UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Titanium and titanium alloys are widely used in a variety of engineering applications.
Medical device manufacturers have also benefited from the outstanding properties of
titanium alloys. However, titanium alloys are weak in meeting all of the clinical
requirements for biomedical implants. Issues such as metal sensitivity associated with
high levels of metal ion release triggered by corrosion effects remain critical concerns.
Hence, the implant material surface has a strong role in the responses to the biological
environment the implant can be stimulated in contact with the bone. In order to
improve the biological and tribological properties of implant materials, surface
modification needed to be made. Thermal oxidation is one of the surface modification
techniques to enhance the corrosion performance of titanium alloys. This technique is
excellent for forming a thicker oxide layer on Ti and its alloys to achieve optimum
corrosion resistance. In the present study, thermal oxidation of Ti-8Mo-4Nb-2Zr alloy
was explored. Hence, experiments were carried out to investigate the effective
combination of surface modification parameters and evaluate performance corrosion
behaviour in terms of their suitability with the Ti-8Mo-4Nb-2Zr alloy surface for
biomedical implants applications. Process thermal oxidation was carried out at 500,
600 and 700°C for three different durations of 6, 12 and 24 hours. It was found that
particles of oxides formed were noticeably larger after oxidation at an increased
temperature of 600°C and 700°C. The increase in temperature resulted in the
formation of compact particles in the oxide layer. A phase analysis showed that the
phase contents of the oxide layer showed a strong dependence on treatment conditions
with a predominance of the rutile phase over the anatase phase at temperatures >
500°C and for time periods > 6h. Improved corrosion resistance had been achieved of
these alloys using thermal oxidation. EIS was employed to measure the corrosion
resistance of the Ti-8Mo-4Nb-2Zr alloys in simulated physiological solutions of a
wide pH range (namely 7.4 pH) at 37°C, and the best results were obtained for the
alloys at 700°C. A more positive Ecorr value (-0.125 V) and a lower Icorr value
(2.583 A x 10-6) were observed for the thermally oxidized Ti-8Mo-4Nb-2Zr alloys
when compared with the untreated alloy. This finding, the oxide scale on the
examined alloy efficiently enhances can increase the corrosion resistance of the
implant material. |
References |
Alansari, A., & Sun, Y. (2017). A comparative study of the mechanical behaviour of thermally oxidised commercially pure titanium and zirconium. Journal of the mechanical behavior of biomedical materials, 74, 221-231.
Aniolek, K., & Kupka, M. (2019). Mechanical, tribological and adhesive properties of oxide layers obtained on the surface of the Ti–6Al–7Nb alloy in the thermal oxidation process. Wear, 432, 202929.
Aniolek, K., Barylski, A., & Kupka, M. (2018). Modelling the structure and mechanical properties of oxide layers obtained on biomedical Ti-6Al-7Nb alloy in the thermal oxidation process. Vacuum, 154, 309-314.
Aniolek, K., Kupka, M., & Barylski, A. (2016). Characteristic of oxide layers obtained on titanium in the process of thermal oxidation. Archives of Metallurgy and Materials, 61(2A), 853-856.
Aniolek, K., Kupka, M., & Barylski, A. (2016). Sliding wear resistance of oxide layers formed on a titanium surface during thermal oxidation. Wear, 356, 23- 29.
Aniolek, K., Kupka, M., & Barylski, A. (2018). “Characteristics of the tribological properties of oxide layers obtained via thermal oxidation on titanium Grade 2”. Journal of Engineering TribologyJ 0(0), 1-13.
Aniolek, K., Kupka, M., Barylski, A., & Dercz, G. (2015). Mechanical and tribological properties of oxide layers obtained on titanium in the thermal oxidation process. Applied Surface Science, 357, 1419-1426.
Aniolek, K., Kupka, M., & Dercz, G. (2019). Cyclic oxidation of Ti–6Al–7Nb alloy. Vacuum, 168, 108859.
Arslan, E., Totik, Y., Demirci, E., & Alsaran, A. (2010). Influence of surface roughness on corrosion and tribological behavior of CP-Ti after thermal oxidation treatment. Journal of Materials Engineering and Performance, 19(3), 428-433.
Ashrafizadeh, A., & Ashrafizadeh, F. (2009). Structural features and corrosion analysis of thermally oxidized titanium. Journal of Alloys and Compounds, 480(2), 849-852.
Bailey, R., & Sun, Y. (2013). Unlubricated sliding friction and wear characteristics of thermally oxidized commercially pure titanium. Wear, 308(1-2), 61-70.
Balani, K., Chen, Y., Harimkar, S. P., Dahotre, N. B., & Agarwal, A. (2007). Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution. Acta Biomaterialia, 3(6), 944-951.
Balazic, M., Kopac, J., Jackson, M. J., & Ahmed, W. (2007). Titanium and titanium alloy applications in medicine. International Journal of Nano and Biomaterials, 1(1), 3-34.
Bansal, D. G., Eryilmaz, O. L., & Blau, P. J. (2011). Surface engineering to improve the durability and lubricity of Ti–6Al–4V alloy. Wear, 271(9-10), 2006-2015.
Bansal, R., Singh, J. K., Singh, V., Singh, D. D. N., & Das, P. (2017). Optimization of oxidation temperature for commercially pure titanium to achieve improved corrosion resistance. Journal of Materials Engineering and Performance, 26(3), 969-977.
Bensheng, H., Ge, L., Zhongying, J., Wenfeng, Y., & Qi, X. (2015). Preparation and Characterization of Ceramic Film on Drilling Pipe Joint. Rare Metal Materials and Engineering, 44(6), 1357-1362.
Bharathy, P. V., Nataraj, D., Chu, P. K., Wang, H., Yang, Q., Kiran, M. S. R. N., ... & Mangalaraj, D. (2010). Effect of titanium incorporation on the structural, mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method. Applied Surface Science, 257(1), 143-150.
Bing Zhou, Xiaohong Jiang, Zhubo liu, Ruiqi Shen, Aleksandr V. Rogachev., (2013). “Preparation and characterization of TiO2 thin film by thermal oxidation of sputtered Ti film”. Materials Science in Semiconductor Processing 16, 513– 519.
Biswas, A., & Majumdar, J. D. (2009). Surface characterization and mechanical property evaluation of thermally oxidized Ti-6Al-4V. Materials Characterization, 60(6), 513-518.
Biswas, A., & Majumdar, J. D. (2009). Surface characterization and mechanical property evaluation of thermally oxidized Ti-6Al-4V. Materials Characterization, 60(6), 513-518.
Blackwood, A. D., Salter, J., Dettmar, P. W., & Chaplin, M. F. (2000). Dietary fibre, physicochemical properties and their relationship to health. The journal of the Royal Society for the Promotion of Health, 120(4), 242-247.
Bloyce, A., Morton, P. H., & Bell, T. (1994). Surface engineering of titanium and titanium alloys. ASM handbook, 5, 2232-2233.
Bloyce, A., Qi, P. Y., Dong, H., & Bell, T. (1998). Surface modification of titanium alloys for combined improvements in corrosion and wear resistance. Surface and Coatings Technology, 107(2-3), 125-132.
Bolat, G., Izquierdo, J., Mareci, D., Sutiman, D., & Souto, R. M. (2013). Electrochemical characterization of ZrTi alloys for biomedical applications. Part 2: The effect of thermal oxidation. Electrochimica Acta, 106, 432-439.
Boonrungsiman, S., Thongtham, N., Suwantong, O., Wutikhun, T., Soykeabkaew, N., & Nimmannit, U. (2018). An improvement of silk-based scaffold properties using collagen type I for skin tissue engineering applications. Polymer Bulletin, 75(2), 685-700.
Boretos, J. W., & Eden, M. (1984). Contemporary biomaterials: material and host response, clinical applications, new technology and legal aspects. Noyes Publications, Park Ridge.
Borgioli, F., Galvanetto, E., Iozzelli, F., & Pradelli, G. (2005). Improvement of wear resistance of Ti–6Al–4V alloy by means of thermal oxidation. Materials Letters, 59(17), 2159-2162.
Breme, Eisenbarth & Biehl, (2005). “Titanium and its Alloys for Medical Applications”. Titanium and Titanium Alloys (2005). 423–451.
Calderon-Moreno, J. M., Vasilescu, C., Drob, S. I., Ivanescu, S., Osiceanu, P., Drob, P., ... & Vasilescu, E. (2014). Microstructural and mechanical properties, surface and electrochemical characterisation of a new Ti–Zr–Nb alloy for implant applications. Journal of alloys and compounds, 612, 398-410.
Calderon-Moreno, J. M., Preda, S., Predoana, L., Zaharescu, M., Anastasescu, M., Nicolescu, M., ... & Serban, B. (2014). Effect of polyethylene glycol on porous transparent TiO2 films prepared by sol–gel method. Ceramics International, 40(1), 2209-2220.
Chui, P., Jing, R., Zhang, F., Li, J., & Feng, T. (2020). Mechanical properties and corrosion behavior of β-type Ti-Zr-Nb-Mo alloys for biomedical application. Journal of Alloys and Compounds, 842, 155693.
Cochepin, B., Gauthier, V., Vrel, D., & Dubois, S. (2007). Crystal growth of TiC grains during SHS reactions. Journal of Crystal Growth, 304(2), 481-486.
Correa, D. R. N., Kuroda, P. A. B., & Grandini, C. R. (2014). Structure, microstructure, and selected mechanical properties of Ti-Zr-Mo alloys for biomedical applications. In Advanced Materials Research (Vol. 922, pp. 75- 80). Trans Tech Publications Ltd.
Courant, R. (2005). Dirichlet's principle, conformal mapping, and minimal surfaces. Courier Corporation.
Cui, W. F., & Shao, C. J. (2015). The improved corrosion resistance and anti-wear performance of Zr–xTi alloys by thermal oxidation treatment. Surface and Coatings Technology, 283, 101-107.
Dabrowski, R. (2014). Effect of Heat Treatment on the Mechanical Properties of Two-Phase Titanium Alloy Ti6al7nb/Wplyw Obróbki Cieplnej Na Wlasnosci Mechaniczne Dwufazowego Stopu Tytanu Ti6al7nb. Archives of Metallurgy and Materials. Faculty Of Engineering, M., & Science, I. C.
Dai, J., Zhu, J., Chen, C., & Weng, F. (2016). High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review. Journal of Alloys and Compounds, 685, 784-798.
Dalili, N., Edrisy, A., Farokhzadeh, K., Li, J., Lo, J., & Riahi, A. R. (2010). Improving the wear resistance of Ti–6Al–4V/TiC composites through thermal oxidation (TO). Wear, 269(7-8), 590-601.
Dearnley, P. A., Dahm, K. L., & Çimenoglu, H. (2004). The corrosion–wear behaviour of thermally oxidised CP-Ti and Ti–6Al–4V. Wear, 256(5), 469- 479.
Delplancke, J. L., Degrez, M., Fontana, A., & Winand, R. (1982). Self-colour anodizing of titanium. Surface Technology, 16(2), 153-162.
Díaz, C., Lutz, J., Mändl, S., García, J. A., Martínez, R., & Rodríguez, R. J. (2009). Improved bio-tribology of biomedical alloys by ion implantation techniques. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(8-9), 1630-1633.
Donchev, A., Richter, E., Schütze, M., & Yankov, R. (2008). Improving the oxidation resistance of TiAl-alloys with fluorine. Journal of Alloys and Compounds, 452(1), 7-10.
Dong, H., & Bell, T. (2000). Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment. Wear, 238(2), 131-137.
Fayeulle, S. (1986). Tribological behaviour of nitrogen-implanted materials. Wear, 107(1), 61-70.
Gabriel, S. B., Panaino, J. V. P., Santos, I. D., Araujo, L. S., Mei, P. R., De Almeida, L. H., & Nunes, C. A. (2012). Characterization of a new beta titanium alloy, Ti–12Mo–3Nb, for biomedical applications. Journal of Alloys and Compounds, 536, S208-S210.
Gaddam, R., Sefer, B., Pederson, R., & Antti, M. L. (2015). Oxidation and alpha- case formation in Ti–6Al–2Sn–4Zr–2Mo alloy. Materials Characterization, 99, 166-174.
Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Progress in materials science, 54(3), 397-425.
Gepreel, M. A. H., & Niinomi, M. (2013). Biocompatibility of Ti-alloys for long- term implantation. Journal of the mechanical behavior of biomedical materials, 20, 407-415
Gotoh, H., Shibahara, T., & Sakai, T. (2001). Sub-particle-scale turbulence model for the MPS method – Lagrangian fow model for hydraulic engineering". Comp. Fluid Dyn. J., 9(4), 339-347.
Güleryüz, H., & Çimenoglu, H. (2004). Effect of thermal oxidation on corrosion and corrosion–wear behaviour of a Ti–6Al–4V alloy. Biomaterials, 25(16), 3325- 3333.
Guleryuz, H., & Cimenoglu, H. (2005). Surface modification of a Ti–6Al–4V alloy by thermal oxidation. Surface and Coatings Technology, 192(2-3), 164-170.
Hacisalioglu, I., Yildiz, F., Alsaran, A., & Purcek, G. (2017, February). Wear behavior of the plasma and thermal oxidized Ti-15Mo and Ti-6Al-4V alloys. In IOP Conference Series: Materials Science and Engineering (Vol. 174, No. 1, p. 012055). IOP Publishing.
Huang, H. H., Wu, C. P., Sun, Y. S., & Lee, T. H. (2013). Improvements in the corrosion resistance and biocompatibility of biomedical Ti–6Al–7Nb alloy using an electrochemical anodization treatment. Thin Solid Films, 528, 157- 162.
Huang, H., Winchester, K. J., Suvorova, A., Lawn, B. R., Liu, Y., Hu, X. Z., ... & Faraone, L. (2006). Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films. Materials Science and Engineering: A, 435, 453-459.
Hukovic, N., & Brown, E. S. (2003). Effects of prescription corticosteroids on mood and memory. Advances in psychosomatic medicine, 24, 161-167.
Izman, S., Hassan, M. A., Kadir, M. R. A., Abdullah, M. R., Anwar, M., Shah, A., & Daud, R. (2012). Effect of pretreatment process on thermal oxidation of biomedical grade cobalt based alloy. In Advanced Materials Research (Vol. 399, pp. 1564-1567). Trans Tech Publications Ltd.
Izman, S., Shah, A., Kadir, M. R. A., Nazim, E. M., Anwar, M., Hassan, M. A., & Safari, H. (2011). Effect of thermal oxidation temperature on rutile structure formation of biomedical TiZrNb alloy. In Advanced Materials Research (Vol. 393, pp. 704-708). Trans Tech Publications Ltd.
Izquierdo, J., Mareci, D., Bolat, G., Santana, J. J., Rodríguez-Raposo, R., Fernández- Mérida, L. C., ... & Souto, R. M. (2020). Improvement of the Corrosion Resistance of Biomedical Zr-Ti Alloys Using a Thermal Oxidation Treatment. Metals, 10(2), 166.
Jagielski, J., Piatkowska, A., Aubert, P., Thome, L., Turos, A., & Abdul Kader, A. (2006). Ion implantation for surface modification of biomaterials. Surface and Coatings Technology, 200(22-23), 6355–6361.
Jamesh, M., Kumar, S., & Narayanan, T. S. (2012). Effect of thermal oxidation on corrosion resistance of commercially pure titanium in acid medium. Journal of materials engineering and performance, 21(6), 900-906.
Jamesh, M., Narayanan, T. S., & Chu, P. K. (2013). Thermal oxidation of titanium: Evaluation of corrosion resistance as a function of cooling rate. Materials Chemistry and Physics, 138(2-3), 565-572.
Kalpakjian, S. (2001). Manufacturing engineering and technology. Pearson Education India.
Kalpakjian, S., & Schmid, S. R. (2001). Manufacturing Engineering and Technology. In V. P. Pat Daly, L. Curless, R. Kernan & D. A. George (Eds.) (4th ed.). United States, of America: Pearson Education International Edition.
Khorasani, A. M., Goldberg, M., Doeven, E. H., & Littlefair, G. (2015). Titanium in biomedical applications—properties and fabrication: a review. Journal of Biomaterials and Tissue Engineering, 5(8), 593-619.
Kim, T. S., Park, Y. G., & Wey, M. Y. (2003). Characterization of Ti–6Al–4V alloy modified by plasma carburizing process. Materials Science and Engineering: A, 361(1-2), 275-280.
Kobayashi, E, Wang, T. J., Doi, H., Yoneyama, T., & Hamanaka, H. (1998). Material Science. Material Medicine, 9, 567–574.
Komotori, J., Lee, B. J., Dong, H., & Dearnley, P. A. (2001). Corrosion response of surface engineered titanium alloys damaged by prior abrasion. Wear, 251(1- 12), 1239-1249.
Konovalova, M. V., Markov, P. A., Durnev, E. A., Kurek, D. V., Popov, S. V., & Varlamov, V. P. (2017). Preparation and biocompatibility evaluation of pectin and chitosan cryogels for biomedical application. Journal of Biomedical Materials Research Part A, 105(2), 547-556.
Krishna, D. S. R., & Sun, Y. (2005). Effect of thermal oxidation conditions on tribological behaviour of titanium films on 316L stainless steel. Surface and Coatings Technology, 198(1-3), 447-453.
Krishna, D. S. R., & Sun, Y. (2005). Thermally oxidised rutile-TiO2 coating on stainless steel for tribological properties and corrosion resistance enhancement. Applied Surface Science, 252(4), 1107-1116.
Krishna, D. S. R., Brama, Y. L., & Sun, Y. (2007). Thick rutile layer on titanium for tribological applications. Tribology International, 40(2), 329-334.
Kulkarni, M., Mazare, A., Schmuki, P., & Iglic, A. (2014). Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine, 111, 111-136.
Kumar, K. R., & Narayanan, S. (2008). Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs. Smart Materials and Structures, 17(5), 055008.
Kumar, S., Narayanan, T. S., Raman, S. G. S., & Seshadri, S. K. (2009). Thermal oxidation of CP-Ti: Evaluation of characteristics and corrosion resistance as a function of treatment time. Materials Science and Engineering: C, 29(6), 1942-1949.
Kumar, S., Narayanan, T. S., Raman, S. G. S., & Seshadri, S. K. (2010). Thermal oxidation of CP Ti—An electrochemical and structural characterization. Materials Characterization, 61(6), 589-597.
Kurella, A., & Dahotre, N. B. (2005). Surface modification for bioimplants: the role of laser surface engineering. Journal of biomaterials applications, 20(1), 5-50.
Lee, J. H., & Thadhani, N. N. (1997). Reaction synthesis mechanism in dynamically densified Ti+ C powder compacts. Scripta materialia, 37(12), 1979-1985.
Li, X. Y., Taniguchi, S., Zhu, Y. C., Fujita, K., Iwamoto, N., Matsunaga, Y., & Nakagawa, K. (2002). Oxidation behavior of TiAl protected by Al and Nb combined ion implantation at high temperature. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 187(2), 207-214.
Li, X., Wang, C., Zhang, W., & Li, Y. (2010). Fabrication and compressive properties of Ti6Al4V implant with honeycomb-like structure for biomedical applications. Rapid Prototyping Journal, 16(1), 44–49.
Li, Y., Yang, C., Zhao, H., Qu, S., Li, X., & Li, Y. (2014). New developments of Ti- based alloys for biomedical applications. Materials, 7(3), 1709-1800.
Lieblich, M., Barriuso, S., Multigner, M., González-Doncel, G., & González- Carrasco, J. L. (2016). Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties. Journal of the mechanical behavior of biomedical materials, 54, 173-184.
Liu, L. D., & Chen, F. S. (2004). Super-carburization of low alloy steel in a vacuum furnace. Surface and Coatings Technology, 183(2-3), 233-238.
Liu, X., Chu, P. K., & Ding, C. (2004). Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 47(3-4), 49-121.
Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621-1639.
Lu, J. W., Zhao, Y. Q., Ge, P., & Niu, H. Z. (2013). Microstructure and beta grain growth behavior of Ti–Mo alloys solution treated. Materials characterization, 84, 105-111.
Luo, X., Zhou, G., Liu, W., Zhang, W. J., Cen, L., Cui, L., & Cao, Y. (2009). In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage. Biomedical Materials, 4(2), 025006.
Luo, L., Jiang, Z. Y., Wei, D. B., & He, X. F. (2014). Surface modification of titanium and its alloys for biomedical application. In Advanced Materials Research (Vol. 887, pp. 1115-1120). Trans Tech Publications Ltd.
Luo, Y., Chen, W., Tian, M., & Teng, S. (2015). Thermal oxidation of Ti6Al4V alloy and its biotribological properties under serum lubrication. Tribology International, 89, 67-71.
Luo, Y., Jiang, H., Cheng, G., & Liu, H. (2011). Effect of carburization on the mechanical properties of biomedical grade titanium alloys. Journal of Bionic Engineering, 8(1), 86-89.
Maitre, B., Jaber, S., Maggiore, S. M., Bergot, E., Richard, J. C., Bakthiari, H., ... & Brochard, L. (2000). Continuous positive airway pressure during fiberoptic bronchoscopy in hypoxemic patients: a randomized double-blind study using a new device. American journal of respiratory and critical care medicine, 162(3), 1063-1067.
Manivasagam, G., Dhinasekaran, D., & Rajamanickam, A. (2010). Biomedical implants: corrosion and its prevention-a review. Recent patents on corrosion science.
Manjaiah, M., & Laubscher, R. F. (2017).”A Review of the Surface Modifications of Titanium Alloys for Biomedical Application”. Materials Technology, 1580- 2949.
Mas-Ayu, H., Daud, R., Shah, A., Hazwan, H. M., Tomadi, S. H., & Salwani, M. S. (2018). Effect of Thermal Oxidation and Carbon Concentrations on Co-Cr-Mo Alloy in Enhanced Corrosion Protection. In Materials Science Forum (Vol. 916, pp. 170-176). Trans Tech Publications Ltd.
Mohammed, M. T., Khan, Z. A., & Siddiquee, A. N. (2013). Influence of microstructural features on wear resistance of biomedical titanium materials. International Journal of Biomedical and Biological Engineering, 7(1), 49-53.
Mohammed, M. T., Khan, Z. A., & Siddiquee, A. N. (2014). Surface modifications of titanium materials for developing corrosion behavior in human body environment: a review. Procedia Materials Science, 6, 1610-1618.
Munirathinam, B., Narayanan, R., & Neelakantan, L. (2016). Electrochemical and semiconducting properties of thin passive film formed on titanium in chloride medium at various pH conditions. Thin Solid Films, 598, 260-270.
Niinomi, M. (2002). Recent metallic materials for biomedical applications. Metallurgical and materials transactions A, 33(3), 477-486.
Niinomi, M. (2003). Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6 Zr. Biomaterials, 24(16), 2673-2683.
Niinomi, M. (2009). Metallic biomaterials. Biomedical Material, 11, 41–81
Niinomi, M., Hattori, T., Morikawa, K., Kasuga, T., Suzuki, A., Fukui, H., & Niwa, S. (2001). Proc. 4th Pacific Rim Int. Comf. on Advanced Materials and Processing (PRICM4), 2001 Proc. 4th Pacific Rim Int. Comf. on Advanced Materials and Processing (PRICM4), 2001, 369-372, 2001. Proc. 4th Pacific Rim Int. Comf. on Advanced Materials and Processing (PRICM4), 2001, 369- 372.
Niinomi, M., Hattori, T., Morikawa, K., Kasuga, T., Suzuki, A., Fukui, H., & Niwa, S. (2002). Development of low rigidity β-type titanium alloy for biomedical applications. Materials Transactions, 43(12), 2970-2977.
Nnamchi, P. S. (2016). First principles studies on structural, elastic and electronic properties of new TiMoNbZr alloys for biomedical applications. Materials & Design, 108, 60-67.
Nnamchi, P. S., Obayi, C. S., Todd, I., & Rainforth, M. W. (2016). Mechanical and electrochemical characterisation of new Ti–Mo–Nb–Zr alloys for biomedical applications. Journal of the mechanical behavior of biomedical materials, 60, 68-77.
Okamoto, M., Nam, P. H., Maiti, P., Kotaka, T., Nakayama, T., Takada, M., ... & Okamoto, H. (2001). Biaxial flow-induced alignment of silicate layers in polypropylene/clay nanocomposite foam. Nano letters, 1(9), 503-505.
Oliveira, N. T. C., & Guastaldi, A. C. (2008). Electrochemical behavior of Ti–Mo alloys applied as biomaterial. Corrosion Science, 50(4), 938-945.
Ozan, S., Lin, J., Li, Y., Ipek, R., & Wen, C. (2015). Development of Ti–Nb–Zr alloys with high elastic admissible strain for temporary orthopedic devices. Acta biomaterialia, 20, 176-187.
Park, J., & Lakes, R. R. (1998). Biomaterials. In An Introduction (3rd ed., pp. 1–16).
Park, J., & Lakes, R. S. (2007). Biomaterials: an introduction. Springer Science & Business Media.
Patel, N. R., & Gohil, P. P. (2012). A review on biomaterials: scope, applications & human anatomy significance. International Journal of Emerging Technology and Advanced Engineering, 2(4), 91-101.
Pflumm, R., Donchev, A., Mayer, S., Clemens, H., & Schütze, M. (2014). High- temperature oxidation behavior of multi-phase Mo-containing γ-TiAl-based alloys. Intermetallics, 53, 45-55.
Pilliar, R. M. (2021). Metallic biomaterials. In Biomedical materials (pp. 1-47). Springer, Cham.
Pilliar, R. M. (ed.). Metallic biomaterials. In R. Narayan. (2009). Biomedical Materials (pp. 41–81).
Prabhudev, K. H. (1988). Handbook of Heat Treatment of Steels, New Delhi, Tata. McGraw-Hill Publishing Company Ltd.
Rack, H. J., & Qazi, J. I. (2006). Titanium alloys for biomedical applications. Materials Science and Engineering: C, 26(8), 1269-1277.
Rahmati, B., Sarhan, A. A., Zalnezhad, E., Kamiab, Z., Dabbagh, A., Choudhury, D., & Abas, W. A. B. W. (2016). Development of tantalum oxide (Ta-O) thin film coating on biomedical Ti-6Al-4V alloy to enhance mechanical properties and biocompatibility. Ceramics International, 42(1), 466-480.
Ramakrishna, S., Mayer, J., Wintermantel, E., & Leong, K. W. (2001). Biomedical applications of polymer-composite materials: a review. Composites science and technology, 61(9), 1189-1224.
Saldaña, L., Barranco, V., González-Carrasco, J. L., Rodríguez, M., Munuera, L., & Vilaboa, N. (2007). Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 81(2), 334- 346.
Saleh, A. F., Abboud, J. H., & Benyounis, K. Y. (2010). Surface carburizing of Ti– 6Al–4V alloy by laser melting. Optics and Lasers in Engineering, 48(3), 257- 267.
Samal, S., Cho, S., Park, D. W., & Kim, H. (2012). Thermal characterization of titanium hydride in thermal oxidation process. Thermochimica acta, 542, 46- 51.
Savaloni, H., Khojier, K., & Torabi, S. (2010). Influence of N+ ion implantation on the corrosion and nano-structure of Ti samples. Corrosion science, 52(4), 1263-1267.
Sen, M., & Dastidar, M. G. (2010). Chromium removal using various biosorbents. Journal of Environmental Health Science & Engineering, 7(3), 182-190.
Senopati, G., Sutowo, C., Rokhmanto, F., Kartika, I., & Suharno, B. (2020). Microstructure, Mechanical Properties, and Corrosion Resistance of Ti-6Mo- 6Nb-xSn Alloys for Biomedical Application. In Materials Science Forum (Vol. 988, pp. 175-181). Trans Tech Publications Ltd.
Shankar, A. R., Karthiselva, N. S., & Mudali, U. K. (2013). Thermal oxidation of titanium to improve corrosion resistance in boiling nitric acid medium. Surface and Coatings Technology, 235, 45-53.
Sidambe, A. T. (2014). Biocompatibility of advanced manufactured titanium implants—A review. Materials, 7(12), 8168-8188.
Somsanith, N., Narayanan, T. S., Kim, Y. K., Park, I. S., Bae, T. S., & Lee, M. H. (2015). Surface medication of Ti–15Mo alloy by thermal oxidation: Evaluation of surface characteristics and corrosion resistance in Ringer's solution. Applied Surface Science, 356, 1117-1126.
Song, H. J., Kim, M. K., Jung, G. C., Vang, M. S., & Park, Y. J. (2007). The effects of spark anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics. Surface and Coatings Technology, 201(21), 8738- 8745.
Sul, Y. T., Johansson, C. B., Jeong, Y., & Albrektsson, T. (2001). The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Medical engineering & physics, 23(5), 329-346.
Sun, Q., Hu, T., Fan, H., Zhang, Y., & Hu, L. (2016). Thermal oxidation behavior and tribological properties of textured TC4 surface: Influence of thermal oxidation temperature and time. Tribology International, 94, 479-489.
Sun, T., Xue, N., Liu, C., Wang, C., & He, J. (2015). Bioactive (Si, O, N)/(Ti, O, N)/Ti composite coating on NiTi shape memory alloy for enhanced wear and corrosion performance. Applied Surface Science, 356, 599-609.
Sutowo, C., Supriadi, S., Pramono, A. W., & Suharno, B. (2020). Microstructure, Mechanical Properties, and Corrosion Behavior of New βType Ti–Mo–Nb Based Alloys by Mn Addition for Implant Material. Eastern-European Journal of Enterprise Technologies, 1(12), 103.
Taniguchi, S., Uesaki, K., Zhu, Y. C., Matsumoto, Y., & Shibata, T. (1999). Influence of implantation of Al, Si, Cr or Mo ions on the oxidation behaviour of TiAl under thermal cycle conditions. Materials Science and Engineering: A, 266(1- 2), 267-275.
Tarakci, M., Korkmaz, K., Gencer, Y., & Usta, M. (2005). Plasma electrolytic surface carburizing and hardening of pure iron. Surface and Coatings Technology, 199(2-3), 205-212.
Tsuji, N., Tanaka, S., & Takasugi, T. (2009). Effect of combined plasma-carburizing and deep-rolling on notch fatigue property of Ti-6Al-4V alloy. Materials Science and Engineering: A, 499(1-2), 482-488.
Tsuji, N., Tanaka, S., & Takasugi, T. (2009). Effects of combined plasma-carburizing and shot-peening on fatigue and wear properties of Ti–6Al–4V alloy. Surface and Coatings Technology, 203(10-11), 1400-1405.
Uwais, Z. A., Hussein, M. A., Samad, M. A., & Al-Aqeeli, N. (2017). Surface modification of metallic biomaterials for better tribological properties: A review. Arabian Journal for Science and Engineering, 42(11), 4493-4512.
Varlamov, V. P. (2016). Preparation and biocompatibility evaluation of pectin and chitosan cryogels for biomedical application, 1–37.
Velten, D., Biehl, V., Aubertin, F., Valeske, B., Possart, W., & Breme, J. (2002). Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 59(1), 18-28.
Wang, S., & Hu, J. (2014). Design of alignment-free cancelable fingerprint templates via curtailed circular convolution. Pattern Recognition, 47(3), 1321-1329.
Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., ... & Xie, Y. M. (2016). Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127-141.
Weimer, A. W. (1997). Thermochemistry and kinetics. In Carbide, nitride and boride materials synthesis and processing (pp. 79-113). Springer, Dordrecht.
Wen, M., Wen, C., Hodgson, P., & Li, Y. (2014). Improvement of the biomedical properties of titanium using SMAT and thermal oxidation. Colloids and surfaces B: biointerfaces, 116, 658-665.
Whitesides, G. M., & Wong, A. P. (2006). The intersection of biology and materials science. MRS bulletin, 31(1), 19-27.
Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941-2953.
Wu, S. K., Lee, C. Y., & Lin, H. C. (1997). A study of vacuum carburization of an equiatomic TiNi shape memory alloy. Scripta materialia, 37(6), 837-842.
Yetim, A. F. (2010). Investigation of wear behavior of titanium oxide films, produced by anodic oxidation, on commercially pure titanium in vacuum conditions. Surface and Coatings Technology, 205(6), 1757-1763.
Yildiz, F., Yetim, A. F., Alsaran, A., & Efeoglu, I. (2009). Wear and corrosion behaviour of various surface treated medical grade titanium alloy in bio- simulated environment. Wear, 267(5-8), 695-701.
Yin, X., Gotman, I., Klinger, L., & Gutmanas, E. Y. (2005). Formation of titanium carbide on graphite via powder immersion reaction assisted coating. Materials Science and Engineering: A, 396(1-2), 107-114.
Zhang, B. B., Wang, B. L., Li, L., & Zheng, Y. F. (2011). Corrosion behavior of Ti– 5Ag alloy with and without thermal oxidation in artificial saliva solution. Dental materials, 27(3), 214-220.
Zhang, D., Qi, Z., Wei, B., & Wang, Z. (2017). Low temperature thermal oxidation towards hafnium-coated magnesium alloy for biomedical application. Materials Letters, 190, 181-184.
Zhou, Y. L., & Luo, D. M. (2011). Corrosion behavior of Ti–Mo alloys cold rolled and heat treated. Journal of Alloys and Compounds, 509(21), 6267-6272.
Zhu, . H., Cai, Z. B., Li, W., Yu, H. Y., & Zhou, Z. R. (2009). Fretting in prosthetic devices related to human body. Tribology International, 42(9), 1360-1364.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |