 

Shwetha, M., & Eraiah, B. (2019). Influence of Er³+ ions on the physical, structural, optical, and 

thermal properties of ZnO-Li2O-P2O5 glasses. Applied Physics A, 125(3).

 

Sidek, H. A. A., Rosmawati, S., Azmi, B. Z., & Shaari, A. H. (2013). Effect of ZnO on the Thermal 

Properties of Tellurite Glass. Advances in Condensed Matter Physics, 2013, 1–6.

 

Silva, A. A., Pinheiro, R. A., Rodrigues, A. C., Baldan, M. R., Trava-Airoldi, V. J., & Corat, E. 

J. (2018). Graphene sheets produced by carbon nanotubes unzipping and their performance as 

supercapacitor. Applied Surface Science.

 

Singh, V., Seshadri, M., Singh, N., & Mohapatra, M. (2019). Radiative properties of Er³+ doped and 

Er³+/Yb³+ co-doped Sr3Al2O6 phosphors: exploring the usefulness as a phosphor material. Journal of 

Materials Science: Materials in Electronics.

 

Singh V , Joung D , Zhai L , Das S , Khondaker SI, S. S. (2011). Graphene based materials : Past, 

present and future. Progress in Materials Science, 56, 1178–1271.

 

Siva Rama Krishna Reddy, K Swapna, K., Venkateswarlu, M., Mahamuda, S., & Rao, A.

S. (2019). Thermal, Up-Conversion and Near-Infrared Luminescence studies of Erbium ions doped 

Alkaline-Earth Boro Tellurite Glasses. Solid State Sciences, 106016.

 

Smith, A. T., Marie, A., Zeng, S., Liu, B., & Sun, L. (2019). Synthesis, properties, and 

applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials 

Science.

 

Soares, B. P., Desa, J. A. E., & Krishna, P. S. R. (2019). Influence of praseodymium on alumino- 

germanate glasses containing Nd and La inclusions. DAE Solid State Physics Symposium 2018, 030247, 

3–7.

 

Soriano-Romero, O., Lozada-Morales, R., Caldino, U., Mendez-Blas, A., Falcony, C., Alvarez, E., 

Palomino-Ovando, M., & Meza-Rocha, A. N. (2019). Spectroscopic evaluation a new and novel Nd³+/Yb³+ 

co-doped CdO- V2O5 glass system for 1 µm laser application. Journal of Alloys and Compunds, 777, 

886–893.

 

Sreedhar, V. B., Krishnaiah, K. V., Rasool, S. K. N., Venkatramu, V., & Jayasankar, C.

K. (2019). Raman and photoluminescence studies of europium doped zinc- fluorophosphate glasses for 

photonic applications. Journal of Non-Crystalline Solids, 505, 115–121.

 

Sreenivasulu, M., Chavan, V. K., Rupa, B., & Rao, V. (2019). Characterization of Cr³+

Doped Zinc Lead Lithium Phosphate Glasses. Materials Research Express.

 

Sribunrueng, S., Sivanavin, S., & Yasaka, P. (2019). Study on physical, optical and luminescence of 

zinc tellurite glasses doped with bismuth oxide. Interdisciplinary Research Review, 14(4), 34–36.

 

Stambouli, W., Elhouichet, H., & Ferid, M. (2012). Study of thermal, structural and optical 

properties of tellurite glass with different TiO2 composition. Journal of Molecular Structure, 

1028, 39–43.

 

Staudenmaier, L. (1898). Verfahren zur Darstellung der Graphitsäure. Berichte Der Deutschen 

Chemischen Gesellschaft.

 

Suaif, A., Yuliantini, L., Djamal, M., Kaewkhao, J., & Yasaka, P. (2019). A Comparative study of 

TeO2 concentration on zinc barium boro-tellurite glass doped with Sm³+. Materials Today: 

Proceedings, 17, 1809–1814.

 

Sun, G. (2010). Intersubband approach to silicon based lasers-circumventing the indirect bandgap 

limitation. Advances in Optics and Photonics, 3(1), 53.

 

Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Zainol, I., & Masrom, A. K. (2015). A facile 

one-step method for graphene oxide/natural rubber latex nanocomposite production for supercapacitor 

applications. Materials Letters, 161, 665–668.

 

Szumera, M., Waclawska, I., & Sulowska, J. (2016). Influence of CuO and ZnO addition on the 

multicomponent phosphate glasses: spectroscopic studies. Journal of Molecular Structure.

 

Tagiara, N. S., Palles, D., Simandiras, E. D., Psycharis, V., Kyritsis, A., & Kamitsos, E. I. 

(2017). Synthesis , thermal and structural properties of pure TeO2 glass and zinc- tellurite 

glasses. Journal of Non-Crystalline Solids, 457, 116–125.

 

Taherunnisa, S. K., Krishna Reddy, D. V., SambasivaRao, T., Rudramamba, K. S., Zhydachevskyy, Y. 

A., Suchocki, A., Piasecki, M., & Rami Reddy, M. (2019). Effect  of up-conversion luminescence in 

Er³+ doped phosphate glasses for developing  Erbium-Doped  Fibre  Amplifiers  (EDFA)  and  G-LED’s. 

 Optical Materials: X.

 

Talebian, E., & Talebian, M. (2013). A general review on the derivation of Clausius- Mossotti 

relation. Optik-International Journal for Light and Electron Optics, 124(16), 2324–2326.

 

Talewar, R. A., Mahamuda, S., Swapna, K., & Rao, A. S. (2018). Sensitization of Yb³+ by Nd³+ 

emission in alkaline-earth chloro borate glasses for laser and fiber amplifier applications. 

Journal of Alloys and Compounds.

 

Tang, S., Wu, W., Xie, X., Li, X., & Gu, J. (2017). Band gap opening of bilayer graphene by 

graphene oxide support doping. Royal Society of Chemistry, 7, 9862–9871.

 

Tanko, Y. A., Ghoshal, S. K., & Sahar, M. R. (2016). Ligand field and Judd-Ofelt intensity 

parameters of samarium doped tellurite glass. Journal of Molecular Structure, 1117, 64–68.

 

Tatsumisago, M., Lee, S., Minami, T., & Kowada, Y. (1994). Raman spectra of TeO2- based glasses and 

glassy liquids : local structure change with temperature in relation to fragility of liquid Tg/T, 

177, 154–163.

 

Tong, H. T., Demichi, D., Nagasaka, K., Suzuki, T., & Ohishi, Y. (2018). Suppressing

1.06 μm spontaneous emission of neodymium ions using a novel tellurite all-solid photonic bandgap 

fiber. Optics Communications, 415, 87–92.

 

Tuan, T. H., Miura, K., Nishiharaguchi, N., Suzuki, T., & Ohishi, Y. (2019). Suppressing

1.06 µm Emission of Nd³+ Ions in Tellurite All Solid Photonic Bandgap Fibers With Double Cladding. 

2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference 

(CLEO/Europe-EQEC), 113, 1.

 

Umamaheswar, G., Devarajulu, G., Rajesh, M., Sushma, N. J., Gowthami, T., Nagajyothi, P. C., 

Ramaswamy, V., & Raju, B. D. P. (2018). Effect of Eu³+ ions on optical and fluorescence studies of 

Nd³+ ions doped zinc-lithium fluoroborate glasses. Journal of Luminescence. Elsevier B.V.

 

Umar, S. A., Halimah, M. K., Chan, K. T., & Latif, A. A. (2017). Polarizability , optical basicity 

and electric susceptibility of Er³+ doped silicate borotellurite glasses. Journal of 

Non-Crystalline Solids.

 

Vani, P., Vinitha, G., Sayyed, M. I., Elbashir, B. O., & Manikandan, N. (2019). Investigation on 

structural, optical, thermal and gamma photon shielding properties of zinc and barium doped 

fluorotellurite glasses. Journal of Non-Crystalline Solids, 511, 194–200.

 

Vijayalakshmi, L., Kumar, K. N., Rao, K. S., & Hwang, P. (2018). Bright up-conversion white light 

emission from Er³+ doped lithium fluoro zinc borate glasses for photonic applications. Journal of 

Molecular Structure, 1155, 394–402.

 

Wan, Q., Wang, H., Li, S., & Wang, J. (2018). Journal of Colloid and Interface Science 3, 

3-tetramethylurea solution. Journal of Colloid And Interface Science, 526, 167– 173.

 

Wang, J. S., Vogel, E. M., Snitzer, E., Jackel, J. L., Da Silva, J. L., Silberberg, Y. (1994).

1.3 µm emission of neodymium and praseodymium in tellurite-based glasses.

Journal of Non-Crystalline Solids, 178, 109–113.

 

Wang, J., Mu, X., Sun, M., & Mu, T. (2019). Optoelectronic properties and applications of 

graphene-based hybrid nanomaterials and van der Waals heterostructures. Applied Materials Today, 

16, 1–20.

 

Wang, R., Yang, Z., Zhou, D., Song, Z., & Qiu, J. (2014). Structure and luminescent property of 

Er³+-doped germanate glasses. Journal of Non-Crystalline Solids, 383, 200–204.

 

Wang, X. Y., Narita, A., & Müllen, K. (2017). Precision synthesis versus bulk-scale fabrication of 

graphenes. Nature Reviews Chemistry, 2(1).

 

Wen, H., Zhang, J., Yao, Q., Liu, L., Dong, W., Li, J., & Wang, J. (2019). Thermal, Optical 

Characterization and Judd-Ofelt Analyis of Nd³+-Doped BaO-TeO2-B2O3 Glasses. Materials and 

Technology, 53(3), 305–309.

 

Xie, T., Zhang, L., Wang, J., Xie, T., Zhu, Q., & Zhang, X. (2018). Co-precipitation synthesis, 

structural characterization and fluorescent analysis of Nd³+ doped Y3Al5O12 and Yb3Al5O12 

nanocrystallines. Journal of Materials Science: Materials in Electronics.

 

Yang, L., Li, H. Y., Wang, P. W., Wu, S. Y., Guo, G. Q., Liao, B., Guo, Q. L., fan, X. Q.,

Huang, P., Lou, H. B., Guo, F. M., Zeng, Q. S., Sun, T., Ren, Y., & Chen, L. Y. (2017). Structural 

responses of metallic glasses under neutron irradiation. Scientific Reports, 7(1).

 

Yang, Y., Liu, R., Wu, J., Jiang, X., Cao, P., Hu, X., & Pan, T. (2015). Bottom-up Fabrication of 

Graphene on Silicon/Silica Substrate via a Facile Soft-hard Template Approach. Scientific Reports, 

5(1).

 

Yasaka, P., Ruangthaweep, Y., Wongdeeying, C., & Kaewkhao, J. (2018). Spectroscopic and structural 

characterization of zinc barium tellurite glass. Materials Today: Proceedings, 5(7), 15072–15075.

 

Ye, Q., Wang, J., Liu, Z., Deng, Z., Kong, X., Xing, F., Chen, X., Zhou, W., Zhang, C., & Tian, J. 

(2013). Polarization-dependent optical absorption of graphene under total internal reflection. 

Applied Physics Letters, 102(2), 021912.

 

Yu, C., Yang, Z., Huang, A., Chai, Z., Qiu, J., Song, Z., & Zhou, D. (2017). Photoluminescence 

properties of tellurite glasses doped Dy³+ and Eu³+ for the UV and blue converted WLEDs. Journal of 

Non-Crystalline Solids, 457, 1–8.

 

Yuliantini, L., Djamal, M., Hidayat, R., Boonin, K., Yasaka, P., & Kaewnuam, E. (2019). Optical  

and  X-ray  induced  luminescence  of  Sm³+-doped  borotellurite  and fluoroborotellurite glasses : 

A comparative study. Journal of Luminescence, 213, 19–28.

 

Yusof, N. N., Ghoshal, S. K., & Azlan, M. N. (2017). Optical properties of titania nanoparticles 

embedded Er³+-doped tellurite glass: Judd-Ofelt analysis. Journal of Alloys and Compounds, 724, 

1083–1092.

 

Zachariasen, W. H. (1932). The Atomic Arrangement in Glass. Journal of the American Chemical 

Society, 54(10), 3841–3851.

 

Zaitizila, I., Halimah, M. K., Muhammad, F. D., & Nurisya, M. S. (2018). Influence of manganese 

doping on elastic and structural properties of silica borotellurite glass. Journal of 

Non-Crystalline Solids, 492, 50–55.

 

Zaman, F., Rooh, G., Srisittipokakun, N., Ahmad, T., Khan, I., Shoaib, M., Ataullah., Rajagukguk, 

J., & Kaewkhao, J. (2019). Comparative investigations of gadolinium based borate glasses doped with 

Dy³+ for white light generations. Solid State Sciences, 89, 50–56.

 

Zamyatin, O. A., Churbanov, M. F., Plotnichenko, V. G., & Zamyatina, E. V. (2018). Optical 

properties of the MoO3–TeO2 glasses doped with Ni²+-ions. Journal of Non- Crystalline Solids, 480, 

74–80.

 

Zanotto, E. D., & Mauro, J. C. (2017). The glassy state of matter : Its definition and ultimate 

fate. Journal of Non-Crystalline Solids.

 

Zhang, W. L., & Choi, H. J. (2015). Graphene/graphene oxide : A new material for electrorheological 

and magnetorheological applications. Journal of Intelligent Material Systems and Structures, 

26(14), 1826–1835.

 

Zhang, X., Shao, X., & Liu, S. (2012). Dual Fluorescence of Graphene Oxide: A Time- Resolved Study. 

The Journal of Physical Chemistry A, 116(27), 7308–7313.

 

Zhang, Yifan, Sheng, L., Fang, Y., An, K., Yu, L., Liu, Y., & Zhao, X. (2017). Synthesis of 3C-SiC 

nanowires from a graphene / Si configuration obtained by arc discharge method Abstract SiC 

nanowires were fabricated by heat-treating a graphene/Si configuration without. Chemical Physics 

Letters.

 

Zhang, Yu, Xiao, Z., Lei, H., Zeng, L., & Tang, J. (2019). Er³+/Yb³+ co-doped tellurite glasses for 

optical fiber thermometry upon UV and NIR excitations. Journal of Luminescence, 212, 61–68.

 

Zhao, G., Xu, L., Meng, S., Du, C., Hou, J., Liu, Y., Guo, Y., Fang, Y., Liao, M., Zou, J., &  Hu,  

L.  (2018).  Facile  preparation  of  plasmon  enhanced  nearinfrared photoluminescence of 

Er³+-doped Bi2O3-B2O3-SiO2 glass for optical fiber amplifier. Journal of Luminescence.

 

Zhao, X., Wang, X., Lin, H., & Wang, Z. (2007). Electronic polarizability and optical basicity of 

lanthanide oxides. Physica B, 392, 132–136.

 

Zhu, Y., Shen, X., Su, X., Zhou, M., Zhou, Y., Li, J., & Yang, G. (2019). Concentration dependent 

structural , thermal and luminescence properties in Er³+/Tm³+ doped tellurite glasses. Journal of 

Non-Crystalline Solids, 507, 19–29.

 

Zmojda, J., Miluski, P., & Kochanowicz, M. (2018). Nanocomposite Antimony-

Germanate-Borate Glass Fibers Doped with Eu³+ Ions with Self-Assembling Silver or Photonic 

Applications. Applied Sciences, 8(5), 790.

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)