UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This study aimed to enhance the optical properties on neodymium oxide (Nd2O3) and
erbium oxide (Er2O3) doped tellurite-based glass coated with graphene oxide (GO). The two series of
tellurite glasses with chemical composition of {[(TeO2)0.7 (B2O3)0.3]0.7 (ZnO)0.3}1?y (Nd2O3)y and
{[(TeO2)0.7 (B2O3)0.3]0.7 (ZnO)0.3}1?y (Er2O3)y with varying
concentrations of Nd³+ and Er³+ ions from y=0.005, 0.01, 0.02, 0.03, 0.04, and 0.05 mol% were
prepared and coated with GO using melt-quenching and spray coating methods. The physical,
structural and optical properties of prepared glasses were characterized using densimeter, scanning
electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR),
Ellipsometer, and ultraviolet- visible (UV- Vis) spectrophotometer. The structural analysis
determined by XRD pattern proved an amorphous structure for the glass samples. The obtained results
through FT-IR analysis showed the formation of non-bridging oxygens (NBOs) in the glass network
system. The SEM images revealed the surface morphology of GO on the glass surface. The values of
the refractive index were escalated with the increasing concentration of neodymium from
2.301 to 2.332, and erbium from 2.275 to 2.299 with the existence of GO. This was due to the
presence of a high degree number of oxygen atoms consisted in GO structure. The values of optical
bandgap energy were enhanced with the increasing concentrations of neodymium from 3.315 to 3.381 eV
while for erbium from 3.392 to 3.495 eV. The increment of optical bandgap energy was due to the
high in GO optical absorptions. The electronic polarizability values of glass samples were enhanced
for neodymium from 8.815 to 8.887 ų while for erbium from 8.815 to 8.894 ų due to high surface
area and low particle density in GO. In conclusion, the synthesized GO is a good candidate for use
as a coating material on tellurite-based glass surfaces. This study may contribute to the
potential uses for high optical performance of fiber optics applications.
|
References |
Abdel-Baki, M. & El-Diasty, F. (2007). Optical properties of oxide glasses containing transition metals : Case of titanium- and chromium-containing glasses. Current Opinion in Solid State and Materials Science, 10(5–6), 217–229.
Abdul, H., Sidek, A., Chow, S. P., & Talib, Z. A. (2004). Formation and Elastic Behavior of Lead-Magnesium Chlorophosphate Glasses. Turk. J. Pyhs, 28, 65–71.
Abdullahi, I., Hashim, S., & Ghoshal, S. K. (2019). Waveguide laser potency of samarium doped BaSO4-TeO2-B2O3 glasses : Evaluation of structural and optical qualities. Journal of Luminescence, 216, 116686.
Abid, Sehrawat, P., Islam, S. S., Mishra, P., & Ahmad, S. (2018). Reduced graphene oxide (rGO) based wideband optical sensor and the role of Temperature, Defect States and Quantum Efficiency. Scientific Reports, 8(1).
Abushahab, W. S., Moustafa, E. B., Hammad, A. H., Ramadan, R. M., & Wassel, A. R. (2019). Enhancement the structural, optical and nonlinear optical properties of cadmium phosphate glasses by nickel ions. Journal of Materials Science: Materials in Electronics.
Adel, G., & Mokhtar, H. M. (2018). Physical Properties of Nb2O5BaO TeO2 Glass System with Compositional Variations. Egyptian Journal of Physics, 46, 23–28.
Ahmed, E. M., Youssif, M. I., & Elzelaky, A. A. (2019). Structural, thermal and photoemission properties of erbium doped phosphate glass. Ceramics International, 45(18), 24014–24021.
Akbari, E., Akbari, I., & Ebrahimi, M. R. (2019). sp²/ sp³ bonding ratio dependence of the band-gap in graphene oxide. The European Physical Journal B, 92(4).
Al-azzawi, A. A., Almukhtar, A. A., Hamida, B. A., Das, S., Dhar, A., & Paul, M. C. (2019). Wideband and flat gain series erbium doped fiber amplifier using hybrid active fiber with backward pumping distribution technique. Results in Physics, 13, 102186.
Al-hiti, A. S., Rahman, M. F. A., Harun, S. W., Yupapin, P., & Yasin, M. (2019). Holmium oxide thin fi lm as a saturable absorber for generating Q-switched and mode-locked erbium-doped fiber lasers. Optical Fiber Technology, 52, 101996.
Alazoumi, S. H., Aziz, S. A., El-Mallawany, R., Aliyu, U. S., Kamari, H. M., Zaid, M. H. M. M., Matori, K. M., Ushah, A. (2018). Optical properties of zinc lead tellurite . Results in Physics, 9, 1371–1376.
Alvarez-Ramos, M. E., Alvarado-Rivera, J., Zayas, M. E., Caldiño, U., & Hernández- Paredes, J. (2018). Yellow to orange-reddish glass phosphors: Sm³+, Tb³+and Sm³+/Tb³+in zinc tellurite-germanate glasses. Optical Materials, 75, 88–93.
Anashkina, E. A., Dorofeev, V. V, Koltashev, V. V, & Kim, A. V. (2017). Development of Er³+-doped high-purity tellurite glass fibers for gain-switched laser operation at 2.7 μm. Optical Materials Express, 7(12), 235–238.
Anita, K., & Singh, N. R. (2011). Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Absorption spectral analysis of 4f–4f transitions for the complexation of Pr (III) and Nd (III) with thiosemicarbazide in absence and presence of Zn (II) in aqueous and organics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81(1), 117–121.
Anjaiah, J. (2019). Influence Of Modifier Oxide On Spectroscopic Characteristics Of Neodymium Ion In Lithium Borate Glass System. International Journal of Research in Advent Technology, 7(3), 1450–1457.
Arashloo, B. A., Ahmadi, M. T., & Afrang, S. (2017). The Band Energy Engineering on High Epoxy (Hydroxyl) Content Graphene Oxide. Surface Review and Letters, 26(1), 1–8.
Assadi, A. A., Damak, K., Lachheb, R., Herrmann, A., Yousef, E., Rüssel, C., & Maâlej, R. (2015). Spectroscopic and luminescence characteristics of erbium doped TNZL glass for lasing materials. Journal of Alloys and Compounds, 620, 129–136.
Augustine, S., Singh, J., Srivastava, M., Sharma, M., Das, A., & D. Malhotra, B. (2017). Biomaterials Science Recent advances in carbon based nanosystems for cancer theranostics. Biomaterials Science, 5, 901–952.
Ayuni, J. N., Halimah, M. K., Talib, Z. A., Sidek, H. A. A., Daud, W. M., Zaidan, A. W., & Khamirul, A. M. (2011). Optical properties of ternary TeO2-B2O3-ZnO glass system. IOP Conference Series: Materials Science and Engineering, 17, 012027.
Azlan, M. N., & Halimah, M. K. (2018). Role of Nd³+ nanoparticles on enhanced optical efficiency in borotellurite glass for optical fiber. Results in Physics, 11, 58–64.
Azlan, M. N., Halimah, M. K., Baki, S. O., & Daud, W. M. (2016). Effect of Neodymium Concentration on Structural and Optical Properties of Tellurite Based Glass System. Materials Science Forum, 846, 183–188.
Azlan, M. N., Halimah, M. K., Shafinas, S. Z., & Daud, W. M. (2014). Polarizability and optical basicity of Er³+ ions doped tellurite based glasses. Chalcogenide Letters, 11(7), 319–335.
Azlan, M. N., Halimah, M. K., Shafinas, S. Z., & Daud, W. M. (2015). Electronic polarizability of zinc borotellurite glass system containing erbium nanoparticles. Materials Express, 5(3), 211–218.
Bachvarova-nedelcheva, A., Iordanova, R., Ganev, S., & Dimitriev, Y. (2018). Glass formation and structural studies of glasses in the TeO-ZnO-Bi2O3–NbO5 system. Journal of Non-Crystalline Solids.
Balachander, L., Ramadevudu, G., Sayanna, R., & Venudhar, Y. C. (2013). IR analysis of borate glasses containing three alkali oxides. Science Asia, 39, 278–283.
Bhatia, B., Meena, S. L., Parihar, V., & Poonia, M. (2015). Optical Basicity and Polarizability of Nd³+-Doped Bismuth Borate Glasses. New Journal of Glass and Ceramics, 5, 44–52.
Bhatia, V., Kumar, D., Kumar, A., Mehta, V., Chopra, S., & Vij, A. (2018). Mixed transition and rare earth ion doped borate glass : structural, optical and thermoluminescence study. Journal of Materials Science: Materials in Electronics.
Bilir, G., Kaya, A., Cinkaya, H., & Eryürek, G. (2016). Spectroscopic investigation of zinc tellurite glasses doped with Yb³+ and Er³+ ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 165, 183–190.
Bolundut, L., Pop, L., Bosca, M., Tothazan, N., Borodi, G., Culea, E., Pascuta, P., Stefan, R. (2017). Structural, spectroscopic and magnetic properties of Nd³+ doped lead tellurite glass ceramics containing silver. Journal of Alloys and Compounds, 692, 934–940.
Boucher, Y. G., Zur, L., & Ferrari, M. (2018). Modal properties of an Erbium-doped asymmetric single-mode slab waveguide in the glass-ceramics SnO2-SiO2 system. Optical Materials.
Brodie, B. C. (1859). On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 149(0), 249–259.
Bulus, I., Hussin, R., Ghoshal, S. K., Tamuri, A. R., & Jupri, S. A. (2019). Enhanced elastic and optical attributes of boro-telluro-dolomite glasses : Role of CeO2 doping. Ceramics International, 45(15), 18648–18658.
Bunch, J. S., Verbridge, S. S., Alden, J. S., Zande, A. M. Van Der, Parpia, J. M., Craighead, H. G., & Mceuen, P. L. (2008). Impermeable Atomic Membranes from 2008. Nano Letters, 8(8), 2458–2462.
Cao, R., Lu, Y., Tian, Y., Huang, F., Guo, Y., Xu, S., & Zhang, J. (2016). 2 μm emission properties and nonresonant energy transfer of Er³+ and Ho³+ codoped silicate glasses. Scientific Reports, 6(1), 1–11.
Cervantes-juárez, E., Meza-rocha, A. N., Romero-romo, W., Caldiño, U., Falcony, C., Alvarez, E., Palomino-Ovando, M., Lozada-morales, R. (2018). Up and down- shifting emission properties of novel Er³+-doped CdO-V2O -P2O5 glass system. Ceramics International.
Chanthima, N., Kiwsakunkran, N., Kaewkhao, J., & Sangwaranatee, N. (2019). Optical and luminescence investigation of Er³+ doped in Na2O-Al2O3-P2O5 glasses for photonics material application. Journal of Metals, Materials and Minerals, 29(2), 58–63.
Chavan, V. K., & Sreenivasulu, M. (2019). Physical, optical and morphological studies of V2O5 doped zinc lead lithium phosphate (ZnPbLiP) glasses. Materials Today: Proceedings.
Chopra, N., Kaur, S., Kaur, M., Singla, S., Marwaha, R., Sharma, G., & Heer, M. S. (2018). Optical, Physical and Structural Properties of Er³+ Doped Low-Phonon Energy Vitreous Matrix: ZnO-B2O3-TeO2. Physica Status Solidi (A), 215(13), 1700934.
Costa, F. B., Yukimitu, K., Nunes, L. A. O., Figueiredo, M. S., Andrade, L. H. C., Lima, S. M., & Moraes, J. C. S. (2015). Spectroscopic properties of Nd³+ -doped tungsten- tellurite glasses. Journal of Physical and Chemistry of Solids, 88, 54–59.
Damodaraiah, S., Prasad, V. R., & Ratnakaram, Y. C. (2019). Investigations on spectroscopic properties of Nd³+ doped alkali bismuth phosphate glasses for 1.053 μm laser applications. Optics and Laser Technology, 113, 322–329.
Dato, A., & Frenklach, M. (2010). Substrate-free microwave synthesis of graphene: experimental conditions and hydrocarbon precursors. New Journal of Physics, 12(12), 125013.
Deb, S. K., Wilding, M., Somayazulu, M., & Mcmillan, P. F. (2001). an amorphous ± amorphous transition in densi ® ed porous silicon. Nature, 414(6863), 528–530.
Deepa, A. V, Murugasen, P., Muralimanohar, P., Sathyamoorthy, K., & Vinothkumar, P. (2018). A comparison on the Structural and Optical Properties of Different Rare Earth Doped Phosphate Glasses. Optik - International Journal for Light and Electron Optics.
Deopa, N., & Rao, A. S. (2017). Spectroscopic studies of Sm³+ ions activated lithium lead alumino borate glasses for visible luminescent device applications. Optical Materials, 72, 31–39.
Devaraja, C., Gowda, G. V. J., & Keshavamurthy, K. (2019). The optical and physical properties of holmium (Ho³+) ions doped bismuth–tellurite glasses. Proceedings of the International Conference on Advanced Materials: Icam 2019, 2162, 020172.
Dimitrov, V., & Sakka, S. (1996). Electronic oxide polarizability and optical basicity of simple oxides. Journal of Applied Physics, 79(3), 1736–1740.
Dimitrov, V, & Komatsu, T. (2010). An Interpretation of Optical Properties of Oxides and Oxide Glasses in terms of the Electronic Ion Polarizability and Average Single Bond Strength (Review). Journal of the University of Chemical Technology and Metallurgy, 45(3), 219–250.
Dimitrov, Vesselin, & Komatsu, T. (1999). Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses, 249, 160–179.
Dimitrov, Vesselin, & Komatsu, T. (2005). Classification of oxide glasses : A polarizability approach. Journal of Solid State Chemistry, 178(3), 831–846.
Ding, L., Xu, C., Xia, Z., Xu, B., & Huang, J. (2017). Controlling polarization-dependent optical absorption of graphene through its thickness. Optik - International Journal for Light and Electron Optics, 137, 59–64.
Divina, R., Marimuthu, K., Sayyed, M. I., Tekin, H. O., & Agar, O. (2019). Physical, structural, and radiation shielding properties of B2O3–MgO–K2O–Sm2O3 glass network modified with TeO2. Radiation Physics and Chemistry, 160, 75–82.
Dousti, M. R. (2017). Enhanced 1.06 μm emission in Nd³+-doped lead-tellurite glasses doped with silver nanoparticles. Journal of Nanophotonics, 10(4), 046010.
Dreyer, D. R., Ruoff, R. S., & Bielawski, C. W. (2010). From Conception to Realization : An Historial Account of Graphene and Some Perspectives for Its Future. Angewandte Chemie International Edition, 49(49), 9336–9344.
Dubois, S. M., Zanolli, Z., Declerck, X., & Charlier, J. (2009). Electronic properties and quantum transport in Graphene-based nanostructures. The European Physical Journal B, 72(1), 1–24.
Duffy, J. A., & Ingram, M. D. (1971). Establishment of an Optical Scale for Lewis Basicity in Inorganic Oxyacids, Molten Salts, and Glasses, 1(2), 6448–6454.
Duffy, J. A., & Ingram, M. D. (1992). Comment. Journal of Non-Crystalline Solids, 144, 76–80. Duffy, J. A. (1989). Optical Basicity of Titanium( IV] Oxide and Zirconium( IV) Oxide. Journal of the American Ceramic Society, 72(10), 2012–2013.
Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., & Chhowalla, M. (2009). Insulator to Semimetal Transition in Graphene Oxide. The Journal of Physical Chemistry C, 113(35), 15768–15771.
Edwards, R. S., & Coleman, K. S. (2013). Graphene synthesis : relationship to applications. Nanoscale, 5(1), 38–51.
El-Maaref, A. A., Shimaabadr, Shaaban, K. S., Abdel Wahab, E. A., & Elokr, M. M. (2018). Optical Properties and Radiative Rates of Nd³+ Doped Zinc-Sodium Phosphate Glasses. Journal of Rare Earths.
Elbadawi, N. I. A., Abdallah, M. D., Elhai, R. A., & Ahmed, S. A. E. (2018). The Effect of Oxidation Number on Refractive Index Based on String Theory. International Journal of Engineering Sciences and Research Technology, 7(1), 122–129.
Elgazery, M., Ali, A. A., & El-Mallawany, R. (2019). Ultrasonic and Thermal Properties of Bismuth Borotellurite Glasses Doped with NdCl3. Egyptian Journal of Chemistry, 62(4), 655–664.
Elkhoshkhany, N., Essam, O., & Embaby, A. M. (2018). Optical, thermal and antibacterial properties of tellurite glass system doped with ZnO. Materials Chemistry and Physics, 214, 489–498.
Emiru, T. F., & Ayele, D. W. (2016). Controlled synthesis , characterization and reduction of graphene oxide : A convenient method for large scale production. Egyptian Journal of Basic and Applied Sciences, 4(1), 74–79.
Ennouri, M., Jlassi, I., Habib, E., & Bernard, G. (2019). Improvement of spectroscopic properties and luminescence of Er³+ ions in phospho-tellurite glass ceramics by formation of ErPO4 nanocrystals. Journal of Luminescence, 216, 116753.
Fang, M., Xiong, X., Hao, Y., Zhang, T., & Wang, H. (2019). Journal of Materials Science & Technology Preparation of highly conductive graphene-coated glass fibers by sol-gel and dip-coating method. Journal of Materials Science & Technology, 35(9), 1989–1995.
Farouk, M., Abdallauh, K., Attallah, M., & El-fattah, Z. M. A. (2019). Influence of different alkaline oxide modifiers on VO²+ ions doped zinc borate glasses. Journal of Non-Crystalline Solids, 523, 119607.
Faznny, M. F., Halimah, M. K., & Azlan, M. N. (2016). Effect of Lanthanum Oxide on Optical Properties of Zinc Borotellurite Glass System. Journal of Optoelectronics and Biomedical Materials, 8(2), 49–59.
Fu, S., Zhu, X., Wang, J., Wu, J., Tong, M., Zong, J., Li, M., Wiersma K., Chavez- Pirson, A., & Peyghambarian, N. (2019). L-band wavelength-tunable Er³+-doped tellurite fiber lasers. Journal of Lightwave Technology, 8724, 1–5.
Fuks-janczarek, I., Miedzinski, R., Reben, M., & Sayed, E. (2019). Linear and non-linear optical study of fluorotellurite glasses as function of selected alkaline earth metals doped with Er³+. Optics and Laser Technology, 111, 184–190.
Gaikwad, D. K., Sayyed, M. I., Botewad, S. N., Shamsan, S. O., Khattari, Z. Y., Gawai, U. P., Afaneh, F., Shirshat, M. D., & Pawar, P. P. (2018). Physical, structural, optical investigation and shielding features of tungsten bismuth tellurite based glasses. Journal of Non-Crystalline Solids.
Gangwar, H., Singh, V., Tewari, B. S., Gupta, H., & Purohit, L. P. (2019). Study of zinc doped tellurite glasses using XRD, UV-Vis and FTIR. Materials Today: Proceedings, 17, 329–337.
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191.
Georgakilas, V., Perman, J. A., Tucek, J., & Zboril, R. (2015). Broad Family of Carbon Nanoallotropes : Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews, 115(11), 4744–4822.
Gökçe, M., & Koçyigit, D. (2018). Optical and luminescence characteristics of Sm³+ doped B2O3-GeO2-Gd2O3 glasses. Optical Materials, 83, 233–240.
Gomes, J. F., Lima, A. M. O., Sandrini, M., Medina, A. N., Steimacher, A., Pedrochi, F., & Barboza, M. J. (2017). Optical and spectroscopic study of erbium doped calcium borotellurite glasses. Optical Materials, 66, 211–219.
Gordon, R. (1997). Chemical vapor deposition of coatings on glass. Journal of Non- Crystalline Solids, 218, 81–91.
Gorni, G., Vel, J. J., Mosa, J., Balda, R., Fern, J., Dur, A., & Castro, Y. (2018). Transparent Glass-Ceramics Produced by Sol-Gel : A Suitable Alternative for Photonic Materials. Materials, 11(2), 212.
Greer, A. L. (2015). New horizons for glass formation and stability. Nature Materials, 14(6), 542–546.
Guo, C., Zhang, J., Xu, W., Liu, K., Yuan, X., Qin, S., & Zhu, Z. (2018). Graphene- Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications. Nanomaterials, 8(12), 1033.
Gupta, P. K. (1996). Non-crystalline solids: glasses and amorphous solids. Journal of Non-crystalline solids, 195, 158-164.
Gupta, V., Sharma, N., Singh, U., Arif, M., & Singh, A. (2017). ( Revised Manuscript ) Synthesis and characterization of Graphene Oxide. Optik.
Hajer, S. S., Halimah, M. K., Azmi, Z., & Azlan, M. N. (2014). Optical properties of Zinc-Borotellurite doped samarium. Chalcogenide Letters, 11(11), 553–566.
Halimah, M. K., Umar, S. A., Chan, K. T., Latif, A. A., Azlan, M. N., Abubakar, A. I., & Hamza, A. M. (2019). Study Of Rice Husk Silicate Effects On The Elastic, Physical And Structural Properties Of Borotellurite Glasses. Materials Chemistry and Physics.
Hamza, A. M., Halimah, M. K., Muhammad, F. D., Chan, K. T., Usman, A., Faznny, M. F., Zaitizila, I., & Tafida, R. A. (2019). Structural, optical and thermal properties of Er³+ -Ag codoped bio-silicate borotellurite glass. Results in Physics, 14, 102457.
Han, J. W., & Kim, J. (2013). Green synthesis of graphene and its cytotoxic effects in human breast cancer cells. International Journal of Nanomedicine, 8, 1015–1027.
Hasan, T., Senger, B. J., Ryan, C., Culp, M., Gonzalez-rodriguez, R., Coffer, J. L., & Naumov, A. V. (2017). Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment. Scientific Reports, 7(1).
He, W., Zhang, W., Zhu, L., Lou, X., & Dong, M. (2018). C-band switchable multi- wavelength erbium-doped fiber laser based on Mach–Zehnder interferometer employing seven-core fiber. Optical Fiber Technology, 46, 30–35.
Hegde, V., Prabhu, N., Wagh, A., Sayyed, M. I., Agar, O., & Kamath, S. D. (2019). Influence of 1.25 MeV gamma rays on optical and luminescent features of Er³+ doped zinc bismuth borate glasses. Results in Physics, 12, 1762–1769.
Hernaez, M., Zamarreño, C. R., Melendi-Espina, S., Bird, L. R., Mayes, A. G., & Arregui, F. J. (2017). Optical fibre sensors using graphene-based materials: A review. Sensors, 17(12), 155.
Hivrekar, M. M., Sable, D. B., Solunke, M. B., & Jadhav, K. M. (2018). Different property studies with network improvement of CdO doped alkali borate glass. Journal of Non-Crystalline Solids, 491, 14–23.
Honma, T., Sato, R., Benino, Y., & Komatsu, T. (2000). Electronic polarizability, optical basicity and XPS spectra of Sb2O3-B2O3 glasses. Journal of Non-Crystalline Solids, 272, 1–13.
Hu, L., He, D., Chen, H., Wang, X., Meng, T., Wen, L., Hu, J., Xu, Y., Li, S., Chen, Y., Chen, W., Chen, S., Tang, J., & Wang, B. (2016). Research and development of neodymium phosphate laser glass for high power laser application. Optical Materials, 62, 34–41.
Huang, F., Fei, E., Lei, R., Li, Y., Li, B., Ye, R., & Xu, S. (2019). Enhancing the Er³+: Infrared and mid-infrared emission performance in germanosilicate-zinc glasses. Journal of Luminescence, 213, 370–375.
Huang, Y., Sutter, E., Shi, N. N., Zheng, J., Yang, T., Englund, D., Gao, H., & Sutter, P. (2015). Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials. ACS Nano, 9(11), 10612–10620.
Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339.
Ibrahim, A. M., Hammad, A. H., Abdelghany, A. M., & Rabie, G. O. (2018). Mixed alkali effect and samarium ions effectiveness on the structural, optical and non- linear optical properties of borate glass. Journal of Non-Crystalline Solids, 495, 67– 74.
Ichoja, A., Hashim, S., Ghoshal, S. K., Hashim, I. H., & Omar, R. S. (2018). Physical, Structural and Optical Studies onMagnesium Borate Glasses Doped with Dysprosium Ion. Journal of Rare Earths.
Ismail, Mahmoud M, Batisha, I. K., Zur, L., Chiasera, A., Ferrari, M., & Lukowiak, A. (2020). Optical properties of Nd³+-doped phosphate glasses. Optical Materials, 99, 109591.
Jamalaiah, B. C. (2018). GeO2 activated tellurite tungstate glass : A new candidate for solid state lasers and fiber devices. Journal of Non-Crystalline Solids.
Jastrzebska, A. M., Kurtycz, P., & Olszyna, A. R. (2012). Recent advances in graphene family materials toxicity investigations. Journal of Nanoparticle Research, 14(12).
Jearnkulprasert, N., Chaemlek, O., & Wantana, N. (2017). Physical Optical Properties of 20CaO-(80-x)B2O3-xZnO Glass System. Journal of Metals, Materials and Minerals, 27(2), 43–47.
Jha, A., Shen, S., & Naftaly, M. (2000). Structural origin of spectral broadening of 1.5- µm emission in Er³+-doped tellurite glasses, 62(10).
Jha, K., Jayasimhadri, M., Haranath, D., & Jang, K. (2019). Influence of modifier oxides on spectroscopic properties of Eu³+ doped oxy-fluoro tellurophosphate glasses for visible photonic applications. Journal of Alloys and Compounds, 789, 622–629.
Ji, Y., Xiao, Y. B., Wang, W. C., Huang, S. J., Liu, J. L., & Zhang, Q. Y. (2019). Optical properties of Nd³+-doped fluoro-sulfo-phosphate glasses. Journal of Non-Crystalline Solids, 512, 155–160.
Jimenez, J. A., Sendova, M., & Manchini, M. (2020). Thermal and spectroscopic characterization of copper and erbium containing aluminophosphate glass. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, 117546.
Jlassi, I., Fares, H., & Elhouichet, H. (2018). Enhancement of spectroscopic and luminescence properties of Er³+ doped tellurite glasses by adding P2O5 for lasing materials. Journal of Luminescence, 194, 569–578.
Jupri, S. A., Ghoshal, S. K., Omar, M. F., & Yusof, N. N. (2018). Spectroscopic traits of holmium in magnesium zinc sulfophosphate glass host: Judd-Ofelt evaluation. Journal of Alloys and Compounds, 753, 446–456.
Kaewnum, E., Wantana, N., & Kaewkhao, J. (2018). Luminescence study and Judd-Ofelt analysis of Nd³+ doped lithium lanthanum borate glass for green laser device. Materials Today: Proceedings, 5(6), 13954–13962.
Kaky, K. M., Farah, M. I. S., Alyaa, L., Tekin, H. A. H. O., & Baki, S. O. (2019). Stuctural, optical and radiation shielding properties of zinc boro- tellurite alumina glasses. Applied Physics A.
Kalampounias, A. G., Nasikas, N. K., & Papatheodorou, G. N. (2011). Journal of Physics and Chemistry of Solids tellurite glasses : A composition dependent Raman spectroscopic study. Journal of Physical and Chemistry of Solids, 72(9), 1052–1056.
Kang, S., Wang, X., Xu, W., Wang, X., He, D., & Hu, L. (2017). Effect of B2O3 content on structure and spectroscopic properties of neodymium-doped calcium aluminate glasses. Optical Materials, 66, 287–292.
Kashif, I., Ratep, A., & Adel, G. (2018). Polarizability, optical basicity and optical properties of SiO2B2O3Bi2O3TeO2 glass syetm. Applied Physics A, 124(7), 486.
Kaur, A., & Khanna, A. (2019). Thermal, optical and Raman spectroscopy studies of lithium tellurite glasses containing molybdenum and tungsten ions. DAE Solid State Physics Symposium 2018, 2115, 030253.
Kesavulu, C. R., Suresh, K., Santos, J. F. M., Catunda, T., Kim, H. J., & Jayasankar, C. K. (2017). Spectroscopic investigations of 1.06 µm emission and time resolved Z- scan studies in Nd³+-doped zinc tellurite based glasses. Journal of Luminescence, 192, 1047–1055.
Khan, M. A., Amjad, R. J., Ahmad, M. A., Sattar, A., Hussain, S., Yasmeen, S., & Dousti, M. R. (2019). Structural and Optical Study of Erbium Doped Borophosphate Glasses. Optik - International Journal for Light and Electron Optics, 163707.
Kilic, G., Issever, U. G., & Ilik, E. (2019). Characterization of -Er³+ doped ZnTeTa semiconducting oxide glass. Journal of Materials Science: Materials in Electronics, 30(9), 8920–8930.
Kindrat, I. I., Padlyak, B. V, Lisiecki, R., & Adamiv, V. T. (2019). Optical spectroscopy and luminescence properties of a Tm³+-doped LiKB4O7 glass. Journal of Non- Crystalline Solids, 521, 119477.
Kibrisli, O., Ersundu, A. E., & Ersundu, M. Ç. (2019). Dy³+ doped tellurite glasses for solid-state lighting : An investigation through physical, thermal, structural and optical spectroscopy studies. Journal of Non-Crystalline Solids, 513, 125–136.
Klimesz, B., Lisiecki, R., & Ryba-Romanowski, W. (2018). Oxyfluorotellurite glasses doped with neodymium and ytterbium-thermal and spectroscopic properties as well as energy transfer phenomena. Journal of Luminescence, 199, 310–318.
Kolavekar, S. B., & Ayachit, N. H. (2019). Synthesis of praseodymium trioxide doped lead-boro-tellurite glasses and their optical and physical properties. Journal of Materiomics.
Kragh, H. (2018). The Lorenz-Lorentz Formula : Origin and Early History. Substantia. An International Journal of the History of Chemistry, 2(2), 7–18.
Kruskopf, M., Pierz, K., Pakdehi, D. M., Stosch, R., Bakin, A., & Schumacher, H. W. (2018). A morphology study on the epitaxial growth of graphene and its buffer layer. Thin Solid Films.
Kumar, D., Rao, S. M., & Singh, S. P. (2019). Effect of Er³+ on NaSrB glass : thermoluminescence and structural analysis. Applied Physics A, 125(38), 1–10.
Kuroda, K., & Yoshikuni, Y. (2017). Optical Fiber Technology Two-wavelength pump- probe technique using single distributed feedback laser array to probe gain recovery of an erbium-doped fiber amplifier. Optical Fiber Technology, 34, 20–22.
Lai, Q., Zhu, S., Luo, X., Zou, M., & Huang, S. (2012). Ultraviolet-visible spectroscopy of graphene oxides. AIP Advances, 2(3), 3–8.
Lakshmi, Y. A., Swapna, K., Rama, K. S., Reddy, K., Venkateswarlu, M., Mahamuda, S., & Rao, A. S. (2019). Structural, optical and NIR studies of Er³+ ions doped bismuth boro tellurite glasses for luminescence materials applications. Journal of Luminescence, 211, 39–47.
Lakshminarayana, G., Kityk, I. V, Mahdi, M. A., & Plucinski, K. J. (2017). Er/Pr- codoped borotellurite glasses as efficient laser operated nonlinear optical materials. Materials Letters, 214, 23–25.
Laopaiboon, R., Thumsa-ard, T., & Bootjomchai, C. (2018). The thermoluminescence properties and determination of trapping parameters of soda lime glass doped with erbium oxide. Journal of Luminescence, 197, 304–309.
Lau, K. Y., Bakar, M. H. A., Zain, A. R., Abas, A. F., Alresheedi, M. T., & Mahdi, M. A. (2018). Stable multi-wavelength erbium-doped fiber laser assisted by graphene/ PMMA thin film. Optics and Laser Technology, 105, 129–134.
Leal, J. J., Narro-garcía, R., Ríos, J. P. F. L., Gutierrez-mendez, N., Ramos-Sánchez, V. H., González-Castillo, J. R., & Rodríguez, E. (2019). Effect of TiO2 on the thermal and optical properties of Er³+/Yb³+ co-doped tellurite glasses for optical sensor. Journal of Luminescence, 208, 342–349.
Lee, X. J., Hiew, B. Y. Z., Lai, K. C., Lee, L. Y., Gan, S., Thangalazhy-Gopakumar, S., & Rigby, S. (2018). Review on graphene and its derivatives : Synthesis methods and potential industrial implementation. Journal of the Taiwan Institute of Chemical Engineers.
Lee, K. H., Kim, T. H., Kim, Y. S., Jung, Y. J., Na, Y. H., & Ryu, B. K. (2008). Structural Modification of Alkali Tellurite Binary Glass System and Its Characterization. Korean Journal of Materials Research, 18(5), 235–240.
Li, J., Xiao, X., Gu, S., Xu, Y., Zhou, Z., & Guo, H. (2017). Preparation and optical properties of TeO2-BaO-ZnO-ZnF2 fluoro-tellurite glass for mid-infrared fiber Raman laser applications. Optical Materials, 66, 567–572.
Li, L. X., Wang, W. C., Zhang, C. F., Liu, J. L., Zhang, Q. Y., & Jiang, Z. H. (2019). Exploration of the new tellurite glass system for efficient 2 μm luminescence. Journal of Non-Crystalline Solids, 508, 15–20.
Li, S., Tu, ?. K., Lin, ?. C., Chen, C., & Chhowalla, M. (2010). Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells. ACS Nano, 4(6), 3169–3174.
Li, X., Ming, Y., Gui, W., Yang, C., Sanjayan, J. G., Hui, W., & Li, Z. (2017). Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste. Construction and Building Materials, 145, 402–410.
Li, Z., Zhang, W., & Xing, F. (2019). Graphene Optical Biosensors. International Journal of Molecular Sciences, 20(10), 2461.
Lima, A. M. O., Gomes, J. F., Hegeto, F. L., Medina, A. N., Steimacher, A., & Barboza, M. J. (2017). Evaluation of TeO2 content on the optical and spectroscopic properties of Yb³+-doped calcium borotellurite glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193, 212–218.
Liu, D., Li, C., Xu, Y., Zhou, D., Wang, H., Sun, P., & Jiang, H. (2017). Near-infrared luminescent erbium complexes with 8-hydroxyquinoline-terminated hyperbranched polyester. Polymer.
Loh, K. P., Bao, Q., Eda, G., & Chhowalla, M. (2010). Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2(12), 1015–1024.
Luewarasirikul, N., Chanthima, N., Tariwong, Y., & Kaewkhao, J. (2018). Erbium-doped calcium barium phosphate glasses for 1.54 µm broadband optical amplifier. Materials Today: Proceedings, 5(6), 14009–14016.
Lunt, A. J. G., Chater, P., & Korsunsky, A. M. (2018). On the origins of strain inhomogeneity in amorphous materials. Scientific Reports, 8(1).
Maaoui, A., Haouari, M., Bulou, A., Boulard, B., & Ouada, H. Ben. (2018). Effect of BaF2 on the structural and spectroscopic properties of Er³+/Yb³+ ions codoped fluoro-tellurite glasses. Journal of Luminescence, 196, 1–10.
Madhu, A., Eraiah, B., Manasa, P., & Srinatha, N. (2018). Nd³+ -doped lanthanum lead boro-tellurite glass for lasing and ampli fi cation applications. Optical Materials, 75, 357–366.
Maia, L. J. Q., Moura, A. L., Jerez, V., & Araújo, C. B. De. (2019). Structural properties and near infrared photoluminescence of Nd³+ doped YBO3 nanocrystals. Optical Materials, 95, 109227.
Manasa, P., & Jayasankar, C. K. (2019). Spectroscopic assessment of Dy³+ ions in lead fluorosilicate glass as a prospective material for solid state yellow laser. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 212, 315– 321.
Manning, S., Ebendorff-heidepriem, H., & Monro, T. M. (2012). Ternary tellurite glasses for the fabrication of nonlinear optical fibres Abstract : Optical Materials Express, 2(2), 305–308.
Marcano, D. C., Kosynkin, D. V, Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu. W., & Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8).
Mariselvam, K., Kumar, R. A., & Manasa, P. (2018). Spectroscopic investigations of neodymium doped barium bismuth fluoroborate glasses. Infrared Physics and Technology, 91, 18–26.
Martynova, E., & Cebulla, H. (2018). Glass Fibers. Inorganic and Composite Fibers. Elsevier Ltd.
Marzuki, A., & Fausta, D. E. (2018). Physical and Optical Studies of Bi³+-Modified Erbium Doped Tellurite Glasses. IOP Conference Series: Materials Science and Engineering, 333, 012015.
Masuno, A. (2019). High refractive index La-rich lanthanum borate glasses composed of isolated BO3 units. Dalton Transactions, 48(10804), 10757–11146.
Mawlud, S. Q. (2018). Optical Properties of Tellurite Glasses Embedded with Gold Nanoparticles.
Mawlud, S. Q., Ameen, M. M., Sahar, R., Ashur, Z., Mahraz, S., & Ahmed, K. F. (2017). Spectroscopic properties of Sm³+ doped sodium-tellurite glasses : Judd-Ofelt analysis. Optical Materials, 69, 318–327.
Mclaughlin, J. C., Tagg, S. L., Zwanziger, J. W., & Hae, D. R. (2000). The structure of tellurite glass : a combined NMR, neutron diffraction, and X-ray diffraction study. Journal of Non-Crystalline Solids, 274, 1–8.
Meejitpaisan, P., Phothong, K., & Kaewkhao, J. (2019). NIR emission of Nd³+-doped sodium barium borate oxyfluoride glasses for 1.07 µm laser materials. Journal of Thai Interdisciplinary Research, 14(3), 54–59.
Meng, L., Cheng, F., Xu, Y., Zhang, J., & Zhao, X. (2019). 2.7 μm mid-infrared emission enhancement of Nd³+ and Er³+ ions co-doped Bi2O3-PbO-Ga2O3 heavy metal oxide glass. Journal of Non-Crystalline Solids, 517, 137–142.
Mhareb, M. H. A., Almessiere, M. A., Sayyed, M. I., & Alajerami, Y. S. M. (2019). Physical, structural, optical and photons attenuation attributes of lithium- magnesium-borate glasses : Role of Tm2O3 doping. Optik - International Journal for Light and Electron Optics, 182, 821–831.
Miniscalco, W. J., & Andrews, L. J. (1988). Fiber Optic Lasers and Amplifiers for the Near-Infrared. Materials Science Forum, 33, 501–510.
Mohan, S., & Thind, S. K. (2017). Optical and spectroscopic properties of neodymium doped cadmium-sodium borate glasses. Optics and Laser Technology, 95, 36–41.
Mohan, V. B., Souri, H., Jayaraman, K., & Bhattacharyya, D. (2018). Mechanical properties of thin films of graphene materials: A study on their structural quality and functionalities. Current Applied Physics.
Mohd Zaid, M. H., Matori, K. A., Abdul Aziz, S. H., Zakaria, A., & Mohd Ghazali, M. S. (2012). Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass. International Journal of Molecular Sciences, 13(6), 7550– 7558.
Monshi, M. M., Aghaei, S. M., & Calizo, I. (2018). Band gap opening and optical absorption enhancement in graphene using ZnO nanocluster. Physics Letters A, 1, 3– 7.
Moon, I. K., Kim, J. Il, Lee, H., Hur, K., Kim, W. C., & Lee, H. (2013). 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Scientific Reports, 3, 1–7.
Moreira, L., Falci, R. F., Darabian, H., Anjos, V., Bell, M. J. V, Kassab, L. R. P., Bordon, C. D. S., Doualan, J. L., Camy, P., & Moncorge, R. (2018). The effect of excitation intensity variation and silver nanoparticle codoping on nonlinear optical properties of mixed tellurite and zinc oxide glass doped with Nd2O3 studied through ultrafast z- scan spectroscopy. Optical Materials, 79, 397–402.
Morigaki, K., & Ogihara, C. (2006). Amorphous Semiconductors: Structure, Optical, and Electrical Properties. Springer Handbook of Electronic and Photonic Materials, 565–580.
Mosner, P., Kupetska, O., Koudelka, L., & Kalenda, P. (2019). Physical properties and structural studies of lithium borophosphate glasses containing TeO2. Journal of Solid State Chemistry, 270, 547–552.
Mott, N. F., Davis, E. A., & Weiser, K. (1972). Electronic Processes in Non-Crystalline Materials. Physics Today, 25(12), 14–15.
Mun, S. C., Park, J. J., Park, Y. T., Kim, D. Y., Lee, S. W., Cobos, M., Ye, S. J., Macosko, C. W., & Park, O. O. (2017). High electrical conductivity and oxygen barrier property of polymer- stabilized graphene thin films. Carbon, 125, 492–499.
Munisudhakar, B., Raju, C. N., Babu, M. R., Reddy, N. M., & Moorthy, L. R. (2019). Materials Today : Proceedings Luminescence characteristics of Nd³+ doped bismuth borate glasses for photonic applications. Materials Today: Proceedings.
Musfir, P. N., Soumya, S., Mehaboob, C. V. A., Ali, V. R., & Thomas, S. (2019). Tunable optical bandgap in ternary Ge-As-S chalcogenide glass. The 3rd International Conference on Optoelectronic and Nano Materials for Advanced Technology (IcONMAT 2019), 030024.
Mustafa, I., Kamari, H., Yusoff, W., Aziz, S., & Rahman, A. (2013). Structural and Optical Properties of Lead-Boro-Tellurrite Glasses Induced by Gamma-Ray. International Journal of Molecular Sciences, 14, 3201–3214.
Naftaly, M., & Jha, A. (2010). Nd³+-doped fluoroaluminate glasses for a 1.3 μm amplifier. Journal of Applied Physics, 87(5), 2098–2104.
Nanba, T. (2011). Characterization of glasses based on basicity. Journal of the Ceramic Society of Japan, 119[10], 720–725.
Nanda, K., Kundu, R. S., Punia, R., Mohan, D., & Kishore, N. (2019). Linear and nonlinear optical characterization of neodymium doped barium-zinc-borate glasses. DAE Solid State Physics Symposium, 2115, 030266.
Nandi, P., Srinivasan, A., & Jose, G. (2009). Structural dependent thermal and optical properties of rare earth doped glass with mixed glass formers. Optical Materials, 31(4), 653–659.
Napotalino, S., Glynos, E., & Tito, B. N. (2017). Glass transition of polymers in bulk , confined geometries , and near interfaces. Reports on Progress in Physics, 80(3), 036602.
Naresh, P., Kavitha, B., Inamdar, H. K., Sreenivasu, D., Narsimlu, N., Srinivas, C., Sathe, V., & Kumar, K. S. (2019). Modifier role of ZnO on the structural and transport properties of lithium boro tellurite glasses. Journal of Non-Crystalline Solids, 514, 35–45.
Naseer, K. A., Arunkumar, S., & Marimuthu, K. (2019). The impact of Er³+ ions on the spectroscopic scrutiny of Bismuth bariumtelluroborate glasses for display devices and 1.53 μm amplification. Journal of Non-Crystalline Solids, 520, 119463.
Nasser, K., Aseev, V., Ivanov, S., Ignatiev, A., & Nikonorov, N. (2019). Optical , spectroscopic properties and Judd – Ofelt analysis of Nd³+ -doped. Journal of Luminescence, 213, 255–262.
Naumov, A. V. (2017). Optical Properties of Graphene Oxide. Nazrin, S. N., Halimah, M. K., Muhammad, F. D., Yip, J. S., Hasnimulyati, L., Faznny, M. F., Hazlin, M. A., & Zaitizila, I. (2018). The effect of erbium oxide in physical and structural properties of zinc tellurite glass system. Journal of Non-Crystalline Solids, 490, 35–43.
Neelima, G., Krishnaiah, K. V., Ravi, N., Suresh, K., Tyagarajan, K., & Prasad, T. J. (2019). Investigation of optical and spectroscopic properties of neodymium doped oxy fl uoro-titania-phosphate glasses for laser applications. Scripta Materialia, 162, 246–250.
Noguera, O., Mirgorodsky, A. P., Smirnov, M. B., & Thomas, P. (2003). Vibrational and structural properties of glass and crystalline phases of TeO2. Journal of Non- Crystalline Solids, 330, 50–60.
Nourbakhsh, A., Cantoro, M., Vosch, T., Pourtois, G., Clemente, F., Veen, M. H. Van Der, Hofkens, J., Heyns, M. M., Gendt, S. D. & Sels, B. F. (2010). Bandgap opening in oxygen plasma-treated graphene. Nanotechnology, 21(43), 435203.
Novatski, A., Somer, A., Gonçalves, A., Piazzetta, R. L. S., Gunha, J. V, Andrade, A. V. C., Lenzi, E. K., Medina, A. N., Astrath, N. G. C., & El-mallawany, R. (2019). Thermal and optical properties of lithium-zinc-tellurite glasses. Materials Chemistry and Physics, 231, 150–158.
Onodera, Y., Takimoto, Y., Hijiya, H., Taniguchi, T., Urata, S., Inaba, S., Fujita, S., Obayashi, I., Hiraoka, Y., & Kohara, S. (2019). Origin of the mixed alkali effect in silicate glass. NPG Asia Materials, 11(75).
Oueslati-omrani, R., & Hamzaoui, A. H. (2020). Effect of ZnO incorporation on the structural, thermal and optical properties of phosphate based silicate glasses. Materials Chemistry and Physics, 242, 122461.
Ouis, M. A., Batal, F. H., & Azooz, M. A. (2019). FTIR, optical, and thermal studies of cadmium borate glass doped with Bi2O3 and effects of gamma irradiation. Journal of Australian Ceramic Society.
Pach, K., Golis, E., Yousef, E. S., Sitarz, M., & Filipecki, J. (2018). Structural studies of tellurite glasses doped with erbium ions. Journal of Molecular Structure, 1164, 328– 333.
Pal, I., Agarwal, A., Sanghi, S., & Aggarwal, M. P. (2012). Structure and optical absorption of Sm³+ and Nd³+ ions in cadmium bismuth borate glasses with large radiative transition probabilities. Optical Materials, 34(7), 1171–1180.
Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4, 45–47.
Patwari, R. D., & Eraiah, B. (2019). Optical and Plasmonic Properties of Er³+ and Silver Co-doped Borate Nano-composite Glasses. Materials Research Express.
Pavani, P. G., Sadhana, K., & Mouli, V. C. (2011). Optical, physical and structural studies of boro-zinc tellurite glasses. Physica B: Physics of Condensed Matter, 406(6–7), 1242–1247.
Pepe, Y., Erdem, M., Sennaroglu, A., & Eryurek, G. (2019). Enhanced gain bandwidth of Tm³+ and Er³+ doped tellurite glasses for broadband optical amplifier. Journal of Non-Crystalline Solids, 522, 119501.
Pirouz, A. A., Karjiban, R. A., Bakar, F. A., & Selamat, J. (2018). A novel adsorbent magnetic graphene oxide modified with Chitosan for the simultaneous reduction of mycotoxins. Toxins, 10(9), 361.
Pisarski, W. A., Pisarska, J., Lisiecki, R., & Ryba-romanowski, W. (2017). Opto- Electronics Review Erbium-doped lead silicate glass for near-infrared emission and temperature-dependent up-conversion applications. Opto-Electronics Review, 25(3), 238–241.
Polosan, S. (2019). Structure and low field magnetic properties in phosphate-tellurite glasses. Journal of Non-Crystalline Solids, 524, 119651.
Pop, L., Bolundut, L., Pascuta, P., & Culea, E. (2019). Influence of Er³+ ions addition on thermal and optical properties of phosphate–germanate system. Journal of Thermal Analysis and Calorimetry, 4, 1–5.
Prabhu, N. S., Hegde, V., Sayyed, M. I., Sakar, E., & Kamath, S. D. (2019). Investigations on the physical, structural, optical and photoluminescence behavior of Er³+ ions in lithium zinc fluoroborate glass system. Infrared Physics and Technology, 98, 7–15.
Prasad, C., Liu, Q., Tang, H., Yuvaraja, G., Long, J., Rammohan, A., & Zyryanov, G. V. (2020). An overview of graphene oxide supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. Journal of Molecular Liquids, 297, 111826.
Price, R. J., Ladislaus, P. I., Smith, G. C., & Davies, T. J. (2019). A novel ‘bottom-up’ synthesis of few- and multi-layer graphene platelets with partial oxidation via cavitation. Ultrasonics - Sonochemistry, 56, 466–473.
Qi, J., Xue, D., Ratajczak, H., & Ning, G. (2004). Electronic polarizability of the oxide ion and density of binary silicate, borate and phosphate oxide glasses. Physica B, 349, 265–269.
Queiroz, M. N., Dantas, N. F., Brito, D. R. N., Barboza, M. J., Steimacher, A., & Pedrochi, F. (2019). Optical and Spectroscopic Investigation of Sm³+-Doped Calcium Borotellurite Glasses. Journal of Electronic Materials.
Rajagukguk, J., Sinaga, B., & Kaewkhao, J. (2019). Molecular and Biomolecular Spectroscopy Structural and spectroscopic properties of Er³+ doped sodium lithium borate glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 223, 117342.
Rajesh, D., & Camargo, A. S. S. De. (2019). Nd³+ doped new oxyfluoro tellurite glasses and glass ceramics containing NaYF4 nano crystals−1.06 µm emission analysis. Journal of Luminescence, 207, 469–476.
Ramachari, D., Yang, C., Wada, O., Uchino, T., & Pan, C. (2019). High-refractive index, low-loss oxyfluorosilicate glasses for sub-THz and millimeter wave applications. Journal of Applied Physics, 125, 151609.
Rammah, Y. S., Ali, A. A., & Abdelghany, A. M. (2019). Optical properties of bismuth borotellurite glasses doped with NdCl3. Journal of Molecular Structure, 1175, 504– 511.
Rammah, Y. S., Sayyed, M. I., Abohaswa, A. S., & Tekin, H. O. (2018). FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with-SnO2. Applied Physics A, 124(9), 650.
Rao, K. V., Babu, S., Balanarayana, C., & Ratnakaram, Y. C. (2019). Comparative impact of Nd³+ ion doping concentration on near-infrared laser emission in lead borate glassy materials. Optik - International Journal for Light and Electron Optics, 163562.
Rao, M. C. (2018). Effect of Al2O3 on structural and luminescent properties of neodymium (Nd³+) doped lead germanate glasses. Optik - International Journal for Light and Electron Optics, 172, 509–518.
Ravangvong, S., Chanthima, N., Rajaramakrishna, R., Kim, H. J., & Kaewkhao, J. (2020). Effect of sodium oxide and sodium fluoride in gadolinium phosphate glasses doped with Eu2O3 content. Journal of Luminescence, 116950.
Rout, S. S. G. C. (2017). Band gap opening in graphene : a short theoretical study. International Nano Letters, 7(2), 81–89.
Sajna, M. S., Perumbilavil, S., Prakashan, V. P., Sanu, M. S., Joseph, C., Biju, P. R., & Unnikrishnan, N. V. (2018). Enhanced resonant nonlinear absorption and optical limiting in Er³+ ions doped multicomponent tellurite glasses. Materials Research Bulletin.
Sakida, S., Hayakawa, S., & Yoko, T. (2001). Ga NMR Study of M2O3– TeO2 ( M ? Al and Ga) Glasses, 42, 836–842.
Sanjay, Kishore, N., Sheoran, M. S., & Devi, S. (2018). Study of Boro-Tellurite Glasses Doped With Neodymium Oxide. 2nd International Conference on Condensed Matter and Applied Physics.
Saudi, H. A., & Adel, G. (2018). Study on Mass Attenuation Coefficients and Optical Properties for Boro-Tellurite Glass doped with Barium. American Journal of Astronomy and Astrophysics, 6(1), 21–25.
Sekiya, T., Mochida, N., & Ohtsuka, A. (1994). Raman spectra of MO-TeO2 ( M = Mg , Sr , Ba and Zn) glasses, 168, 106–114.
Selvaraju, K., & Marimuthu, K. (2012). Structural and spectroscopic studies on concentration dependent Er³+ doped boro-tellurite glasses. Journal of Luminescence, 132(5), 1171–1178.
Shaaban, K. S. (2019). Optical properties of Bi2O3 doped boro tellurite glasses and glass ceramics. Optik - International Journal for Light and Electron Optics, 163976.
Shang, J., Li, J., Ai, W., Yu, T., & Gurzadyan, G. G. (2012). The Origin of Fluorescence from Graphene Oxide. Scientific Reports, 2(1), 1–8.
Shekhawat, M. S., Basha, S. K. S., & Rao, M. C. (2018). Spectroscopic Studies on Samarium Oxide (Sm2O3) Doped Tungsten Tellurite Glasses. 2nd International Conference on Condensed Matter and Applied Physics (ICC 2017).
Shen, C., Jia, Y., Yan, X., Zhang, W., Li, Y., Qing, F., & Li, X. (2018). Effects of Cu contamination on system reliability for graphene synthesis by chemical vapor deposition method. Carbon, 127, 676–680.
Shin, D. S., Kim, H. G., Ahn, H. S., Jeong, H. Y., Kim, Y., Odkhuu, D., Tsogbadrakh, N., Lee, H., & Kim, B. H. (2017). Distribution of oxygen functional groups of graphene oxide obtained from low-temperature atomic layer deposition of titanium oxide. Royal Society of Chemistry, 7, 13979–13984.
Shoaib, M., Chanthima, N., Rooh, G., Sangwaranatee, N., & Kaewkhao, J. (2019). Physical and Luminescence Study of Nd³+ ions doped Phosphate Glass for Lasing Applications. Materials Today: Proceedings, 17, 1800–1808.
Shwetha, M., & Eraiah, B. (2019). Influence of Er³+ ions on the physical, structural, optical, and thermal properties of ZnO-Li2O-P2O5 glasses. Applied Physics A, 125(3).
Sidek, H. A. A., Rosmawati, S., Azmi, B. Z., & Shaari, A. H. (2013). Effect of ZnO on the Thermal Properties of Tellurite Glass. Advances in Condensed Matter Physics, 2013, 1–6.
Silva, A. A., Pinheiro, R. A., Rodrigues, A. C., Baldan, M. R., Trava-Airoldi, V. J., & Corat, E. J. (2018). Graphene sheets produced by carbon nanotubes unzipping and their performance as supercapacitor. Applied Surface Science.
Singh, V., Seshadri, M., Singh, N., & Mohapatra, M. (2019). Radiative properties of Er³+ doped and Er³+/Yb³+ co-doped Sr3Al2O6 phosphors: exploring the usefulness as a phosphor material. Journal of Materials Science: Materials in Electronics.
Singh V , Joung D , Zhai L , Das S , Khondaker SI, S. S. (2011). Graphene based materials : Past, present and future. Progress in Materials Science, 56, 1178–1271.
Siva Rama Krishna Reddy, K Swapna, K., Venkateswarlu, M., Mahamuda, S., & Rao, A. S. (2019). Thermal, Up-Conversion and Near-Infrared Luminescence studies of Erbium ions doped Alkaline-Earth Boro Tellurite Glasses. Solid State Sciences, 106016.
Smith, A. T., Marie, A., Zeng, S., Liu, B., & Sun, L. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science.
Soares, B. P., Desa, J. A. E., & Krishna, P. S. R. (2019). Influence of praseodymium on alumino- germanate glasses containing Nd and La inclusions. DAE Solid State Physics Symposium 2018, 030247, 3–7.
Soriano-Romero, O., Lozada-Morales, R., Caldino, U., Mendez-Blas, A., Falcony, C., Alvarez, E., Palomino-Ovando, M., & Meza-Rocha, A. N. (2019). Spectroscopic evaluation a new and novel Nd³+/Yb³+ co-doped CdO- V2O5 glass system for 1 µm laser application. Journal of Alloys and Compunds, 777, 886–893.
Sreedhar, V. B., Krishnaiah, K. V., Rasool, S. K. N., Venkatramu, V., & Jayasankar, C. K. (2019). Raman and photoluminescence studies of europium doped zinc- fluorophosphate glasses for photonic applications. Journal of Non-Crystalline Solids, 505, 115–121.
Sreenivasulu, M., Chavan, V. K., Rupa, B., & Rao, V. (2019). Characterization of Cr³+ Doped Zinc Lead Lithium Phosphate Glasses. Materials Research Express.
Sribunrueng, S., Sivanavin, S., & Yasaka, P. (2019). Study on physical, optical and luminescence of zinc tellurite glasses doped with bismuth oxide. Interdisciplinary Research Review, 14(4), 34–36.
Stambouli, W., Elhouichet, H., & Ferid, M. (2012). Study of thermal, structural and optical properties of tellurite glass with different TiO2 composition. Journal of Molecular Structure, 1028, 39–43.
Staudenmaier, L. (1898). Verfahren zur Darstellung der Graphitsäure. Berichte Der Deutschen Chemischen Gesellschaft.
Suaif, A., Yuliantini, L., Djamal, M., Kaewkhao, J., & Yasaka, P. (2019). A Comparative study of TeO2 concentration on zinc barium boro-tellurite glass doped with Sm³+. Materials Today: Proceedings, 17, 1809–1814.
Sun, G. (2010). Intersubband approach to silicon based lasers-circumventing the indirect bandgap limitation. Advances in Optics and Photonics, 3(1), 53.
Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Zainol, I., & Masrom, A. K. (2015). A facile one-step method for graphene oxide/natural rubber latex nanocomposite production for supercapacitor applications. Materials Letters, 161, 665–668.
Szumera, M., Waclawska, I., & Sulowska, J. (2016). Influence of CuO and ZnO addition on the multicomponent phosphate glasses: spectroscopic studies. Journal of Molecular Structure.
Tagiara, N. S., Palles, D., Simandiras, E. D., Psycharis, V., Kyritsis, A., & Kamitsos, E. I. (2017). Synthesis , thermal and structural properties of pure TeO2 glass and zinc- tellurite glasses. Journal of Non-Crystalline Solids, 457, 116–125.
Taherunnisa, S. K., Krishna Reddy, D. V., SambasivaRao, T., Rudramamba, K. S., Zhydachevskyy, Y. A., Suchocki, A., Piasecki, M., & Rami Reddy, M. (2019). Effect of up-conversion luminescence in Er³+ doped phosphate glasses for developing Erbium-Doped Fibre Amplifiers (EDFA) and G-LED’s. Optical Materials: X.
Talebian, E., & Talebian, M. (2013). A general review on the derivation of Clausius- Mossotti relation. Optik-International Journal for Light and Electron Optics, 124(16), 2324–2326.
Talewar, R. A., Mahamuda, S., Swapna, K., & Rao, A. S. (2018). Sensitization of Yb³+ by Nd³+ emission in alkaline-earth chloro borate glasses for laser and fiber amplifier applications. Journal of Alloys and Compounds.
Tang, S., Wu, W., Xie, X., Li, X., & Gu, J. (2017). Band gap opening of bilayer graphene by graphene oxide support doping. Royal Society of Chemistry, 7, 9862–9871.
Tanko, Y. A., Ghoshal, S. K., & Sahar, M. R. (2016). Ligand field and Judd-Ofelt intensity parameters of samarium doped tellurite glass. Journal of Molecular Structure, 1117, 64–68.
Tatsumisago, M., Lee, S., Minami, T., & Kowada, Y. (1994). Raman spectra of TeO2- based glasses and glassy liquids : local structure change with temperature in relation to fragility of liquid Tg/T, 177, 154–163.
Tong, H. T., Demichi, D., Nagasaka, K., Suzuki, T., & Ohishi, Y. (2018). Suppressing 1.06 μm spontaneous emission of neodymium ions using a novel tellurite all-solid photonic bandgap fiber. Optics Communications, 415, 87–92.
Tuan, T. H., Miura, K., Nishiharaguchi, N., Suzuki, T., & Ohishi, Y. (2019). Suppressing 1.06 µm Emission of Nd³+ Ions in Tellurite All Solid Photonic Bandgap Fibers With Double Cladding. 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 113, 1.
Umamaheswar, G., Devarajulu, G., Rajesh, M., Sushma, N. J., Gowthami, T., Nagajyothi, P. C., Ramaswamy, V., & Raju, B. D. P. (2018). Effect of Eu³+ ions on optical and fluorescence studies of Nd³+ ions doped zinc-lithium fluoroborate glasses. Journal of Luminescence. Elsevier B.V.
Umar, S. A., Halimah, M. K., Chan, K. T., & Latif, A. A. (2017). Polarizability , optical basicity and electric susceptibility of Er³+ doped silicate borotellurite glasses. Journal of Non-Crystalline Solids.
Vani, P., Vinitha, G., Sayyed, M. I., Elbashir, B. O., & Manikandan, N. (2019). Investigation on structural, optical, thermal and gamma photon shielding properties of zinc and barium doped fluorotellurite glasses. Journal of Non-Crystalline Solids, 511, 194–200.
Vijayalakshmi, L., Kumar, K. N., Rao, K. S., & Hwang, P. (2018). Bright up-conversion white light emission from Er³+ doped lithium fluoro zinc borate glasses for photonic applications. Journal of Molecular Structure, 1155, 394–402.
Wan, Q., Wang, H., Li, S., & Wang, J. (2018). Journal of Colloid and Interface Science 3, 3-tetramethylurea solution. Journal of Colloid And Interface Science, 526, 167– 173.
Wang, J. S., Vogel, E. M., Snitzer, E., Jackel, J. L., Da Silva, J. L., Silberberg, Y. (1994). 1.3 µm emission of neodymium and praseodymium in tellurite-based glasses. Journal of Non-Crystalline Solids, 178, 109–113.
Wang, J., Mu, X., Sun, M., & Mu, T. (2019). Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures. Applied Materials Today, 16, 1–20.
Wang, R., Yang, Z., Zhou, D., Song, Z., & Qiu, J. (2014). Structure and luminescent property of Er³+-doped germanate glasses. Journal of Non-Crystalline Solids, 383, 200–204.
Wang, X. Y., Narita, A., & Müllen, K. (2017). Precision synthesis versus bulk-scale fabrication of graphenes. Nature Reviews Chemistry, 2(1).
Wen, H., Zhang, J., Yao, Q., Liu, L., Dong, W., Li, J., & Wang, J. (2019). Thermal, Optical Characterization and Judd-Ofelt Analyis of Nd³+-Doped BaO-TeO2-B2O3 Glasses. Materials and Technology, 53(3), 305–309.
Xie, T., Zhang, L., Wang, J., Xie, T., Zhu, Q., & Zhang, X. (2018). Co-precipitation synthesis, structural characterization and fluorescent analysis of Nd³+ doped Y3Al5O12 and Yb3Al5O12 nanocrystallines. Journal of Materials Science: Materials in Electronics.
Yang, L., Li, H. Y., Wang, P. W., Wu, S. Y., Guo, G. Q., Liao, B., Guo, Q. L., fan, X. Q., Huang, P., Lou, H. B., Guo, F. M., Zeng, Q. S., Sun, T., Ren, Y., & Chen, L. Y. (2017). Structural responses of metallic glasses under neutron irradiation. Scientific Reports, 7(1).
Yang, Y., Liu, R., Wu, J., Jiang, X., Cao, P., Hu, X., & Pan, T. (2015). Bottom-up Fabrication of Graphene on Silicon/Silica Substrate via a Facile Soft-hard Template Approach. Scientific Reports, 5(1).
Yasaka, P., Ruangthaweep, Y., Wongdeeying, C., & Kaewkhao, J. (2018). Spectroscopic and structural characterization of zinc barium tellurite glass. Materials Today: Proceedings, 5(7), 15072–15075.
Ye, Q., Wang, J., Liu, Z., Deng, Z., Kong, X., Xing, F., Chen, X., Zhou, W., Zhang, C., & Tian, J. (2013). Polarization-dependent optical absorption of graphene under total internal reflection. Applied Physics Letters, 102(2), 021912.
Yu, C., Yang, Z., Huang, A., Chai, Z., Qiu, J., Song, Z., & Zhou, D. (2017). Photoluminescence properties of tellurite glasses doped Dy³+ and Eu³+ for the UV and blue converted WLEDs. Journal of Non-Crystalline Solids, 457, 1–8.
Yuliantini, L., Djamal, M., Hidayat, R., Boonin, K., Yasaka, P., & Kaewnuam, E. (2019). Optical and X-ray induced luminescence of Sm³+-doped borotellurite and fluoroborotellurite glasses : A comparative study. Journal of Luminescence, 213, 19–28.
Yusof, N. N., Ghoshal, S. K., & Azlan, M. N. (2017). Optical properties of titania nanoparticles embedded Er³+-doped tellurite glass: Judd-Ofelt analysis. Journal of Alloys and Compounds, 724, 1083–1092.
Zachariasen, W. H. (1932). The Atomic Arrangement in Glass. Journal of the American Chemical Society, 54(10), 3841–3851.
Zaitizila, I., Halimah, M. K., Muhammad, F. D., & Nurisya, M. S. (2018). Influence of manganese doping on elastic and structural properties of silica borotellurite glass. Journal of Non-Crystalline Solids, 492, 50–55.
Zaman, F., Rooh, G., Srisittipokakun, N., Ahmad, T., Khan, I., Shoaib, M., Ataullah., Rajagukguk, J., & Kaewkhao, J. (2019). Comparative investigations of gadolinium based borate glasses doped with Dy³+ for white light generations. Solid State Sciences, 89, 50–56.
Zamyatin, O. A., Churbanov, M. F., Plotnichenko, V. G., & Zamyatina, E. V. (2018). Optical properties of the MoO3–TeO2 glasses doped with Ni²+-ions. Journal of Non- Crystalline Solids, 480, 74–80.
Zanotto, E. D., & Mauro, J. C. (2017). The glassy state of matter : Its definition and ultimate fate. Journal of Non-Crystalline Solids.
Zhang, W. L., & Choi, H. J. (2015). Graphene/graphene oxide : A new material for electrorheological and magnetorheological applications. Journal of Intelligent Material Systems and Structures, 26(14), 1826–1835.
Zhang, X., Shao, X., & Liu, S. (2012). Dual Fluorescence of Graphene Oxide: A Time- Resolved Study. The Journal of Physical Chemistry A, 116(27), 7308–7313.
Zhang, Yifan, Sheng, L., Fang, Y., An, K., Yu, L., Liu, Y., & Zhao, X. (2017). Synthesis of 3C-SiC nanowires from a graphene / Si configuration obtained by arc discharge method Abstract SiC nanowires were fabricated by heat-treating a graphene/Si configuration without. Chemical Physics Letters.
Zhang, Yu, Xiao, Z., Lei, H., Zeng, L., & Tang, J. (2019). Er³+/Yb³+ co-doped tellurite glasses for optical fiber thermometry upon UV and NIR excitations. Journal of Luminescence, 212, 61–68.
Zhao, G., Xu, L., Meng, S., Du, C., Hou, J., Liu, Y., Guo, Y., Fang, Y., Liao, M., Zou, J., & Hu, L. (2018). Facile preparation of plasmon enhanced nearinfrared photoluminescence of Er³+-doped Bi2O3-B2O3-SiO2 glass for optical fiber amplifier. Journal of Luminescence.
Zhao, X., Wang, X., Lin, H., & Wang, Z. (2007). Electronic polarizability and optical basicity of lanthanide oxides. Physica B, 392, 132–136.
Zhu, Y., Shen, X., Su, X., Zhou, M., Zhou, Y., Li, J., & Yang, G. (2019). Concentration dependent structural , thermal and luminescence properties in Er³+/Tm³+ doped tellurite glasses. Journal of Non-Crystalline Solids, 507, 19–29.
Zmojda, J., Miluski, P., & Kochanowicz, M. (2018). Nanocomposite Antimony- Germanate-Borate Glass Fibers Doped with Eu³+ Ions with Self-Assembling Silver or Photonic Applications. Applied Sciences, 8(5), 790.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |