UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :QE Geology
Main Author :Nurashikin Abd Azis
Title :Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
This study aimed to develop a voltammetric sensor for the determination of bisphenol A (BPA), uric acid (UA), dopamine (DA) and acetaminophen (ACT) using multiwalled carbon nanotubes incorporated with zinc/aluminium layered double hydroxidequinmerac (Sensor 1), zinc/aluminium layered double hydroxide-quinclorac (Sensor 2) and zinc/aluminium layered double hydroxide-clopyralid (Sensor 3). The surface morphological was determined using field emission scanning electron microscope. The electrochemical properties were characterized by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. Several experimental variables of voltammetric analysis such as composition ratios, type of supporting electrolyte, pH of the solution and square wave voltammetry parameters were optimized. The effective surface area of electrodes was determined by chronocoulometry. At the optimum conditions, Sensor 1 showed three linear ranges for the single determination of BPA (30 to 700 nM, 1 to 10 μM and 30 to 300 μM) with detection limit of 4.4 nM. Sensor 2 showed simultaneous determination of UA and BPA. The linear ranges for UA is from 0.3 to 30 μM and 50 to 100 μM while for BPA is from 0.3 to 5 μM and 10 to 100 μM with detection limit are 0.065 μM and 0.049 μM, respectively. Sensor 3 showed simultaneous determination of DA, ACT and BPA with linear ranges from 7 to 500 μM, 30 to 500 μM and 3 to 500 μM and with detection limit of 0.172 μM, 0.179 μM and 0.136 μM, respectively. All the developed sensors did not interfere by several foreign ions. In a conclusion, the proposed electrodes exhibited good analytical performance with excellent sensitivity and selectivity. In its implication, these fabricated electrodes are applicable for determination of BPA, UA, ACT and DA in baby bottle, baby teether, water samples, urine and pharmaceutical tablets.

References

Abollino, O., Giacomino, A., & Malandrino, M. (2018). Stripping Voltammetry. In

Encyclopedia of Analytical Science, (3rd ed., pp. 1–20). Elsevier Inc.

 

Abramovic, B. F., Anderluh, V. B., Šojic, D. V., & Gaál, F. F. (2007). Photocatalytic

removal of the herbicide clopyralid from water. Journal of the Serbian Chemical

Society, 72(12), 1477–1486.

 

Achterberg, E. P., Gledhill, M., Hawkes, J. A., & Avendano, L. C. (2013). Voltammetry

| Cathodic Stripping. Reference Module in Chemistry, Molecular Sciences and

Chemical Engineering (pp. 203-211). Elsevier Inc.

 

Adam, N., Mohd Ghazali, S. A. I. S., Dzulkifli, N. N., Hak, C. R. C., & Sarijo, S. H.

(2019). Intercalations and characterization of zinc/aluminium layered double

hydroxide-cinnamic acid. Bulletin of Chemical Reaction Engineering &Amp;

Catalysis, 14(1), 165–172.

 

Adeloju, S. B. (2007). Electrochemical stripping analysis of trace and ultra-trace

concentrations of toxic metals and metalloids in foods and beverages. In Food

Toxicants Analysis: Techniques, Strategies and Developments (pp. 667–696).

Woodhead Publishing Limited.

 

Adhikari, B.-R., Maduraiveeran, G., & Chen, A. (2014). Sensitive detection of

acetaminophen with graphene-based electrochemical sensor. Electrochimica Acta,

162, 198-204

 

Ahmad, M. S., Isa, I., Hashim, N., & Rosmi, M. S. (2018). Electrochemical detection

of hydroquinone by square wave voltammetry using a Zn layered hydroxideferulate

(ZLH-F) modified MWCNT paste electrode. International Journal of

Electrochemical Science, 13, 373–383.

 

Ahmad, M. S., Isa, I., Hashim, N., Si, S. M., & Saidin, M. I. (2018). A highly sensitive

sensor of paracetamol based on zinc-layered hydroxide-L-phenylalanate-modified

multiwalled carbon nanotube paste electrode. Journal of Solid State

Electrochemistry, 22(3), 2691–2701.

 

Ahmad, M. S., Isa, I. M., Hashim, N., Saidin, M. I., Si, S. M., Zainul, R., & Mukdasai,

S. (2019). Zinc layered hydroxide-sodium dodecyl sulphate-isoprocarb modified

multiwalled carbon nanotubes as sensor for electrochemical determination of

dopamine in alkaline medium. International Journal of Electrochemical Science,

14(9), 9080–9091.

 

Ahmadpour, S., Tashkhourian, J., & Hemmateenejad, B. (2020). A chemometric

investigation on the influence of the nature and concentration of supporting

electrolyte on charging currents in electrochemistry. Journal of Electroanalytical

Chemistry, 871, 114296.

 

Ahmed, J., Rahman, M. M., Siddiquey, I. A., Asiri, A. M., & Hasnat, M. A. (2017).

Efficient bisphenol-A detection based on the ternary metal oxide (TMO)

composite by electrochemical approaches. Electrochimica Acta, 246, 597–605.

 

Alderman, M. H. (2001). Serum uric acid as a cardiovascular risk factor for heart

disease. Current Hypertension Reports, 3, 184–189.

 

Allou, N. B., Saikia, P., Borah, A., & Goswamee, R. L. (2017). Hybrid nanocomposites

of layered double hydroxides : An update of their biological applications and

future prospects. Colloid and Polymer Science, 295(5), 725–747.

 

Alnaimat, A. S., Barciela-Alonso, M. C., & Bermejo-Barrera, P. (2019). Determination

of bisphenol A in tea samples by solid phase extraction and liquid chromatography

coupled to mass spectrometry. Microchemical Journal, 147, 598-604.

 

Alvarez-Lario, B., & Macarron-Vicente, J. (2010). Uric acid and evolution.

Rheumatology, 49, 2010–2015.

 

Alves, G. M. S., Rocha, L. S., & Soares, H. M. V. M. (2017). Multi-element

determination of metals and metalloids in waters and wastewaters, at trace

concentration level, using electroanalytical stripping methods with

environmentally friendly mercury free-electrodes: A review. Talanta, 175, 53-68.

 

Andrade-Eiroa, A., Canle, M., Leroy-Cancellieri, V., & Cerdà, V. (2015). Solid phase

extraction of organic compounds: A critical review. Trends in Analytical

Chemistry, 80, 655–667.

 

Anson, F. C. (1966). Innovations in the study of adsorbed reactants by

chronocoulometry. Analytical Chemistry, 38(1), 54–57.

 

Apetrei, C., Apetrei, I. M., Saja, J. A. De, & Rodriguez-Mendez, M. L. (2011). Carbon

paste electrodes made from different carbonaceous materials: Application in the

study of antioxidants. Sensors, 11, 1328–1344.

 

Apodaca, D. C., Pernites, R. B., Ponnapati, R., Del Mundo, F. R., & Advincula, R. C.

(2011). Electropolymerized molecularly imprinted polymer film: EIS sensing of

bisphenol A. Macromolecules, 44(17), 6669–6682.

 

Arvand, M., & Hassannezhad, M. (2014). Magnetic core-shell Fe3O4@SiO2/MWCNT

nanocomposite modified carbon paste electrode for amplified electrochemical

sensing of uric acid. Materials Science and Engineering C, 36(1), 160–167.

 

Asadpour-Zeynali, K., & Amini, R. (2017). Nanostructured hexacyanoferrate

intercalated Ni/Al layered double hydroxide modified electrode as a sensitive

electrochemical sensor for paracetamol determination. Electroanalysis, 29(2),

635–642.

 

Atta, N. F., Ali, S. M., El-ads, E. H., & Galal, A. (2013). Nano-perovskite carbon paste

composite electrode for the simultaneous determination of dopamine, ascorbic

acid and uric acid. Electrochimica Acta, 128, 16–24.

 

Azis, N. A., Isa, I. M., Hashim, N., Ahmad, M. S., Yazid, S. N. A. M., & Saidin, M. I.

(2019). Voltammetric determination of bisphenol A in the presence of uric acid

using a Zn/Al-LDH-QM modified MWCNT paste electrode. International

Journal of Electrochemical Science, 14, 10607-10621.

 

Babaei, A., Afrasiabi, M., & Azimi, G. (2015). Nanomolar simultaneous determination

of epinephrine and acetaminophen on a glassy carbon electrode coated with a

novel Mg-Al layered double hydroxide-nickel hydroxide nanoparticles-multiwalled

carbon nanotubes composite. Analytical Methods, 7(6), 2469–2478.

 

Baccarin, M., Santos, F. A., Vicentini, F. C., Zucolotto, V., Janegitz, B. C., & Fatibello-

Filho, O. (2017). Electrochemical sensor based on reduced graphene oxide/carbon

black/chitosan composite for the simultaneous determination of dopamine and

paracetamol concentrations in urine samples. Journal of Electroanalytical

Chemistry, 799(6), 436–443.

 

Baig, N., & Sajid, M. (2017). Applications of layered double hydroxides based

electrochemical sensors for determination of environmental pollutants : A review.

Trends in Environmental Analytical Chemistry, 16(10), 1–15.

 

Baruah, A., Mondal, S., Sahoo, L., & Gautam, U. K. (2019). Ni-Fe-layered double

hydroxide/N-doped graphene oxide nanocomposite for the highly efficient

removal of Pb(II) and Cd(II) ions from water. Journal of Solid State Chemistry,

280, 120963.

 

Bas, B., Bugajna, A., Jakubowska, M., Reczynski, W., & Smalec, A. (2013). The

renewable glassy carbon annular band electrode in a highly sensitive normal pulse

voltammetric determination of paracetamol with continuous wavelet

transformation. Electrochimica Acta, 99, 190–197.

 

Bashi, A. M., Hussein, M. Z., Zainal, Z., Rahmani, M., & Tichit, D. (2012).

Simultaneous intercalation and release of 2,4-dichloro and 4-chloro-phenoxy

acetates into Zn/Al layered double hydroxide. Arabian Journal of Chemistry, 9,

S1457–S1463.

 

Bayram, E., & Akyilmaz, E. (2016). Chemical development of a new microbial

biosensor based on conductive polymer/multiwalled carbon nanotube and its

application to paracetamol determination. Sensors & Actuators: B. Chemical, 233,

409–418.

 

Benecyo, J. E. (2016). Simultaneous Determination of BPA and BPS Using UV/ Vis

Spectrophotometry and HPLC. Ouachita Baptist University Scholarly.

 

Berber, M., Hafez, I., Minagawa, K., Mori, T., & Tanaka, M. (2011). Versatile

nanocomposite formulation system of non-steroidal anti-inflammatory drugs of

the arylalkanoic acids, Advances in Nanocomposite Technology, Abbass Hashim,

IntechOpen.

 

Bessems, J. G. M., & Vermeulen, N. P. E. (2001). Paracetamol (acetaminophen)-

induced toxicity : Molecular and biochemical mechanisms , analogues and

protective approaches. Critical Reviews in Toxicology, 31(1), 55–138.

 

Bhakta, A. K., Mascarenhas, R. J., D’Souza, O. J., Satpati, A. K., Detriche, S.,

Mekhalif, Z., & Dalhalle, J. (2015). Iron nanoparticles decorated multi-wall

carbon nanotubes modified carbon paste electrode as an electrochemical sensor

for the simultaneous determination of uric acid in the presence of ascorbic acid,

dopamine and L-tyrosine. Materials Science & Engineering C, 57, 328–377.

 

Bilal, S. (2014). Cyclic Voltammetry. In G. Kreysa, K. Ota, & R. F. Savinell (Eds.),

Encyclopedia of Applied Electrochemistry (pp. 285–289). New York, NY:

Springer New York.

 

Bilewicz, R., Wikiel, K., Osteryoung, R., & Osteryoung, J. (2002). General equivalence

of linear scan and staircase voltammetry : Experimental results. Analytical

Chemistry, 61(9), 965–972.

 

Bini, M., & Monteforte, F. (2018). Layered double hydroxides (LDHs): Versatile and

powerful hosts for different applications. Journal of Analytical & Pharmaceutical

Research, 7(1), 00206.

Bode and nyquist plot (2020). Retrieved from

https://www.palmsenscorrosion.com/knowledgebase/bode-and-nyquist-plot/

 

Bolat, G., Yaman, Y. T., & Abaci, S. (2018). Highly sensitive electrochemical assay

for bisphenol A detection based on poly (CTAB)/MWCNTs modified pencil

graphite electrodes. Sensors and Actuators, B: Chemical, 255, 140–148.

 

Bontempelli, G., Dossi, N., & Toniolo, R. (2019). Polarography/Voltammetry. In

Encyclopedia of Analytical Science, (3rd ed., pp. 218-229). Elsevier Inc.

 

Brede, C., Fjeldal, P., Skjevrak, I., & Herikstad, H. (2003). Increased migration levels

of bisphenol A from polycarbonate baby bottles after dishwashing , boiling and

brushing. Food Additives and Contaminants, 20(7), 684–689.

 

Brock, J. W., Yoshimura, Y., Barr, J. R., Maggio, V. L., Graiser, S. R., Nakazawa, H.,

& Needham, L. L. (2001). Measurement of bisphenol A levels in human urine.

Journal of Exposure Analysis and Environmental Epidemiology, 11, 323–328.

 

Brownson, D. A. C., & Banks, C. E. (2014). The Handbook of Graphene

Electrochemistry (1st ed.). Springer-Verlag London.

 

Bruna, F., Celis, R., Pavlovic, I., Barriga, C., Cornejo, J., & Ulibarri, M. A. (2009).

Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-

2-methylphenoxy) acetic acid (MCPA): Systems Mg–Al, Mg–Fe and Mg–Al–Fe.

Journal of Hazardous Materials, 168, 1476–1481.

 

Bunchorntavakul, C., & Reddy, K. R. (2013). Acetaminophen-related hepatotoxicity.

Clinics in Liver Disease, 17(4), 587–607.

 

C. Moldoveanu, S., & David, V. (2017). Short overviews of analytical techniques not

containing an independent separation step. In Selection of the HPLC Method in

Chemical Analysis (pp. 31–53). Elsevier.

 

Caban, M., Lis, E., Kumirska, J., & Stepnowski, P. (2015). Environment determination

of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS

( SIM ) method based on Speedisk extraction disks and DIMETRIS derivatization.

Science of the Total Environment, 538, 402–411.

 

Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A,

nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface

water, sediments, and food : A review. Environmental Science and Pollution

Research, 22, 5711–5741.

 

Cavani, F., Trifiro, F., Vaccari, A. (1991). Hydrotalcite-type anionic clays: preparation,

properties and applications. Catalysis Today, 11, 173–301.

 

Chapin, R. E., Adams, J., Boekelheide, K., Gray, L. E., Hayward, S. W., Lees, P. S. J.,

et al. (2008). NTP-CERHR expert panel report on the reproductive and

developmental toxicity of bisphenol A. Birth Defects Research Part B -

Developmental and Reproductive Toxicology, 83(3), 157–395.

 

Cheemalapati, S., Palanisamy, S., Mani, V., & Chen, S. M. (2013). Simultaneous

electrochemical determination of dopamine and paracetamol on multiwalled

carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon

electrode. Talanta, 117, 297–304.

 

Chen, X., Zhou, G., Mao, S., & Chen, J. (2018). Rapid detection of nutrients with

electronic sensors: A review. Environmental Science: Nano, 5, 837–862.

 

Chen, Z., Guo, J., Zhou, T., Zhang, Y., & Chena, L. (2013). A novel nonenzymatic

electrochemical glucose sensor modified with Ni/Al layered double hydroxide.

Electrochimica Acta, 109(3), 532–535.

 

Chiavazza, E., Berto, S., Giacomino, A., Malandrino, M., Barolo, C., Prenesti, E., et al

(2016). Electrocatalysis in the oxidation of acetaminophen with an

electrochemically activated glassy carbon electrode. Electrochimica Acta, 192,

139–147.

 

Chou, J. (1999). Hazardous gas monitors : A practical guide to selection, operation

and applications (1st ed). New York: McGraw-Hill.

 

Christie, J. H., & Lingane, P. J. (1965). Theory of staircase voltammetry. Journal of

Electroanalytical Chemistry, 10(3), 176–182.

 

Ciszewski, A., & Milczarek, G. (1999). Polyeugenol-modified platinum electrode for

selective detection of dopamine in the presence of ascorbic acid. Analytical

Chemistry, 71(5), 1055–1061.

 

Ciui, A. B., Tertis, M., Feurdean, C., Ilea, A., Sandulescu, R., Wang, J., et al. (2018).

Cavitas electrochemical sensor toward detection of N-epsilon

(Carboxymethyl)lysine in oral cavity. Sensors & Actuators: B. Chemical.

 

Concenço, G., Silva, A. F., Ferreira, E. A., Galon, L., Noldin, J. A., Aspiazú, I., et al.

(2009). Effect of dose and application site on quinclorac absorption by barnyardgrass biotypes. Planta Daninha, 27(3), 541–548.

 

Correia-sá, L., Norberto, S., Delerue-matos, C., Calhau, C., & Domingues, V. F. (2018).

Micro-QuEChERS extraction coupled to GC–MS for a fast determination of

bisphenol A in human urine. Journal of Chromatography B, 1072(10), 9–16.

 

Cosio, M. S., Pellicanò, A., Brunetti, B., & Fuenmayor, C. A. (2017). A simple

hydroxylated multi-walled carbon nanotubes modified glassy carbon electrode for

rapid amperometric detection of bisphenol A. Sensors and Actuators, B:

Chemical, 246, 673–679.

 

Cosio, M. S., Scampicchio, M., & Benedetti, S. (2012). Electronic noses and tongues.

In Chemical analysis of Food: Techniques and Applications (pp. 219–247).

Elsevier Inc.

 

Costa-rama, E., & Abedul, M. T. F. (2020). Adsorptive stripping voltammetry of indigo

blue in a flow system. In Laboratory Methods in Dynamic Electroanalysis (pp.

47–56). Elsevier Inc.

 

Costello, B. P. J. D. L., Evans, P., & Ratcliffet, N. M. (1996). Preparation of polypyrrole

composites and the effect of volatile amines on their electrical properties. Analyst,

121(June), 793–797.

 

Courade, J.-P., Caussade, F., Martin, K., Besse, D., Delchambre, C., Hanoun, N., et al.

(2001). Effects of acetaminophen on monoaminergic systems in the rat central

nervous system. Naunyn-Schmiedeberg’s Archives of Pharmacology, 364, 534–

537.

 

Cox, K. H., Gatewood, J. D., Howeth, C., & Rissman, E. F. (2010). Hormones and

behavior gestational exposure to bisphenol A and cross-fostering affect behaviors

in juvenile mice. Hormones and Behavior, 58(5), 754–761.

 

Crepaldi, E. L., Pavan, P. C., & Valim, J. B. (2000). Anion exchange in layered double

hydroxides by surfactant salt formation. Journal of Materials Chemistry, 10,

1337–1343.

 

D’Souza, O. J., Mascarenhas, R. J., Thomas, T., Basavaraja, B. M., Saxena, A. K.,

Mukhopadhyay, K., et al. (2015). Platinum decorated multi-walled carbon

nanotubes/Triton X-100 modified carbon paste electrode for the sensitive

amperometric determination of paracetamol. Journal of Electroanalytical

Chemistry, 739, 49–57.

 

Darmapatni, K. A. G., Basori, A., & Suaniti, N. M. (2016). Pengembangan metode GCMS

untuk penetapan kadar acetaminophen pada spesimen rambut manusia. Jurnal

Biosains Pascasarjana, 18(3), 58-71.

 

Dawei, Q., Zhang, Q., Zhou, W., Zhao, J., Zhang, B., Sha, Y., et al. (2016).

Quantification of dopamine in brain microdialysates with high- performance

liquid chromatography–tandem mass spectrometry. Analytical Sciences, 32(4),

419–424.

 

Dejous, C., Hallil, H., Raimbault, V., Rukkumani, R., & Yakhmi, J. V. (2017). Using

microsensors to promote the development of innovative therapeutic

nanostructures. In Nanostructures for Novel Therapy (pp. 539–566). Elsevier Inc.

 

Dekanski, A., Stevanovic, J., Stevanovic, R., Nikolic, B. Z., & Jovanovic, V. M. (2001).

Glassy carbon electrodes I . Characterization and electrochemical activation.

Carbon, 39, 1195–1205.

 

Deutch, A. Y. (1993). Prefrontal cortical dopamine systems and the elaboration of

functional corticostriatal circuits: implications for schizophrenia and Parkinson’s

disease A. Journal of Neural Transmission, 91, 197–221.

 

Dong, X., Qi, X., Liu, N., Yang, Y., & Piao, Y. (2017). Direct electrochemical detection

of bisphenol a using a highly conductive graphite nanoparticle film electrode.

Sensors, 17(4), 836-846.

 

Electrochemical impedance spectroscopy (2020). Retrived from

https://www.elproscan.com/secm/electrochemical-impedance-spectroscopy/

 

El Bouabi, Y., Farahi, A., Labjar, N., El Hajjaji, S., Bakasse, M., & El Mhammedi, M.

A. (2016). Square wave voltammetric determination of paracetamol at chitosan

modified carbon paste electrode: Application in natural water samples,

commercial tablets and human urines. Materials Science and Engineering C, 58,

70–77.

 

El Harrad, L., Bourais, I., Mohammadi, H., & Amine, A. (2018). Recent advances in

electrochemical biosensors pharmaceutical applications. Sensors, 18(1), 164–188.

 

Elgrishi, N., Rountree, K. J., Mccarthy, B. D., Rountree, E. S., Eisenhart, T. T., &

Dempsey, J. L. (2018). A Practical beginner’s guide to cyclic voltammetry.

Journal of Chemical Education, 95(2), 197–206.

 

Ensafi, A. A., Arashpour, B., Rezaei, B., & Allafchian, A. R. (2014). Voltammetric

behavior of dopamine at a glassy carbon electrode modified with NiFe2O4

magnetic nanoparticles decorated with multiwall carbon nanotubes. Materials

Science and Engineering C, 39(1), 78–85.

 

Ensafi, A. A., Karimi-maleh, H., Mallakpour, S., & Hatami, M. (2011). Simultaneous

determination of N-acetylcysteine and acetaminophen by modified multiwall

carbon nanotubes paste electrode. Sensors & Actuators B: Chemical, 155(2), 464–

472.

 

Erden, P. E., Kaçar, C., Öztürk, F., & Kiliç, E. (2015). Amperometric uric acid

biosensor based on poly(vinylferrocene)-gelatin-carboxylated multiwalled carbon

nanotube modified glassy carbon electrode. Talanta, 134, 488–495.

 

Eshaq, G., & Elmetwally, A. E. (2016). (Mg–Zn)–Al layered double hydroxide as a

regenerable catalyst for the catalytic glycolysis of polyethylene terephthalate.

Journal of Molecular Liquids, 214, 1–6.

 

Evans, D. G., & Slade, R. C. T. (2006). Structural aspects of layered double hydroxides.

In Duan. X. & Evans. D.G. (Eds.), Layered Double Hydroxides. Structure and

Bonding (Vol. 119, pp. 1–87). Germany: Springer, Berlin, Heidelberg.

 

Fan, G., Li, F., Evans, D. G., & Duan, X. (2014). Catalytic applications of layered

double hydroxides: Recent advances and perspectives. Chemical Society Review,

43, 7040–7066.

 

Fan, H., Li, Y., Wu, D., Ma, H., Mao, K., Fan, D., et al. (2012). Electrochemical

bisphenol A sensor based on N-doped graphene sheets. Analytica Chimica Acta,

711, 24–28.

 

Faridbod, F., Gupta, V. K., & Zamani, H. A. (2011). Electrochemical sensors and

biosensors. International Journal of Electrochemistry, 2011, 1-2.

 

Feitknecht, W. (1942). The knowledge of the double hydroxides and basic double salts.

Helvetica Chimica Acta, 25, 131–137.

 

Feng, J., Tao, Y., Shen, X., Jin, H., Zhou, T., Zhou, Y., et al. (2018). Highly sensitive

and selective fluorescent sensor for tetrabromobisphenol-A in electronic waste

samples using molecularly imprinted polymer coated quantum dots.

Microchemical Journal, 144, 93-101.

 

Ferraro, P. M., & Curhan, G. C. (2017). Serum uric acid and risk of kidney stones.

American Journal of Kidney Diseases, 70(2), 158–159.

 

Ferrer, E., Santoni, E., Vittori, S., Font, G., Mañes, J., & Sagratini, G. (2011).

Simultaneous determination of bisphenol A, octylphenol, and nonylphenol by

pressurised liquid extraction and liquid chromatography-tandem mass

spectrometry in powdered milk and infant formulas. Food Chemistry, 126(1),

360–367.

 

Flint, S., Markle, T., Thompson, S., & Wallace, E. (2012). Bisphenol A exposure,

effects, and policy : A wildlife perspective. Journal of Environmental

Management, 104, 19–34.

 

Frye, C. A., Bo, E., Calamandrei, G., Calze, L., Dessi-Fulgheri, F., Fernandez, M., et

al. (2011). Endocrine disrupters : A review of some sources, effects, and

mechanisms of actions on behaviour and neuroendocrine systems

neuroendocrinology system. Journal of Neuroendocrinol, 24(1), 144–159.

 

Ganesh, V., Pal, S. K., Kumar, S., & Lakshminarayanan, V. (2006). Self-assembled

monolayers (SAMs) of alkoxycyanobiphenyl thiols on gold—A study of electron

transfer reaction using cyclic voltammetry and electrochemical impedance

spectroscopy. Journal of Colloid and Interface Sciene, 296, 195–203.

 

Gao, Y., Cao, Y., Yang, D., Luo, X., Tang, Y., & Li, H. (2012). Sensitivity and

selectivity determination of bisphenol A using SWCNT-CD conjugate modified

glassy carbon electrode. Journal of Hazardous Materials, 199–200, 111–118.

 

Gautam, V., Singh, K. P., & Yadav, V. L. (2018). Preparation and characterization of

green-nano-composite material based on polyaniline, multiwalled carbon nano

tubes and carboxymethyl cellulose: For electrochemical sensor applications.

Carbohydrate Polymers, 189, 218-228

 

Germer, T. A., Zwinkels, J. C., & Tsai, B. K. (2014). Introduction to

Spectrophotometry. In T. A. Germer, J. C. Zwinkels, & P. S. Tsai (Eds.),

Spectrophotometry (Vol. 46, pp. 1–9). Academic Press.

 

Ghalkhani, M., & Ghorbani-Bidkorbeh, F. (2019). Development of carbon

nanostructured based electrochemical sensors for pharmaceutical analysis. Iranian

Journal of Pharmaceutical Research, 18(2), 658–669.

 

Ghanam, A., Lahcen, A. A., & Amine, A. (2017). Electroanalytical determination of

bisphenol A: Investigation of electrode surface fouling using various carbon

materials. Journal of Electroanalytical Chemistry, 789, 58–66.

 

Ghazali, S. A. I. S. M., Hussein, M. Z., & Sarijo, S. H. (2013). 3,4-

Dichlorophenoxyacetate interleaved into anionic clay for controlled release

formulation of a new environmentally friendly agrochemical. Nanoscale Research

Letters, 8, 362–369.

 

Ghiaci, M., Rezaei, B., & Arshadi, M. (2009). Characterization of modified carbon

paste electrode by using Salen Schiff base ligand immobilized on SiO2-Al2O3 as a

highly sensitive sensor for anodic stripping voltammetric determination of

copper(II). Sensors and Actuators, B: Chemical, 139(2), 494–500.

 

Gorkina, A. L., Tsapenko, A. P., Gilshteyn, E. P., Koltsova, T. S., Larionova, T. V,

Talyzin, A., et al. (2016). Transparent and Conductive Hybrid Graphene/Carbon

Nanotube Films. Carbon. Elsevier Ltd.

 

Grossmann, K., & Scheltrup, F. (1998). Studies on the mechanism of selectivity of the

auxin herbicide quinmerac. Pesticide Science, 52(2), 111–118.

 

Gulaboski, R., Mirceski, V., Komorsky-Lovric, S., & Lovric. M. (2004). Square-wave

voltammetry of cathodic stripping reactions. Diagnostic criteria , redox kinetic

measurements, and analytical applications. Electroanalysis, 16(10), 832–842.

 

Guo, X. M., Guo, B., Li, C., & Wang, Y. L. (2016). Amperometric highly sensitive uric

acid sensor based on manganese(III)porphyrin-graphene modified glassy carbon

electrode. Journal of Electroanalytical Chemistry, 783, 8–14.

 

Hao, Y., Xiao, F., Xiao-Xia, C., Jin-Li, Q., Xiao-Ling, G., Na, X., et al. (2017).

Electrochemical determination of bisphenol a on a glassy carbon electrode

modified with gold nanoparticles loaded on reduced graphene oxide-multi walled

carbon nanotubes composite. Chinese Journal of Analytical Chemistry, 45(5),

713–720.

 

Hashim, N., Hussein, M. Z., Yahaya, A. H., & Zainal, Z. (2007). Formation of zinc

aluminium layered double hydroxides-4(2,4-dichlorophenoxy)butyrate

nanocomposites by direct and indirect methods. The Malaysian Journal of

Analytical Sciences, 11(1), 1–7.

 

Hashim, N., Sharif, S. N. M., md isa, I., Mamat, M., Mohd Ali, N., Suriani, A. B., et al.

(2019). Intercalation and characterisation of novel broad-leaved herbicide

nanocomposite from zinc/aluminium layered double hydroxide and quinmerac.

Research Journal of Chemistry And Environment, 23, 36–45.

 

He, J., Wei, M., Li, B., Kang, Y., Evans, D. G., & Duan, X. (2006). Preparation of

layered double hydroxides. In X. Duan & D. G. Evans (Eds.), Layered Double

Hydroxides. Structure and Bonding (pp. 89–119). New York: Springer, Berlin,

Heidelberg.

 

Hernández, M., Fernández, L., Borrás, C., Mostany, J., & Carrero, H. (2007).

Characterization of surfactant/hydrotalcite-like clay/glassy carbon modified

electrodes: Oxidation of phenol. Analytica Chimica Acta, 597(2), 245–256.

 

Hochstetter, C. (1842). Investigation of the composition of some minerals. Journal for

Practical Chemistry, 27, 375–378.

 

Honeychurch, K. C. (2012). Printed thick-film biosensors. In Printed Films (pp. 366–

409). Woodhead Publishing.

 

Howes, O., Mccutcheon, R., & Stone, J. (2015). Glutamate and dopamine in

schizophrenia : An update for the 21 st century. Journal of Psychopharmacology,

29(2), 97-115.

 

Huang, H., Mao, L., Li, Z., Liu, Y., Fan, S., Jin, Y., et al. (2019). Multifunctional

Polypyrrole-silver coated layered double hydroxides embedded into a

biodegradable polymer matrix for enhanced antibacterial and gas barrier

properties. Journal of Bioresources and Bioproducts, 4(4), 231–241.

 

Huang, L., Jiao, S., & Li, M. (2014). Determination of uric acid in human urine by

eliminating ascorbic acid interference on copper(II)-polydopamine immobilized

electrode surface. Electrochimica Acta, 121, 233–239.

 

Huang, Y., Cheng, C., Tian, X., Zheng, B., Li, Y., Yuan, H., et al. (2013). Low-potential

amperometric detection of dopamine based on MnO2 nanowires/chitosan modified

gold electrode. Electrochimica Acta, 89, 832–839.

 

Huang, Y., Li, X., & Zheng, S. (2016). A novel and label-free immunosensor for

bisphenol A using rutin as the redox probe. Talanta, 160, 241–246.

 

Huang, Y. Q., Wong, C. K. C., Zheng, J. S., Bouwman, H., Barra, R., Wahlström, B.,

et al. (2012). Bisphenol A (BPA) in China: A review of sources, environmental

levels, and potential human health impacts. Environment International, 42, 91–99.

 

Hudari, F. F., Duarte, E. H., Pereira, A. C., Dall‘Antonia, L. H., Kubota, L. T., & Tarley,

C. R. T. (2013). Voltammetric method optimized by multi-response assays for the

simultaneous measurements of uric acid and acetaminophen in urine in the

presence of surfactant using MWCNT paste electrode. Journal of

Electroanalytical Chemistry, 696, 52–58.

 

Hussein, M. Z., Hashim, N., Yahaya, A. H., & Zainal, Z. (2010). Synthesis of an

herbicides–inorganic nanohybrid compound by ion exchange-intercalation of 3(2-

chlorophenoxy) propionate into layered double hydroxide. Journal of

Experimental Nanoscience, 5(6), 548–558.

 

Hussein, M. Z., Rahman, N. S. S. A., Sarijo, S. H., & Zainal, Z. (2012). Synthesis of a

monophasic nanohybrid for a controlled release formulation of two active agents

simultaneously. Applied Clay Science, 58, 60–66.

 

Hyllested, M., Jones, S., Pedersen, J. L., & Kehlet, H. (2002). Comparative effect of

paracetamol, NSAIDs or their combination in postoperative pain management: A

qualitative review. British Journal of Anaesthesia, 88(2), 199–214.

 

Inzelt, G. (2014). Chronoamperometry, chronocoulometry, and chronopotentiometry.

In G. Kreysa, K. Ota, & R. F. Savinell (Eds.), Encyclopedia of Applied

Electrochemistry (pp. 207–214). New York, NY: Springer New York.

 

Irdemez, S., & Tosunoglu, N. D. V. (2011). The effects of supporting electrolyte type

and concentration on the phosphate removal from wastewater by

electrocoagulation with aluminum plate electrodes. Igdir University Journal of the

Institute of Science and Technology, 1(2), 35–40.

 

Isa, I., Fasyir, M. R., Hashim, N., Ghani, S. A., Bakar, S. A., Mohamed, A., & Kamari,

A. (2015). A highly sensitive mercury (II) sensor using Zn/Al layered double

hydroxide-3(4-hydroxyphenyl) propionate modified multi-walled carbon

nanotube paste electrode. International Journal of Electrochemical Science, 10,

6227–6240.

 

Isa, I. M., Saidin, M. I., Ahmad, M., Hashim, N., Bakar, S. A., Ali, N. M., & Si, S. M.

(2017). Chloroplatinum(II) complex-modified MWCNTs paste electrode for

electrochemical determination of mercury in skin lightening cosmetics.

Electrochimica Acta, 253, 463-471.

 

Isa, I. M., Saruddin, S., Hashim, N., Ahmad, M., & Ghani, S. A. (2016). Determination

of hydrazine in various water samples by square wave voltammetry with zinclayered

hydroxide-3(4-methoxyphenyl) propionate nanocomposite modified

glassy carbon electrode. International Journal of Electrochemical Science, 11(6),

4619–4631.

 

Isa, I. M., Sharif, S. N. M., Hashim, N., & Ghani, S. A. (2015). Amperometric

determination of nanomolar mercury(II) by layered double nanocomposite of

zinc/aluminium hydroxide-3(4-methoxyphenyl)propionate modified singlewalled

carbon nanotube paste electrode. Ionics, 21(10), 2949–2958.

 

Jemelkova, Z., Barek, J., & Zima, J. (2010). Determination of epinephrine at different

types of carbon paste electrodes. Analytical Letters, 43(7), 1367–1376.

 

Kalambate, P. K., & Srivastava, A. K. (2016). Simultaneous voltammetric

determination of paracetamol, cetirizine and phenylephrine using a multiwalled

carbon nanotube-platinum nanoparticles nanocomposite modified carbon paste

electrode. Sensors and Actuators, B: Chemical, 233, 237–248.

 

Kalcher, K. (1990). Chemically Modified carbon paste electrodes in voltammetric

analysis. Electroanalysis, 2(6), 419–433.

 

Kalcher, K., Kauffmann, J.-M., Wang, J., Svancara, I., Vytras, K., Neuhold, C., &

Yang, Z. (1995). Sensors based on carbon paste in electrochemical analysis: A

review with particular emphasis on the period 1990-1993. Electroanalysis, 7(1),

5–22.

 

Kalimuthu, P., & John, S. A. (2011). Selective determination of 3,4-

dihydroxyphenylacetic acid in the presence of ascorbic and uric acids using

polymer film modified electrode. Journal of Chemical Sciences, 123(3), 349–355.

 

Kameda, T., Takeuchi, H., & Yoshioka, T. (2009). Hybrid inorganic/organic

composites of Mg–Al layered double hydroxides intercalated with citrate, malate,

and tartrate prepared by co-precipitation. Materials Research Bulletin, 44, 840–

845.

 

Kang, J.-H., Kito, K., & Kondo, F. (2003). Factors influencing the migration of

bisphenol A from cans. Journal of Food Protection, 66(8), 1444–1447.

 

Kannan, P. K., Hu, C., Morgan, H., Moshkalev, S., A. & Rout, C. S. (2016).

Electrochemical sensing of bisphenol using a multilayer graphene nanobelt

modified photolithography patterned platinum electrode. Nanotechnology, 27,

37504.

 

Kannan, A., & Sevvel, R. (2017). A highly selective and simultaneous determination

of paracetamol and dopamine using poly-4-amino-6-hydroxy-2-

mercaptopyrimidine (Poly-AHMP) film modified glassy carbon electrode.

Journal of Electroanalytical Chemistry, 791, 8–16.

 

Karimi-maleh, H., Karimi, F., Alizadeh, M., & Sanati, A. L. (2020). Electrochemical

sensors, a bright future in the fabrication of portable kits in analytical systems. The

Chemical Record, 20(7), 1–12.

 

Kaya, S. I., Karabulut, T. C., Kurbanoglu, S., & Ozkan, S. A. (2020). Chemically

modified electrodes in electrochemical drug analysis. Current Pharmaceutical

Analysis, 16(6), 641-660.

 

Kesebir, S., Yaylaci, E. T., Süner, Ö., & Gültekin, B. K. (2014). Uric acid levels may

be a biological marker for the differentiation of unipolar and bipolar disorder: The

role of affective temperament. Journal of Affective Disorders, 165, 131–134.

 

Keyvanfard, M., Shakeri, R., Karimi-Maleh, H., & Alizad, K. (2013). Highly selective

and sensitive voltammetric sensor based on modified multiwall carbon nanotube

paste electrode for simultaneous determination of ascorbic acid, acetaminophen

and tryptophan. Materials Science and Engineering C, 33(2), 811–816.

 

Khan, M. I., Haque, A. J., & Kim, K. (2013). Electrochemical determination of uric

acid in the presence of ascorbic acid on electrochemically reduced graphene oxide

modified electrode. Journal of Electroanalytical Chemistry, 700, 54-59.

 

Khaskheli, A. R., Fischer, J., Barek, J., Vysko?cil, V., Sirajuddin, & Bhanger, M. I.

(2013). Differential pulse voltammetric determination of paracetamol in tablet and

urine samples at a micro-crystalline natural graphite–polystyrene composite film

modified electrode. Electrochimica Acta, 101, 238–242.

 

Kim, D., Lee, S., & Piao, Y. (2017a). Electrochemical determination of dopamine and

acetaminophen using activated graphene-Nafion modified glassy carbon

electrode. Journal of Electroanalytical Chemistry, 794, 221–228.

 

Kim, M., Eun, Y., Xiong, J., Kim, K., Jang, M., Jeon, B., et al. (2021). Electrochemical

detection and simultaneous removal of endocrine disruptor , bisphenol A using a

carbon felt electrode. Journal of Electroanalytical Chemistry, 880, 114907.

 

Kong, R. (2005). LC/MS application in high-throughput ADME Screen. In S. Ahuja &

M. W. Dong (Eds.), Handbook of Pharmaceutical Analysis by HPLC (Vol. 6, pp.

413–446). Academic Press.

 

Kounaves, S. P. (1998). Voltammetric techniques. In Handbook of Instrumental

Techniques for Analytical Chemistry (pp. 709–726). Taylor & Francis.

 

Krulic, D., & Fatouros, N. (2011). Peak heights and peak widths at half-height in square

wave voltammetry without and with ohmic potential drop for reversible and

irreversible systems. Journal of Electroanalytical Chemistry, 652, 26-31.

 

Kumar, Y., Pramanik, P., & Das, D. K. (2019). Electrochemical detection of

paracetamol and dopamine molecules using nano-particles of cobalt ferrite and

manganese ferrite modified with graphite. Heliyon, 5(7), e02031.

 

Kuramoto, K., Intasa-Ard, S. (Grace), Bureekaew, S., & Ogawa, M. (2017).

Mechanochemical synthesis of finite particle of layered double hydroxide-acetate

intercalation compound: Swelling, thin film and ion exchange. Journal of Solid

State Chemistry, 253, 147–153.

 

Kuthati, Y., Kankala, R. K., & Lee, C. (2015). Layered double hydroxide nanoparticles

for biomedical applications: Current status and recent prospects. Applied Clay

Science, 112–113, 100–116.

 

Kutzing, M. K., & Firestein, B. L. (2008). Altered uric acid levels and disease states.

Perspective in Pharmacology, 324(1), 1–7.

 

Lakshmi, D., Whitcombe, M. J., Davis, F., Sharma, S., & Prasad, B. (2011).

Electrochemical detection of uric acid in mixed and clinical samples: A Review.

Electroanalysis, 23(2), 305–320.

 

Lasia, A. (1999). Electrochemical impedance spectroscopy and its applications. In

Modern Aspects of Electrochemistry (pp. 143–248). Boston: Springer.

 

Laviron, E., & Roullier, L. (1983). Electrochemical reactions with protonations at

equilibrium. Journal of Electroanalytical Chemistry and Interfacial

Electrochemistry, 157(1), 7–18.

 

Lee, J. (2014). Electrochemical Sensing of Oxygen Gas in Ionic Liquids on Screen

Printed Electrodes. Curtin University.

 

Lehotay, S. J., & Schenck, F. J. (2000). Multiresidue methods: Extraction. In

Encyclopedia of Separation Science (pp. 3409–3415). Oxford: Academic Press.

 

Li, F., Wang, Y., Yang, Q., Evans, D. G., Forano, C., & Duan, X. (2005). Study on

adsorption of glyphosate (N-phosphonomethyl glycine) pesticide on MgAllayered

double hydroxides in aqueous solution. Journal of Hazardous Materials,

125, 89–95.

 

Li, L., Qi, G., Fukushima, M., Wang, B., Xu, H., & Wang, Y. (2017). Insight into the

preparation of Fe3O4 nanoparticle pillared layered double hydroxides composite

via thermal decomposition and reconstruction. Applied Clay Science, 140, 88–95.

 

Li, M., Zhu, J. E., Zhang, L., Chen, X., Zhang, H., Zhang, F., et al. (2011). Facile

synthesis of NiAl-layered double hydroxide/graphene hybrid with enhanced

electrochemical properties for detection of dopamine. Nanoscale, 3(10), 4240–

4246.

 

Li, Q., Qiu, Y., Han, W., Zheng, Y., Wang, X., Xiao, D., et al. (2018). Determination

of uric acid in biological samples by high performance liquid chromatographyelectrospray

ionization-tandem mass spectrometry and study on pathogenesis of

pulmonary arterial hypertension in pulmonary artery endothelium cells. Royal

Society of Chemistry, 8, 25808–25814.

 

Li, S., Zhang, J., Li, J., Yang, H., Meng, J., & Zhang, B. (2017). A 3D sandwich

structured hybrid of gold nanoparticles decorated MnO2/graphene-carbon

nanotubes as high performance H2O2 sensors. Sensors & Actuators B: Chemical,

260, 1-11.

 

Li, X., Li, S., Bai, J., Peng, Y., Ning, B., Shi, H., et al. (2019). Determination of

bisphenol A by high-performance liquid chromatography based on graphene

magnetic dispersion solid phase extraction. Journal of Chromatographic Science,

58(3), 280-286.

 

Li, Y., Gao, Y., Cao, Y., & Li, H. (2012). Electrochemical sensor for bisphenol A

determination based on MWCNT/melamine complex modified GCE. Sensors &

Actuators B: Chemical, 171–172, 726–733.

 

Li, Y., Liu, J., Liu, M., Yu, F., Zhang, L., Tang, H., et al. (2016). Fabrication of ultrasensitive

and selective dopamine electrochemical sensor based on molecularly

imprinted polymer modified graphene@carbon nanotube foam. Electrochemistry

Communications, 64, 42–45.

 

Li, Y., Xu, W., Zhao, X., Huang, Y., Kang, J., Qi, Q., & Zhong, C. (2018).

Electrochemical sensors based on molecularly imprinted polymer on

Fe3O4/graphene modified by gold nanoparticles for highly selective and sensitive

detection of trace ractopamine in water. Analyst, 143(21), 5094-5102.

 

Li, Y., Zhai, X., Liu, X., Wang, L., Liu, H., & Wang, H. (2016). Electrochemical

determination of bisphenol A at ordered mesoporous carbon modified nanocarbon

ionic liquid paste electrode. Talanta, 148, 362–369.

 

Lian, H., Sun, Z., Sun, X. & Liu, B. (2012). Graphene doped molecularly imprinted

electrochemical sensor for uric acid. Analytical Letters, 45, 2717-2727.

 

Lin, C., Li, P., Yang, M., Ye, J., & Huang, X. (2019). Metal replacement causing

interference in stripping analysis of multiple heavy metal analytes: Kinetic study

on Cd(II) and Cu(II) electroanalysis via experiment and simulation. Analytical

Chemistry, 91(15), 9978-9985.

 

Lisdat, F., & Schäfer, D. (2008). The use of electrochemical impedance spectroscopy

for biosensing. Analytical and Bioanalytical Chemistry, 391(5), 1555–1567.

 

Liu, Q., Kang, X., Xing, L., Ye, Z., & Yang, Y. (2020). A facile synthesis of

nanostructured CoFe2O4 for the electrochemical sensing of bisphenol A. Royal

Society of Chemistry Advances, 10(11), 6156–6162.

 

Locke, C. J., Fox, S. A., Caldwell, G. A., & Caldwell, K. A. (2008). Acetaminophen

attenuates dopamine neuron degeneration in animal models of Parkinson’s

disease. Neuroscience Letters, 439, 129–133.

 

Lubert, K., & Kalcher, K. (2010). History of electroanalytical methods.

Electroanalysis, 22, 1937–1946.

 

Ma, B., Guo, H., Wang, M., Li, L., Jia, X., Chen, H., et la. (2019). Electrocatalysis of

Cu−MOF/graphene composite and its sensing application for electrochemical

simultaneous determination of dopamine and paracetamol. Electroanalysis, 31(6),

1002–1008.

 

Mabbott, G. A. (1983). An introduction to cyclic voltammetry. Journal of Chemical

Education, 60(9), 697–702.

 

Macdonald, A. A., Seergobin, K. N., Owen, A. M., Tamjeedi, R., Monchi, O., Ganjavi,

H., et al. (2013). Differential effects of Parkinson’s disease and dopamine

replacement on memory encoding and retrieval. PLoS One, 8(9), e74044.

 

Black, M. (1984). Acetaminophen hepatotoxicity. Annual Reviews of Medicine, 35(5),

577–593.

 

Mashhadizadeh, M. H., & Akbarian, M. (2009). Voltammetric determination of some

anti-malarial drugs using a carbon paste electrode modified with Cu(OH)2 nanowire.

Talanta, 78, 1440–1445.

 

Mazloum-Ardakani, M., Rajabzadeh, N., Deghani-Firouzabadi, A., Sheikh-Mohseni,

M. A., Benvidi, A., Naeimi, H., et al. (2012). Analytical methods carbon

nanoparticles and a new derivative of hydroquinone for modification of a carbon

paste electrode for simultaneous determination of epinephrine and acetaminophen.

Analytical Methods, 4, 2127–2133.

 

McDonald, J. G., Ivanova, P. T., & Brown, H. A. (2016). Approaches to lipid analysis.

In Biochemistry of Lipids, Lipoproteins and Membranes: Sixth edition (pp. 41–

72). Elsevier Inc.

 

Mehri-Talarposhti, F., Saraei, A. G. H., Karimi-Maleh, H., Golestan, L., & Shahidi, S.

A. (2020). Determination of bisphenol in food samples using an electrochemical

method based on modification of a carbon paste electrode with CdO

nanoparticle/ionic liquid. International Journal of Electrochemical Science, 15(3),

1904–1914.

 

Mendoza-Huizar, L. H. (2014). Chemical reactivity of quinmerac herbicide through the

Fukui function. Acta Chimica Slovenica, 61(4), 694–702.

 

Messaoud, N. Ben, Ghica, M. E., Ali, M. Ben, & Brett, C. M. A. (2017).

Electrochemical sensor based on multiwalled carbon nanotube and gold

nanoparticle modified electrode for the sensitive detection of bisphenol A. Sensors

& Actuators B: Chemical, 253, 513–522.

 

Mirceski, V., Gulaboski, R., Lovric, M., Bogeski, I., & Kappl, R. (2013). Square-wave

voltammetry: A review on the recent progress. Electroanalysis, 25(11), 2411–

2422.

 

Mirzahosseini, A., Palla, T., Orgovan, G., Toth, G., Noszal, B. (2018). Dopamine:

Acid-base properties and membrane penetration capacity. Journal of

Pharmaceutical and Biomedical Analysis, 158, 346–350.

 

Mishra, G., Dash, B., & Pandey, S. (2018). Layered double hydroxides: A brief review

from fundamentals to application as evolving biomaterials. Applied Clay Science,

153, 172–186.

 

Molaakbari, E., Mostafavi, A., & Beitollahi, H. (2014). Simultaneous electrochemical

determination of dopamine, melatonin, methionine and caffeine. Sensors &

Actuators B: Chemical, 208, 195–203.

 

Morel-Desrosiers, N., Pisson, J., Israeli, Y., Taviot-Gueho, C., Besse, J.-P., & Morel,

J.-P. (2003). Intercalation of dicarboxylate anions into a Zn–Al–Cl layered double

hydroxide: Microcalorimetric determination of the enthalpies of anion exchange.

Journal of Materials Chemistry, 13, 2582–2585.

 

Morris, R. (2015). Spectrophotometry. Current Protocols Essential Laboratory

Techniques, 11(1), 1–30.

 

Moscatello, J. P., Prasad, A., Chintala, R., & Yap, Y. K. (2012). A simple scheme of

molecular electronic devices with multiwalled carbon nanotubes as the top

electrodes. Carbon, 50(10), 3530–3534.

 

Musshoff, F., Schmidt, P., Dettmeyer, R., Priemer, F., Jachau, K., & Madea, B. (2000).

Determination of dopamine and dopamine-derived (R)-/(S)-salsolinol and

norsalsolinol in various human brain areas using solid-phase extraction and gas

chromatography/mass spectrometry. Forensic Science International, 113, 359–

366.

 

Naegeli, R., Redepenning, J., & Anson, F. C. (1986). Influence of supporting electrolyte

concentration and composition on formal potentials and entropies of redox couples

incorporated in nafion coatings on electrodes. Journal of Physical Chemistry,

90(23), 6227–6232.

 

Najafi, M., Khalilzadeh, M. A., & Karimi-maleh, H. (2014). A new strategy for

determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic

liquid paste electrode in food samples. Food Chemistry, 158, 125–131.

 

Nakamura, K., Itoh, K., Dai, H., Han, L., Wang, X., Kato, S., et al. (2012). Prenatal and

lactational exposure to low-doses of bisphenol A alters adult mice behavior. Brain

and Development, 34(1), 57–63.

 

Nakayama, H., Wada, N., & Tsuhako, M. (2004). Intercalation of amino acids and

peptides into Mg–Al layered double hydroxide by reconstruction method.

International Journal of Pharmaceutics, 269, 469–478.

 

Nambudumada, P. S., Manjunatha, J. G., & Chenthattil, R. (2019). Electrocatalytic

analysis of dopamine, uric acid and ascorbic acid at poly(adenine) modified carbon

nanotube paste electrode: A Cyclic voltammetric study. Analytical &

Bioanalytical Electrochemistry, 11(6), 742–756.

 

Narayana, P. V., Reddy, T. M., Gopal, P., & Naidu, G. R. (2014). Electrochemical

sensing of paracetamol and its simultaneous resolution in the presence of

dopamine and folic acid at a multi-walled carbon nanotubes/poly(glycine)

composite modified electrode. Analytical Methods, 6(23), 9459–9468.

 

Newman, S. P., & Jones, W. (1998). Synthesis, characterization and applications of

layered double hydroxides containing organic guests. New Journal of Chemistry,

22, 105–115.

 

Ni, F., Wang, Y., Zhang, D., Gao, F., & Li, M. (2010). Electrochemical oxidation of

epinephrine and uric acid at a layered double hydroxide film modified glassy

carbon electrode and its application. Electroanalysis, 22(10), 1130–1135.

 

Nieszporek, J., Gugala-Fekner, D., & Nieszporek, K. (2019). The effect of supporting

electrolyte concentration on zinc electrodeposition kinetics from methimazole

solutions. Electroanalysis, 31(6), 1141–1149.

 

Nikahd, B., & Khalilzadeh, M. A. (2016). Liquid phase determination of bisphenol A

in food samples using novel nanostructure ionic liquid modified sensor. Journal

of Molecular Liquids, 215, 253–257.

 

Niu, X., Yang, W., Wang, G., Ren, J., Guo, H., & Gao, J. (2013). A novel

electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold

nanoparticles composite modified glassy carbon electrode. Electrochimica Acta,

98, 167–175.

 

Nkunu, Z. N., Kamau, G. N., Kithure, J. G., & Muya, C. N. (2017). Electrochemical

studies of potassium ferricyanide in acetonitrile-water media (1:1) using cyclic

voltammetry method. International Journal of Scientific Research and Innovative

Technology, 4(5), 2313–3759.

 

Noroozifar, M., Khorasani-motlagh, M., Jahromi, F. Z., & Rostami, S. (2013). Sensitive

and selective determination of uric acid in real samples by modified glassy carbon

electrode with holmium fluoride nanoparticles/multi-walled carbon nanotube as a

new biosensor. Sensors & Actuators: B. Chemical, 188, 65–72.

 

Nuki, G., & Simkin, P. A. (2006). A concise history of gout and hyperuricemia and

their treatment. Arthritis Research & Therapy, 8, 1–5.

 

Olaleye, M. T., & Rocha, B. T. J. (2008). Acetaminophen-induced liver damage in

mice: Effects of some medicinal plants on the oxidative defense system.

Experimental and Toxicologic Pathology, 59, 319–327.

 

Osteryoung, J. G., & Osteryoung, R. A. (1985). Square wave voltammetry. Analytical

Chemistry, 57(1), 101–102.

 

Ostoji, J., Herenda, S., Besic, Z., Milos, M., & Galic, B. (2017). Advantages of an

electrochemical method compared to the spectrophotometric kinetic study of

peroxidase inhibition by boroxine derivative. Molecules, 22, 1120–1128.

 

Ötles, S. (2016). Handbook of food analysis instruments. (S. Otles, Ed.). Boca Raton:

CRC Press.

 

Ouassif, H., Moujahid, E. M., Lahkale, R., Sadik, R., Bouragba, F. Z., Sabbar, E.

mouloudi, & Diouri, M. (2020). Zinc-aluminum layered double hydroxide: High

efficient removal by adsorption of tartrazine dye from aqueous solution. Surfaces

and Interfaces, 18, 100401.

 

Palza, H., Delgado, K., & Govan, J. (2019). Novel magnetic CoFe2O4/layered double

hydroxide nanocomposites for recoverable anionic adsorbents for water treatment.

Applied Clay Science, 183(4), 105350.

 

Panahi, Y., Motaharian, A., Reza, M., Hosseini, M., & Mehrpour, O. (2018). High

sensitive and selective nano-molecularly imprinted polymer based

electrochemical sensor for midazolam drug detection in pharmaceutical

formulation and human urine samples. Sensors & Actuators B: Chemical, 273(2),

1579–1586.

 

Háková, M., Havlíková, L. C., Chvojka, J., Solich, P., & Šatínský, D. (2018). An online

coupling of nanofibrous extraction with column-switching high performance

liquid chromatography-A case study on the determination of bisphenol A in

environmental water samples. Talanta, 178(2), 141-146.

 

Podlipna, D., & Cichna-Markl, M. (2007). Determination of bisphenol A in canned fish

by sol-gel immunoaffinity chromatography, HPLC and fluorescence detection.

European Food Research and Technology, 224(5), 629–634.

 

Prabakar, S. J. R., & Narayanan, S. S. (2007). Amperometric determination of

paracetomol by a surface modified cobalt hexacyanoferrate graphite wax

composite electrode. Talanta, 72(5), 1818–1827.

 

Price, H. (2019). Air analysis: Field portable instruments for the measurement of

airborne hazards. In Encyclopedia of Analytical Science (3rd ed., pp. 40–43).

Stirling, United Kingdom: Elsevier Inc.

 

Qiu, D., Hou, W., Xu, J., Liu, J., & Liu, S. (2009). Synthesis and characterization of

imidacloprid/hydrotalcite-like compound nanohybrids. Chinese Journal of

Chemistry, 27, 1879–1885.

 

Qu, W., & Meyer, J.-U. (1997). Thick-film humidity sensor based on porous MnWO4

material. Measurement Science and Technology, 8(6), 593–600.

 

Rais, N. S. M., Isa, I. M., Hashim, N., Saidin, M. I., Yazid, S. N. A. M., Ahmad, M. S.,

et al. (2019). Simultaneously determination of bisphenol A and uric acid by

zinc/aluminum-layered double hydroxide-2-(2,4-dichlorophenoxy) propionate

paste electrode. International Journal of Electrochemical Science, 14(8), 7911–

7924.

 

Raj, C. R., & Ohsaka, T. (2003). Voltammetric detection of uric acid in the presence of

ascorbic acid at a gold electrode modified with a self-assembled monolayer of

heteroaromatic thiol. Journal of Electroanalytical Chemistry, 540, 69–77.

 

Rajakumaran, R., Ramki, S., Chen, S. M., Chen, T. W., Veerasankar, S., Tseng, T. W.,

& Huang, C. C. (2019). Rose-petal-like morphology of yttrium molybdate

nanosheets (YMoO4) anchored on functionalized carbon nanofibers: An efficient

electrocatalyst for the electrochemical sensing of bisphenol-A. International

Journal of Electrochemical Science, 14(7), 6571–6585.

 

Ramesh, P., & Sampath, S. (2004). Selective determination of uric acid in presence of

ascorbic acid and dopamine at neutral pH using exfoliated graphite electrodes.

Electroanalysis, 16(10), 866–869.

 

Raoof, J. B., Baghayeri, M., & Ojani, R. (2012). A high sensitive voltammetric sensor

for qualitative and quantitative determination of phenobarbital as an antiepileptic

drug in presence of acetaminophen. Colloids and Surfaces B: Biointerfaces, 95,

121–128.

 

Rezaei, B., & Irannejad, N. (2019). Electrochemical detection techniques in biosensor

applications. In E. Ensafi (Ed.), Electrochemical Biosensors (pp. 11–43). Elsevier

Inc.

 

Rives, V. (2001). Layered double hydroxides: Present and Future. New York: Nova

Publishers.

 

Rives, V., Arco, M. del, & Martín, C. (2014). Intercalation of drugs in layered double

hydroxides and their controlled release: A review. Applied Clay Science, 88–89,

239–269.

 

Rochester, J. R. (2013). Bisphenol A and human health: A review of the literature.

Reproductive Toxicology, 42, 132–155.

 

Rosu, D., Mustata, F., Tudorachi, N., Musteata, V. E., Rosu, L., & Varganici, C. D.

(2015). Novel bio-based flexible epoxy resin from diglycidyl ether of bisphenol A

cured with castor oil maleate. Royal Society of Chemistry Advances, 5(57), 45679–

45687.

 

Saal, F. S. vom, & Hughes, C. (2005). Commentary an extensive new literature

concerning low-dose effects of bisphenol A shows the need for a new risk

assessment. Environmental Health Perspectives, 113(8), 926–933.

 

Sabatani, E., & Rubinstein, I. (1987). Organized self-assembling monolayers on

electrodes. 2. Monolayer-based ultramicroelectrodes for the study of very

electrode kinetics. Journal of Electroanalytical Chemistry, 91, 6663–6669.

 

Saifullah, B., Zowalaty, M. E. El, Arulselvan, P., Fakurazi, S., Webster, T. J., Geilich,

B. M., & Hussein, M. Z. (2014). Antimycobacterial, antimicrobial and

biocompatibility properties of para-aminosalicylic acid with zinc layered

hydroxide and Zn/Al layered double hydroxide nanocomposites. Drug Design,

Development and Therapy, 8, 1029–1036.

 

Sapari, S., Hidayah, N., Razak, A., Aishah, S., & Yook, L. (2020). A regenerable

screen-printed voltammetric Hg (II) ion sensor based on tris-thiourea organic

chelating ligand grafted graphene nanomaterial. Journal of Electroanalytical

Chemistry, 878, 114670.

 

Sappia, L., Felice, B., Sanchez, M. A., Marti, M., R, M., & Pividori, I. (2019).

Electrochemical sensor for alkaline phosphatase as biomarker for clinical and in

vitro applications. Sensors & Actuators B: Chemical, 281(10), 221–228.

 

Sarijo, S. H., Hussein, M. Z., Yahaya, A. H. J., & Zainal, Z. (2010). Effect of incoming

and outgoing exchangeable anions on the release kinetics of phenoxyherbicides

nanohybrids. Journal of Hazardous Materials, 182(1–3), 563–569.

 

Sathisha, T. V, Swamy, B. E. K., Schell, M., & Eswarappa, B. (2014). Synthesis and

characterization of carbon nanoparticles and their modified carbon paste electrode

for the determination of dopamine. Journal of Electroanalytical Chemistry, 720–

721, 1–8.

 

Scholz, F. (2010). Electroanalytical methods: Guide to experiments and applications

(2nd ed.). Berlin: Springer-Verlag.

 

Segner, H., Navas, J. M., Schäfers, C., & Wenzel, A. (2003). Potencies of estrogenic

compounds in in vitro screening assays and in life cycle tests with zebrafish in

vivo. Ecotoxicology and Environmental Safety, 54(3), 315–322.

 

Shah, N., Arain, M. B., & Soylak, M. (2020). Historical background: milestones in the

field of development of analytical instrumentation. In New Generation Green

Solvents for Separation and Preconcentration of Organic and Inorganic Species

(pp. 45–73). Elsevier.

 

Shahmiri, M. R., Bahari, A., Karimi-maleh, H., Hosseinzadeh, R., & Mirnia, N. (2013).

Ethynylferrocene–NiO/MWCNT nanocomposite modified carbon paste electrode

as a novel voltammetric sensor for simultaneous determination of glutathione and

acetaminophen. Sensors & Actuators B: Chemical, 177, 70–77.

 

Shahrokhian, S., & Asadian, E. (2010). Simultaneous voltammetric determination of

ascorbic acid , acetaminophen and isoniazid using thionine immobilized multiwalled

carbon nanotube modified carbon paste electrode. Electrochimica Acta, 55,

666–672.

 

Sharif, S. N. M., Hashim, N., Isa, I. M., Ali, N. M., Bakar, S. A., Hussein, M. Z., et al.

(2018). Preparation and characterisation of novel paddy cultivation herbicide

nanocomposite from zinc/aluminium layered double hydroxide and quinclorac

anion. Materials Research Innovations, 23(5), 260–265.

 

Sharif, S. N. M., Hashim, N., Md Isa, I., Mamat, M., Mohd Ali, N., Abu Bakar, S., et

al. (2020). The intercalation behaviour and physico-chemical characterisation of

novel intercalated nanocomposite from zinc/aluminium layered double hydroxides

and broadleaf herbicide clopyralid. Chemistry & Chemical Technology, 14(1), 38–

46.

 

Sharma, A., Bhattarai, J. K., Nigudkar, S. S., Pistorio, S. G., Demchenko, A. V, & Stine,

K. J. (2016). Electrochemical impedance spectroscopy study of carbohydrateterminated

alkanethiol monolayers on nanoporous gold: Implications for pore

wetting. Journal of Electroanalytical Chemistry, 782, 174–181.

 

Shetti, N. P., Nayak, D. S., Malode, S. J., Kakarla, R. R., Shukla, S. S., & Aminabhavi,

T. M. (2018). Sensors based on ruthenium-doped TiO2 nanoparticles loaded into

multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic

acid. Analytica Chimica Acta, 1051, 58-72.

 

Shiffman, S., Battista, D. R., Kelly, J. P., Malone, M. K., Weinstein, R. B., & Kaufman,

D. W. (2018). Exceeding the maximum daily dose of acetaminophen with use of

different single-ingredient OTC formulations. Journal of the American

Pharmacists Association, 58(5), 499-504.

 

Skoog, D. A., Holler, F. J., & Crouch, S. R. (2007). Principles of Instrumental Analysis

(6th ed.). USA: Thomson Brooks/Cole.

 

Smyntyna, V., Golovanov, V., Kaeiulis, S., Mattogno, G., & Righini, G. (1995).

Influence of chemical composition on sensitivity and signal reproducibility of CdS

sensors of oxygen. Sensors & Actuator B: Chemical, 25, 628–630.

 

Sparkman, O. D., Penton, Z. E., & Kitson, F. G. (2011). The Fundamentals of GC/MS.

In Gas Chromatography and Mass Spectrometry (pp. 2–13). Amsterdam:

Academic Press.

 

Srinivas, J., Mascarenhas, R. J., D’Souza, O., Satpati, A. K., & Mekhalif, Z. (2017).

Electrocatalytic oxidation of bisphenol A at oxidized multi-walled carbon

nanotube modified carbon paste electrode. Analytical Chemistry Letters, 7(1), 52–

64.

 

Staples, C. A., Dom, P. B., Klecka, G. M., Sandra, T. O., & Harris, L. R. (1998). A

review of the environmental fate, effects and exposures of bisphenol A.Chemosphere, 36(10), 2149–2173.

 

Steventon, G. B., Heafield, M. T. E., Waring, R. H., Williams, A. C., Sturman, S., &

Green, M. (1990). Metabolism of low-dose paracetamol in patients with chronic

neurological disease. Xenobiotica, 20, 117–122.

 

Stradiotto, N. R., Yamanaka, H., & Zanoni, M. V. B. (2003). Electrochemical sensors:

A powerful tool in analytical chemistry. Journal of Brazilian Chemical Society,

14(2), 159–173.

 

Su, W. Y., & Cheng, S. H. (2010). Electrochemical oxidation and sensitive

determination of acetaminophen in pharmaceuticals at poly(3,4-ethylenedioxythiophene)-

modified screen-printed electrodes. Electroanalysis, 22(6), 707–

714.

 

Suni, I. I. (2008). Impedance methods for electrochemical sensors using nanomaterials.

Trends in Analytical Chemistry, 27(7), 604–611.

 

Suroviec, A. H. (2013). Introduction to electrochemistry. Journal of Laboratory

Chemical Education, 1(3), 45–48.

 

Švancara, I., Vytras, K., Barek, J., & Zima, J. (2001). Carbon paste electrodes in

modern electroanalysis electroanalysis. Critical Reviews in Analytical Chemistry,

31(4), 311–345.

 

Svancara, I., Vytras, K., Kalcher, K., Walcarius, A., & Wang, J. (2009). Carbon paste

electrodes in facts, numbers, and notes: A review on the occasion of the 50-years

jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis,

21(1), 7–28.

 

Syahida, N., Rais, M., Isa, I., Hashim, N., Saidin, M. I., Yazid, S. N. A. M., et al. (2019).

Simultaneously determination of bisphenol A and uric acid by dichlorophenoxy)

propionate paste electrode. International Journal of Electrochemical Science, 14,

7911–7924.

 

Taei, M., Salavati, H., Hasanpour, F., Habibollahi, S., & Baghlani, H. (2016).

Simultaneous determination of ascorbic acid, acetaminophen and codeine based

on multi-walled carbon nanotubes modified magnetic nanoparticles paste

electrode. Materials Science & Engineering C, 69, 1–11.

 

Tanida, T., Warita, K., Ishihara, K., Fukui, S., Mitsuhashi, T., Sugawara, T., et al.

(2009). Fetal and neonatal exposure to three typical environmental chemicals with

different mechanisms of action: Mixed exposure to phenol, phthalate, and dioxin

cancels the effects of sole exposure on mouse midbrain dopaminergic nuclei.

Toxicology Letters, 189, 40–47.

 

Tehrani, R. M. A., & Ab Ghani, S. (2012). MWCNT-ruthenium oxide composite paste

electrode as non-enzymatic glucose sensor. Biosensors and Bioelectronics, 38(1),

278–283.

 

Teixeira, M. A., Mageste, A. B., Dias, A., Virtuoso, L. S., & Siqueira, K. P. F. (2018).

Layered double hydroxides for remediation of industrial wastewater containing

manganese and fluoride. Journal of Cleaner Production, 171, 275–284.

 

Telegdi, J., Shaban, A., & Vastag, G. (2018). Biocorrosion-Steel. In Encyclopedia of

Interfacial Chemistry (pp. 28–42). Elsevier Inc.

 

Temerk, Y., & Ibrahim, H. (2015). A new sensor based on In doped CeO2 nanoparticles

modified glassy carbon paste electrode for sensitive determination of uric acid in

biological fluid. Sensors & Actuators B: Chemical. 224, 868-877.

 

Thayer, K., Doerge, D. R., Hunt, D., Schurman, S. H., Twaddle, N. C., Churchwell, M.

I., et al. (2018). Pharmacokinetics of bisphenol A in humans following a single

oral administration pharmacokinetics of bisphenol A in humans following a single

oral administration. Environment International, 83(6), 107–115.

 

Theiss, F. L., Ayoko, G. A., & Frost, R. L. (2013). Removal of boron species by layered

double hydroxides: A review. Journal of Colloid and Interface Science, 402, 114–

121.

 

Therias, S., & Mousty, C. (1995). Electrodes modified with synthetic anionic clays.

Applied Clay Science, 10, 147–162.

 

Tian, J., Qu, J., Wan, L., Zhang, Q., & Gao, H. (2018). Boron removal using Li-Al-OH

layered double hydroxide prepared by one-step mechanochemical approach.

doi:10.20944/preprints201811.0477.v1.

 

Tiwari, J. N., Vij, V., Kemp, K. C., & Kim, K. S. (2015). Engineered carbonnanomaterial

based electrochemical sensors for biomolecules. American Chemical

Society, 10(1), 46–80.

 

Tonelli, D., Scavetta, E., & Giorgetti, M. (2013). Layered-double-hydroxide-modified

electrodes: electroanalytical applications. Analytical and Bioanalytical Chemistry,

405(2), 603–614.

 

Tsierkezos, N. G., & Ritter, U. (2012). Influence of concentration of supporting

electrolyte on electrochemistry of redox systems on multi-walled carbon

nanotubes. Physics and Chemistry of Liquids, 50(5), 661–668.

 

Karabiberoglu, S. U. (2019). Sensitive voltammetric determination of bisphenol A

based on a glassy carbon electrode modified with copper oxide-zinc oxide

decorated on graphene oxide. Electroanalysis, 31(1), 91–102.

 

Vandenberg, L. N., Hauser, R., Marcus, M., Olea, N., & Welshons, W. V. (2007).

Human exposure to bisphenol A (BPA). Reproductive Toxicology, 24(2), 139–

177.

 

Verma, D., Chauhan, D., Das Mukherjee, M., Ranjan, K. R., Yadav, A. K., & Solanki,

P. R. (2021). Development of MWCNT decorated with green synthesized AgNpsbased

electrochemical sensor for highly sensitive detection of BPA. Journal of

Applied Electrochemistry. doi: 10.1007/s10800-020-01511-3.

 

Vicente-mart, Y., Caravaca, M., & Soto-Meca, A. (2020). Determination of very low

concentration of bisphenol A in toys and baby pacifiers using dispersive liquid–

liquid microextraction by in situ ionic liquid formation and high- performance

liquid chromatography. Pharmaceuticals, 13, 301–313.

 

Vytras, K., Švancara, I., & Metelka, R. (2009). Carbon paste electrodes in

electroanalytical chemistry. Journal of the Serbian Chemical Society, 74(10),

1021–1033.

 

Wang, B., Zhang, H., Evans, D. G., & Duan, X. (2005). Surface modification of layered

double hydroxides and incorporation of hydrophobic organic compounds.

Materials Chemistry and Physics, 92, 190–196.

 

Wang, C., Liu, L., Xue, H., Hu, X., & Wang, G. (2013). Fabrication of nanoelectrode

ensembles formed via PAN-co-PAA self-assembly and selective voltammetric

detection of uric acid in biologic samples. Sensors and Actuators B: Chemical,

181, 194–201.

 

Wang, J. (2000). Potentiometry. In Analytical Electrochemistry (2nd ed., Vol. 3, pp.

140–170). Wiley-VCH.

 

Wang, J. (2006). Analytical Electrochemistry (3rd ed.). New York: Wiley-VCH.

 

Wang, J., Fang, X., Zhang, Y., Cui, X., Zhao, H., Li, X., & Li, Z. (2018). A simple and

rapid colorimetric probe for uric acid detection based on redox reaction of

3,3?,5,5?-tetramethylbenzidine with HAuCl4. Colloids and Surfaces A, 555, 565–

571.

 

Wang, X., You, Z., Sha, H., Cheng, Y., Zhu, H., & Sun, W. (2014). Sensitive

electrochemical detection of dopamine with a DNA/graphene bi-layer modified

carbon ionic liquid electrode. Talanta, 128, 373–378.

 

Wang, Y., Peng, W., Liu, L., Tang, M., Gao, F., & Li, M. (2011). Enhanced

conductivity of a glassy carbon electrode modified with a graphene-doped film of

layered double hydroxides for selectively sensing of dopamine. Microchimica

Acta, 173, 41–46.

 

Wardani, N. I., Isa, I. M., Hashim, N., & Ghani, S. A. (2014). Zinc layered hydroxide-

2(3-chlorophenoxy)propionate modified multi-walled carbon nanotubes paste

electrode for the determination of nano-molar levels copper(II). Sensors and

Actuators B: Chemical, 198, 243–248.

 

Welshons, W. V, Nagel, S. C., & Saal, F. S. (2006). Large effects from small exposures

. III . Endocrine mechanisms mediating effects of bisphenol A at levels of human

exposure. Endocrinology, 147(6), S56–S69.

 

Westbrook, A., & Frank, M. (2018). Dopamine and proximity in motivation and

cognitive control. Current Opinion in Behavioral Sciences, 22, 28–34.

 

Wijeratne, K. (2018). Conducting Polymer Electrodes for Thermogalvanic Cells.

Linköping University, Sweden.

 

Winiarski, J. P., Rampanelli, R., Bassani, J. C., Mezalira, D. Z., & Jost, C. L. (2020).

Multi-walled carbon nanotubes/nickel hydroxide composite applied as

electrochemical sensor for folic acid (vitamin B9) in food samples. Journal of

Food Composition and Analysis, 92, 103511.

 

Xin, X., Sun, S., Li, H., Wang, M., & Jia, R. (2015). Chemical Electrochemical

bisphenol A sensor based on core–shell multiwalled carbon nanotubes/graphene

oxide nanoribbons. Sensors & Actuators B: Chemical, 209, 275–280.

 

Xu, Y., Liu, X., Ding, Y., Luo, L., Wang, Y., Zhang, Y., & Xu, Y. (2011). Preparation

and electrochemical investigation of a nano-structured material Ni2+/MgFe layered

double hydroxide as a glucose biosensor. Applied Clay Science, 52(3), 322–327.

 

Xu, Y., Shan, Y., Cong, H., Shen, Y., & Yu, B. (2018). Advanced carbon-based

nanoplatforms combining drug delivery and thermal therapy for cancer treatment.

Current Pharmaceutical Design, 24(34), 4060-4076.

 

Xu, Z., Fan, J., Zheng, S., Ma, F., & Yin, D. (2009). On the adsorption of tetracycline

by calcined magnesium-aluminum hydrotalcites. Journal of Environmental

Quality, 38(3), 1302–1310.

 

Xu, Z., Wu, Q., Duan, Y., Yang, M., Ou, M., & Xu, X. (2017). Development of a novel

spectrophotometric method based on diazotization-coupling reaction for

determination of bisphenol A. Journal of the Brazilian Chemical Society, 28(8),

1475–1482.

 

Yan, Q., Zhi, N., Yang, L., Xu, G., Feng, Q., Zhang, Q., & Sun, S. (2020). A highly

sensitive uric acid electrochemical biosensor based on a nano-cube cuprous

oxide/ferrocene/uricase modified glassy carbon electrode. Scientific Reports,

10(1), 10607.

 

Yang, Y., Zhang, H., Huang, C., & Jia, N. (2016). MWCNTs-PEI composites-based

electrochemical sensor for sensitive detection of bisphenol A. Sensors & Actuators

B: Chemical, 235, 408–413.

 

Yao, Y., Wu, H., & Ping, J. (2018). Simultaneous determination of Cd(II) and Pb(II)

ions in honey and milk samples using a single-walled carbon nanohorns modified

screen-printed electrochemical sensor. Food Chemistry, 274, 8-15.

 

Yin, H., Zhou, Y., Ai, S., Han, R., Tang, T. & Zhu, L. (2010). Electrochemical behavior

of bishpenol A at glassy carbon electrode modified with gold nanoparticles, silk

fibroin, and PAMAM dendrimers. Microchimica Acra, 170, 99-105.

 

Yin, H., Cui, L., Ai, S., Fan, H., & Zhu, L. (2010). Electrochemical determination of

bisphenol A at Mg-Al-CO3 layered double hydroxide modified glassy carbon

electrode. Electrochimica Acta, 55(3), 603–610.

 

Yin, H., Shang, K., Meng, X., & Ai, S. (2011). Voltammetric sensing of paracetamol,

dopamine and 4-aminophenol at a glassy carbon electrode coated with gold

nanoparticles and an organophillic layered double hydroxide. Microchimica Acta,

175, 39–46.

 

Yin, H., Zhou, Y., Cui, L., Liu, X., Ai, S., & Zhu, L. (2011). Electrochemical oxidation

behavior of bisphenol A at surfactant/layered double hydroxide modified glassy

carbon electrode and its determination. Journal of Solid State Electrochemistry,

15(1), 167–173.

 

Yomthiangthae, P., Kondo, T., Chailapakul, O., & Siangproh, W. (2020). The effects

of the supporting electrolyte on the simultaneous determination of vitamin B2,

vitamin B6, and vitamin C using a modification-free screen-printed carbon

electrode. New Journal of Chemistry, 44(29), 12603–12612.

 

Yoon, E., Babar, A., Choudhary, M., Kutner, M., & Pyrsopoulos, N. (2016).

Acetaminophen-induced hepatotoxicity: A comprehensive update. Journal of

Clinical and Translational Hepatology, 4, 131–142.

 

Zeng, S., Xu, X., Wang, S., Gong, Q., Liu, R., & Yu, Y. (2013). Sand flower layered

double hydroxides synthesized by co-precipitation for CO2 capture: Morphology

evolution mechanism , agitation effect and stability. Materials Chemistry and

Physics, 140(1), 159–167.

 

Zhan, T., Song, Y., Li, X., & Hou, W. (2016). Electrochemical sensor for bisphenol A

based on ionic liquid functionalized Zn-Al layered double hydroxide modified

electrode. Materials Science and Engineering C, 64, 354–361.

 

Zhan, T., Song, Y., Tan, Z., & Hou, W. (2017). Electrochemical bisphenol A sensor

based on exfoliated Ni2Al-layered double hydroxide nanosheets modified

electrode. Sensors and Actuators B: Chemical, 238, 962–971.

 

Zhang, B., Huang, D., Xu, X., Alemu, G., Zhang, Y., Zhan, F., et al. (2013).

Simultaneous electrochemical determination of ascorbic acid, dopamine and uric

acid with helical carbon nanotubes. Electrochimica Acta, 91, 261–266.

 

Zhang, L., & Lin, X. (2001). Covalent modification of glassy carbon electrode with

glutamic acid for simultaneous determination of uric acid and ascorbic acid.

Analyst, 126(3), 367–370.

 

Zhang, S., Fu, Y., Sheng, Q., & Zheng, J. (2017). Nickel-cobalt double hydroxide

nanosheets wrapped amorphous Ni(OH)2 nanoboxes: Development of dopamine

sensor with enhanced electrochemical properties. New Journal of Chemistry,

41(21), 13076–13084.

 

Zhang, S., Yan, Y., Wang, W., Gu, X., Li, H., Li, J., & Sun, J. (2017). Intercalation of

phosphotungstic acid into layered double hydroxides by reconstruction method

and its application in intumescent flame retardant poly (lactic acid) composites.

Polymer Degradation and Stability, 147, 142–150.

 

Zhang, X., Cui, Y., Lv, Z., Li, M., Ma, S., Cui, Z., & Kong, Q. (2011). Carbon

nanotubes, conductive carbon black and graphite powder based paste electrodes.

International Journal of Electrochemical Science, 6, 6063–6073.

 

Zhao, Q., Gan, Z., & Zhuang, Q. (2002). Electrochemical sensors based on carbon

nanotubes. Electroanalysis, 14(23), 1609–1613.

 

Zhou, W., Wang, C., Liu, Y., Zhang, W., & Chen, Z. (2017). Layered double

hydroxides based ion exchange extraction for high sensitive analysis of nonsteroidal

anti-inflammatory drugs. Journal of Chromatography A, 1515, 23–29.

 

Zhou, Y., Yan, H., Xie, Q., Huang, S., Liu, J., Li, Z., et al. (2013). Simultaneous

analysis of dopamine and homovanillic acid by high-performance liquid

chromatography with wall-jet/thin-layer electrochemical detection. Royal Society

of Chemistry, 138, 7246–7253.

 

Zhu, Z., Qu, L., Guo, Y., Zeng, Y., Sun, W., & Huang, X. (2010). Electrochemical

detection of dopamine on a Ni/Al layered double hydroxide modified carbon ionic

liquid electrode. Sensors and Actuators B: Chemical, 151(1), 146–152.

 

 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.