UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :thesis
Subject :TJ Mechanical engineering and machinery
Main Author :Siti Norsuraya Hussain
Title :Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application
Place of Production :Tanjong Malim
Publisher :Fakulti Teknikal dan Vokasional
Year of Publication :2021
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
Titanium and titanium alloys are widely used in a variety of engineering applications. Medical device manufacturers have also benefited from the outstanding properties of titanium alloys. However, titanium alloys are weak in meeting all of the clinical requirements for biomedical implants. Issues such as metal sensitivity associated with high levels of metal ion release triggered by corrosion effects remain critical concerns. Hence, the implant material surface has a strong role in the responses to the biological environment the implant can be stimulated in contact with the bone. In order to improve the biological and tribological properties of implant materials, surface modification needed to be made. Thermal oxidation is one of the surface modification techniques to enhance the corrosion performance of titanium alloys. This technique is excellent for forming a thicker oxide layer on Ti and its alloys to achieve optimum corrosion resistance. In the present study, thermal oxidation of Ti-8Mo-4Nb-2Zr alloy was explored. Hence, experiments were carried out to investigate the effective combination of surface modification parameters and evaluate performance corrosion behaviour in terms of their suitability with the Ti-8Mo-4Nb-2Zr alloy surface for biomedical implants applications. Process thermal oxidation was carried out at 500, 600 and 700°C for three different durations of 6, 12 and 24 hours. It was found that particles of oxides formed were noticeably larger after oxidation at an increased temperature of 600°C and 700°C. The increase in temperature resulted in the formation of compact particles in the oxide layer. A phase analysis showed that the phase contents of the oxide layer showed a strong dependence on treatment conditions with a predominance of the rutile phase over the anatase phase at temperatures > 500°C and for time periods > 6h. Improved corrosion resistance had been achieved of these alloys using thermal oxidation. EIS was employed to measure the corrosion resistance of the Ti-8Mo-4Nb-2Zr alloys in simulated physiological solutions of a wide pH range (namely 7.4 pH) at 37°C, and the best results were obtained for the alloys at 700°C. A more positive Ecorr value (-0.125 V) and a lower Icorr value (2.583 A x 10-6) were observed for the thermally oxidized Ti-8Mo-4Nb-2Zr alloys when compared with the untreated alloy. This finding, the oxide scale on the examined alloy efficiently enhances can increase the corrosion resistance of the implant material.

References

Alansari, A., & Sun, Y. (2017). A comparative study of the mechanical behaviour of thermally 

oxidised commercially pure titanium and zirconium. Journal of the mechanical behavior of biomedical 

materials, 74, 221-231.

 

Aniolek, K., & Kupka, M. (2019). Mechanical, tribological and adhesive properties of oxide layers 

obtained on the surface of the Ti–6Al–7Nb alloy in the thermal oxidation process. Wear, 432, 

202929.

 

Aniolek, K., Barylski, A., & Kupka, M. (2018). Modelling the structure and mechanical properties of 

oxide layers obtained on biomedical Ti-6Al-7Nb alloy in the thermal oxidation process. Vacuum, 154, 

309-314.

 

Aniolek, K., Kupka, M., & Barylski, A. (2016). Characteristic of oxide layers obtained on titanium 

in the process of thermal oxidation. Archives of Metallurgy and Materials, 61(2A), 853-856.

 

Aniolek, K., Kupka, M., & Barylski, A. (2016). Sliding wear resistance of oxide layers formed on a 

titanium surface during thermal oxidation. Wear, 356, 23- 29.

 

Aniolek, K., Kupka, M., & Barylski, A. (2018). “Characteristics of the tribological properties of 

oxide layers obtained via thermal oxidation on titanium Grade 2”. Journal of Engineering TribologyJ 

0(0), 1-13.

 

Aniolek, K., Kupka, M., Barylski, A., & Dercz, G. (2015). Mechanical and tribological properties of 

oxide layers obtained on titanium in the thermal oxidation process. Applied Surface Science, 357, 

1419-1426.

 

Aniolek, K., Kupka, M., & Dercz, G. (2019). Cyclic oxidation of Ti–6Al–7Nb alloy. Vacuum, 168, 

108859.

 

Arslan, E., Totik, Y., Demirci, E., & Alsaran, A. (2010). Influence of surface roughness on 

corrosion and tribological behavior of CP-Ti after thermal oxidation   treatment.   Journal   of   

Materials   Engineering   and Performance, 19(3), 428-433.

 

Ashrafizadeh, A., & Ashrafizadeh, F. (2009). Structural features and corrosion analysis  of  

thermally  oxidized  titanium.  Journal  of  Alloys  and Compounds, 480(2), 849-852.

 

Bailey, R., & Sun, Y. (2013). Unlubricated sliding friction and wear characteristics

of thermally oxidized commercially pure titanium. Wear, 308(1-2), 61-70.

 

Balani, K., Chen, Y., Harimkar, S. P., Dahotre, N. B., & Agarwal, A. (2007).

Tribological behavior of plasma-sprayed carbon nanotube-reinforced

hydroxyapatite coating in physiological solution. Acta Biomaterialia, 3(6), 944-951.

 

Balazic, M., Kopac, J., Jackson, M. J., & Ahmed, W. (2007). Titanium and titanium alloy applications in medicine. International Journal of Nano and

Biomaterials, 1(1), 3-34.

 

Bansal, D. G., Eryilmaz, O. L., & Blau, P. J. (2011). Surface engineering to improve the durability and lubricity of Ti–6Al–4V alloy. Wear, 271(9-10), 2006-2015.

 

Bansal, R., Singh, J. K., Singh, V., Singh, D. D. N., & Das, P. (2017). Optimization of oxidation temperature for commercially pure titanium to achieve improved

corrosion resistance. Journal of Materials Engineering and Performance, 26(3), 969-977.

 

Bensheng, H., Ge, L., Zhongying, J., Wenfeng, Y., & Qi, X. (2015). Preparation and

Characterization of Ceramic Film on Drilling Pipe Joint. Rare Metal Materials

and Engineering, 44(6), 1357-1362.

 

Bharathy, P. V., Nataraj, D., Chu, P. K., Wang, H., Yang, Q., Kiran, M. S. R. N., ... & Mangalaraj, D. (2010). Effect of titanium incorporation on the structural,

mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method. Applied Surface Science, 257(1), 143-150.

 

Bing Zhou, Xiaohong Jiang, Zhubo liu, Ruiqi Shen, Aleksandr V. Rogachev., (2013).

“Preparation and characterization of TiO2 thin film by thermal oxidation of

sputtered Ti film”. Materials Science in Semiconductor Processing 16, 513–

519.

 

Biswas, A., & Majumdar, J. D. (2009). Surface characterization and mechanical

property evaluation of thermally oxidized Ti-6Al-4V. Materials

Characterization, 60(6), 513-518.

 

Biswas, A., & Majumdar, J. D. (2009). Surface characterization and mechanical

property evaluation of thermally oxidized Ti-6Al-4V. Materials

Characterization, 60(6), 513-518.

 

Blackwood, A. D., Salter, J., Dettmar, P. W., & Chaplin, M. F. (2000). Dietary fibre,

physicochemical properties and their relationship to health. The journal of the Royal Society for the Promotion of Health, 120(4), 242-247.

 

Bloyce, A., Morton, P. H., & Bell, T. (1994). Surface engineering of titanium and

titanium alloys. ASM handbook, 5, 2232-2233.

 

Bloyce, A., Qi, P. Y., Dong, H., & Bell, T. (1998). Surface modification of titanium alloys for combined improvements in corrosion and wear resistance. Surface and Coatings Technology, 107(2-3), 125-132.

 

Bolat, G., Izquierdo, J., Mareci, D., Sutiman, D., & Souto, R. M. (2013). Electrochemical characterization of ZrTi alloys for biomedical applications. Part 2: The effect of thermal oxidation. Electrochimica Acta, 106, 432-439.

 

Boonrungsiman, S., Thongtham, N., Suwantong, O., Wutikhun, T., Soykeabkaew, N., & Nimmannit, U. (2018). An improvement of silk-based scaffold

properties using collagen type I for skin tissue engineering

applications. Polymer Bulletin, 75(2), 685-700.

 

Boretos, J. W., & Eden, M. (1984). Contemporary biomaterials: material and host response, clinical applications, new technology and legal aspects. Noyes Publications, Park Ridge.

 

Borgioli, F., Galvanetto, E., Iozzelli, F., & Pradelli, G. (2005). Improvement of wear

resistance of Ti–6Al–4V alloy by means of thermal oxidation. Materials Letters, 59(17), 2159-2162.

 

Breme, Eisenbarth & Biehl, (2005). “Titanium and its Alloys for Medical Applications”. Titanium and Titanium Alloys (2005). 423–451.

 

Calderon-Moreno, J. M., Vasilescu, C., Drob, S. I., Ivanescu, S., Osiceanu, P., Drob, P., ... & Vasilescu, E. (2014). Microstructural and mechanical properties,

surface and electrochemical characterisation of a new Ti–Zr–Nb alloy for implant applications. Journal of alloys and compounds, 612, 398-410.

 

Calderon-Moreno, J. M., Preda, S., Predoana, L., Zaharescu, M., Anastasescu, M.,

Nicolescu, M., ... & Serban, B. (2014). Effect of polyethylene glycol on porous

transparent TiO2 films prepared by sol–gel method. Ceramics

International, 40(1), 2209-2220.

 

Chui, P., Jing, R., Zhang, F., Li, J., & Feng, T. (2020). Mechanical properties and

corrosion behavior of β-type Ti-Zr-Nb-Mo alloys for biomedical

application. Journal of Alloys and Compounds, 842, 155693.

 

Cochepin, B., Gauthier, V., Vrel, D., & Dubois, S. (2007). Crystal growth of TiC grains during SHS reactions. Journal of Crystal Growth, 304(2), 481-486.

 

Correa, D. R. N., Kuroda, P. A. B., & Grandini, C. R. (2014). Structure, microstructure, and selected mechanical properties of Ti-Zr-Mo alloys for biomedical applications. In Advanced Materials Research (Vol. 922, pp. 75-

80). Trans Tech Publications Ltd.

 

Courant, R. (2005). Dirichlet's principle, conformal mapping, and minimal surfaces.

Courier Corporation.

 

Cui, W. F., & Shao, C. J. (2015). The improved corrosion resistance and anti-wear performance of 

Zr–xTi alloys by thermal oxidation treatment. Surface and Coatings Technology, 283, 101-107.

 

Dabrowski, R. (2014). Effect of Heat Treatment on the Mechanical Properties of Two-Phase Titanium 

Alloy Ti6al7nb/Wplyw Obróbki Cieplnej Na Wlasnosci Mechaniczne Dwufazowego Stopu Tytanu Ti6al7nb. 

Archives of Metallurgy and Materials. Faculty Of Engineering, M., & Science, I. C.

 

Dai, J., Zhu, J., Chen, C., & Weng, F. (2016). High temperature oxidation behavior and research 

status of modifications on improving high temperature oxidation resistance of titanium alloys and 

titanium aluminides: A review. Journal of Alloys and Compounds, 685, 784-798.

 

Dalili, N., Edrisy, A., Farokhzadeh, K., Li, J., Lo, J., & Riahi, A. R. (2010). Improving the wear 

resistance of Ti–6Al–4V/TiC composites through thermal oxidation (TO). Wear, 269(7-8), 590-601.

 

Dearnley, P. A., Dahm, K. L., & Çimenoglu, H. (2004). The corrosion–wear behaviour of thermally 

oxidised CP-Ti and Ti–6Al–4V. Wear, 256(5), 469- 479.

 

Delplancke, J. L., Degrez, M., Fontana, A., & Winand, R. (1982). Self-colour anodizing of titanium. 

Surface Technology, 16(2), 153-162.

 

Díaz, C., Lutz, J., Mändl, S., García, J. A., Martínez, R., & Rodríguez, R. J. (2009). Improved  

bio-tribology  of  biomedical  alloys  by  ion  implantation techniques. Nuclear Instruments and 

Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(8-9), 

1630-1633.

 

Donchev, A., Richter, E., Schütze, M., & Yankov, R. (2008). Improving the oxidation resistance  of  

TiAl-alloys  with  fluorine.  Journal  of  Alloys  and Compounds, 452(1), 7-10.

 

Dong, H., & Bell, T. (2000). Enhanced wear resistance of titanium surfaces by a new thermal 

oxidation treatment. Wear, 238(2), 131-137.

 

Fayeulle,  S.  (1986).  Tribological  behaviour  of  nitrogen-implanted materials. Wear, 107(1), 

61-70.

 

Gabriel, S. B., Panaino, J. V. P., Santos, I. D., Araujo, L. S., Mei, P. R., De Almeida,

L. H., & Nunes, C. A. (2012). Characterization of a new beta titanium alloy, Ti–12Mo–3Nb,  for  

biomedical  applications.  Journal  of  Alloys  and Compounds, 536, S208-S210.

 

Gaddam, R., Sefer, B., Pederson, R., & Antti, M. L. (2015). Oxidation and alpha- case   formation   

in   Ti–6Al–2Sn–4Zr–2Mo   alloy.   Materials

Characterization, 99, 166-174.

 

Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate 

choice for orthopaedic implants–a review. Progress in materials science, 54(3), 397-425.

 

Gepreel, M. A. H., & Niinomi, M. (2013). Biocompatibility of Ti-alloys for long- term implantation. 

Journal of the mechanical behavior of biomedical materials, 20, 407-415

 

Gotoh, H., Shibahara, T., & Sakai, T. (2001). Sub-particle-scale turbulence model for the MPS 

method – Lagrangian fow model for hydraulic engineering".

Comp. Fluid Dyn. J., 9(4), 339-347.

 

Güleryüz, H., & Çimenoglu, H. (2004). Effect of thermal oxidation on corrosion and corrosion–wear 

behaviour of a Ti–6Al–4V alloy. Biomaterials, 25(16), 3325- 3333.

 

Guleryuz, H., & Cimenoglu, H. (2005). Surface modification of a Ti–6Al–4V alloy by thermal 

oxidation. Surface and Coatings Technology, 192(2-3), 164-170.

 

Hacisalioglu, I., Yildiz, F., Alsaran, A., & Purcek, G. (2017, February). Wear behavior of the 

plasma and thermal oxidized Ti-15Mo and Ti-6Al-4V alloys. In IOP Conference Series: Materials 

Science and Engineering (Vol. 174, No. 1, p. 012055). IOP Publishing.

 

Huang, H. H., Wu, C. P., Sun, Y. S., & Lee, T. H. (2013). Improvements in the corrosion resistance 

and biocompatibility of biomedical Ti–6Al–7Nb alloy using an electrochemical anodization treatment. 

Thin Solid Films, 528, 157- 162.

 

Huang, H., Winchester, K. J., Suvorova, A., Lawn, B. R., Liu, Y., Hu, X. Z., ... & Faraone, L. 

(2006). Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon 

nitride films. Materials Science and Engineering: A, 435, 453-459.

 

Hukovic, N., & Brown, E. S. (2003). Effects of prescription corticosteroids on mood and memory. 

Advances in psychosomatic medicine, 24, 161-167.

 

Izman, S., Hassan, M. A., Kadir, M. R. A., Abdullah, M. R., Anwar, M., Shah, A., & Daud, R. (2012). 

Effect of pretreatment process on thermal oxidation of biomedical grade cobalt based alloy. In 

Advanced Materials Research (Vol. 399, pp. 1564-1567). Trans Tech Publications Ltd.

 

Izman, S., Shah, A., Kadir, M. R. A., Nazim, E. M., Anwar, M., Hassan, M. A., & Safari, H. (2011). 

Effect of thermal oxidation temperature on rutile structure formation of biomedical TiZrNb alloy. 

In Advanced Materials Research (Vol.

393, pp. 704-708). Trans Tech Publications Ltd.

 

Izquierdo, J., Mareci, D., Bolat, G., Santana, J. J., Rodríguez-Raposo, R., Fernández- Mérida, L. 

C., ... & Souto, R. M. (2020). Improvement of the Corrosion Resistance  of  Biomedical  Zr-Ti  

Alloys  Using  a  Thermal  Oxidation Treatment. Metals, 10(2), 166.

 

Jagielski, J., Piatkowska, A., Aubert, P., Thome, L., Turos, A., & Abdul Kader, A. (2006). Ion 

implantation for surface modification of biomaterials. Surface and Coatings Technology, 200(22-23), 

6355–6361.

 

Jamesh, M., Kumar, S., & Narayanan, T. S. (2012). Effect of thermal oxidation on corrosion 

resistance of commercially pure titanium in acid medium. Journal of materials engineering and 

performance, 21(6), 900-906.

 

Jamesh, M., Narayanan, T. S., & Chu, P. K. (2013). Thermal oxidation of titanium: Evaluation of 

corrosion resistance as a function of cooling rate. Materials Chemistry and Physics, 138(2-3), 

565-572.

 

Kalpakjian, S. (2001). Manufacturing engineering and technology. Pearson Education India.

 

Kalpakjian, S., & Schmid, S. R. (2001). Manufacturing Engineering and Technology. In V. P. Pat 

Daly, L. Curless, R. Kernan & D. A. George (Eds.) (4th ed.). United States, of America: Pearson 

Education International Edition.

 

Khorasani, A. M., Goldberg, M., Doeven, E. H., & Littlefair, G. (2015). Titanium in biomedical 

applications—properties and fabrication: a review. Journal of Biomaterials and Tissue Engineering, 

5(8), 593-619.

 

Kim, T. S., Park, Y. G., & Wey, M. Y. (2003). Characterization of Ti–6Al–4V alloy modified by 

plasma carburizing process. Materials Science and Engineering: A, 361(1-2), 275-280.

 

Kobayashi, E, Wang, T. J., Doi, H., Yoneyama, T., & Hamanaka, H. (1998). Material Science. Material 

Medicine, 9, 567–574.

 

Komotori, J., Lee, B. J., Dong, H., & Dearnley, P. A. (2001). Corrosion response of surface 

engineered titanium alloys damaged by prior abrasion. Wear, 251(1- 12), 1239-1249.

 

Konovalova, M. V., Markov, P. A., Durnev, E. A., Kurek, D. V., Popov, S. V., & Varlamov, V. P. 

(2017). Preparation and biocompatibility evaluation of pectin and chitosan cryogels for biomedical 

application. Journal of Biomedical Materials Research Part A, 105(2), 547-556.

 

Krishna, D. S. R., & Sun, Y. (2005). Effect of thermal oxidation conditions on tribological 

behaviour of titanium films on 316L stainless steel. Surface and

Coatings Technology, 198(1-3), 447-453.

 

Krishna, D. S. R., & Sun, Y. (2005). Thermally oxidised rutile-TiO2 coating on stainless  steel  

for  tribological  properties  and  corrosion  resistance enhancement. Applied Surface Science, 

252(4), 1107-1116.

 

Krishna, D. S. R., Brama, Y. L., & Sun, Y. (2007). Thick rutile layer on titanium for tribological 

applications. Tribology International, 40(2), 329-334.

 

Kulkarni, M., Mazare, A., Schmuki, P., & Iglic, A. (2014). Biomaterial surface modification  of  

titanium  and  titanium  alloys  for  medical applications. Nanomedicine, 111, 111-136.

 

Kumar, K. R., & Narayanan, S. (2008). Active vibration control of beams with optimal placement of 

piezoelectric sensor/actuator pairs. Smart Materials and Structures, 17(5), 055008.

 

Kumar, S., Narayanan, T. S., Raman, S. G. S., & Seshadri, S. K. (2009). Thermal oxidation of CP-Ti: 

Evaluation of characteristics and corrosion resistance as a function of treatment time. Materials 

Science and Engineering: C, 29(6), 1942-1949.

 

Kumar, S., Narayanan, T. S., Raman, S. G. S., & Seshadri, S. K. (2010). Thermal oxidation   of   CP 

  Ti—An   electrochemical   and   structural characterization. Materials Characterization, 61(6), 

589-597.

 

Kurella, A., & Dahotre, N. B. (2005). Surface modification for bioimplants: the role of laser 

surface engineering. Journal of biomaterials applications, 20(1), 5-50.

 

Lee, J. H., & Thadhani, N. N. (1997). Reaction synthesis mechanism in dynamically densified Ti+ C 

powder compacts. Scripta materialia, 37(12), 1979-1985.

 

Li, X. Y., Taniguchi, S., Zhu, Y. C., Fujita, K., Iwamoto, N., Matsunaga, Y., & Nakagawa, K. 

(2002). Oxidation behavior of TiAl protected by Al and Nb combined ion implantation at high 

temperature. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with 

Materials and Atoms, 187(2), 207-214.

 

Li, X., Wang, C., Zhang, W., & Li, Y. (2010). Fabrication and compressive properties of  Ti6Al4V  

implant  with  honeycomb-like  structure  for  biomedical applications. Rapid Prototyping Journal, 

16(1), 44–49.

 

Li, Y., Yang, C., Zhao, H., Qu, S., Li, X., & Li, Y. (2014). New developments of Ti- based alloys 

for biomedical applications. Materials, 7(3), 1709-1800.

 

Lieblich, M., Barriuso, S., Multigner, M., González-Doncel, G., & González- Carrasco, J. L. (2016). 

Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, 

residual stresses and mechanical properties. Journal of the mechanical behavior of biomedical

materials, 54, 173-184.

 

Liu, L. D., & Chen, F. S. (2004). Super-carburization of low alloy steel in a vacuum

furnace. Surface and Coatings Technology, 183(2-3), 233-238.

 

Liu, X., Chu, P. K., & Ding, C. (2004). Surface modification of titanium, titanium alloys, and 

related materials for biomedical applications. Materials Science and Engineering: R: Reports, 

47(3-4), 49-121.

 

Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacement—a materials science 

perspective. Biomaterials, 19(18), 1621-1639.

 

Lu, J. W., Zhao, Y. Q., Ge, P., & Niu, H. Z. (2013). Microstructure and beta grain growth  behavior 

 of  Ti–Mo  alloys  solution  treated.  Materials characterization, 84, 105-111.

 

Luo, X., Zhou, G., Liu, W., Zhang, W. J., Cen, L., Cui, L., & Cao, Y. (2009). In vitro 

precultivation  alleviates  post-implantation  inflammation  and  enhances development  of  

tissue-engineered  tubular  cartilage.  Biomedical Materials, 4(2), 025006.

 

Luo, L., Jiang, Z. Y., Wei, D. B., & He, X. F. (2014). Surface modification of titanium and  its  

alloys  for  biomedical  application.  In  Advanced  Materials Research (Vol. 887, pp. 1115-1120). 

Trans Tech Publications Ltd.

 

Luo, Y., Chen, W., Tian, M., & Teng, S. (2015). Thermal oxidation of Ti6Al4V alloy and  its  

biotribological  properties  under  serum  lubrication.  Tribology International, 89, 67-71.

 

Luo, Y., Jiang, H., Cheng, G., & Liu, H. (2011). Effect of carburization on the mechanical 

properties of biomedical grade titanium alloys. Journal of Bionic Engineering, 8(1), 86-89.

 

Maitre, B., Jaber, S., Maggiore, S. M., Bergot, E., Richard, J. C., Bakthiari, H., ... & Brochard, 

L. (2000). Continuous positive airway pressure during fiberoptic bronchoscopy in hypoxemic 

patients: a randomized double-blind study using a  new  device.  American  journal  of  respiratory 

 and  critical  care medicine, 162(3), 1063-1067.

 

Manivasagam, G., Dhinasekaran, D., & Rajamanickam, A. (2010). Biomedical implants: corrosion and 

its prevention-a review. Recent patents on corrosion science.

 

Manjaiah, M., & Laubscher, R. F. (2017).”A Review of the Surface Modifications of Titanium Alloys 

for Biomedical Application”. Materials Technology, 1580- 2949.

 

Mas-Ayu, H., Daud, R., Shah, A., Hazwan, H. M., Tomadi, S. H., & Salwani, M. S. (2018). Effect of 

Thermal Oxidation and Carbon Concentrations on Co-Cr-Mo Alloy in Enhanced Corrosion Protection. In 

Materials Science Forum (Vol.

916, pp. 170-176). Trans Tech Publications Ltd.

 

Mohammed, M. T., Khan, Z. A., & Siddiquee, A. N. (2013). Influence of microstructural  features  on 

 wear  resistance  of  biomedical  titanium materials.  International  Journal  of  Biomedical  and 

 Biological Engineering, 7(1), 49-53.

 

Mohammed, M. T., Khan, Z. A., & Siddiquee, A. N. (2014). Surface modifications of titanium 

materials for developing corrosion behavior in human body environment: a review. Procedia Materials 

Science, 6, 1610-1618.

 

Munirathinam, B., Narayanan, R., & Neelakantan, L. (2016). Electrochemical and semiconducting 

properties of thin passive film formed on titanium in chloride medium at various pH conditions. 

Thin Solid Films, 598, 260-270.

 

Niinomi, M. (2002). Recent metallic materials for biomedical applications.

Metallurgical and materials transactions A, 33(3), 477-486.

 

Niinomi, M. (2003). Fatigue performance and cyto-toxicity of low rigidity titanium alloy, 

Ti–29Nb–13Ta–4.6 Zr. Biomaterials, 24(16), 2673-2683.

 

Niinomi, M. (2009). Metallic biomaterials. Biomedical Material, 11, 41–81

 

Niinomi, M., Hattori, T., Morikawa, K., Kasuga, T., Suzuki, A., Fukui, H., & Niwa,

S. (2001). Proc. 4th Pacific Rim Int. Comf. on Advanced Materials and Processing (PRICM4), 2001 

Proc. 4th Pacific Rim Int. Comf. on Advanced Materials and Processing (PRICM4), 2001, 369-372, 

2001. Proc. 4th Pacific Rim Int. Comf. on Advanced Materials and Processing (PRICM4), 2001, 369- 

372.

 

Niinomi, M., Hattori, T., Morikawa, K., Kasuga, T., Suzuki, A., Fukui, H., & Niwa,

S. (2002). Development of low rigidity β-type titanium alloy for biomedical applications. Materials 

Transactions, 43(12), 2970-2977.

 

Nnamchi, P. S. (2016). First principles studies on structural, elastic and electronic properties of 

new TiMoNbZr alloys for biomedical applications. Materials & Design, 108, 60-67.

 

Nnamchi, P. S., Obayi, C. S., Todd, I., & Rainforth, M. W. (2016). Mechanical and electrochemical 

characterisation of new Ti–Mo–Nb–Zr alloys for biomedical applications. Journal of the mechanical 

behavior of biomedical materials, 60, 68-77.

 

Okamoto, M., Nam, P. H., Maiti, P., Kotaka, T., Nakayama, T., Takada, M., ... & Okamoto, H. (2001). 

Biaxial flow-induced alignment of silicate layers in polypropylene/clay nanocomposite foam. Nano 

letters, 1(9), 503-505.

 

Oliveira, N. T. C., & Guastaldi, A. C. (2008). Electrochemical behavior of Ti–Mo

alloys applied as biomaterial. Corrosion Science, 50(4), 938-945.

 

Ozan, S., Lin, J., Li, Y., Ipek, R., & Wen, C. (2015). Development of Ti–Nb–Zr alloys  with  high  

elastic  admissible  strain  for  temporary  orthopedic devices. Acta biomaterialia, 20, 176-187.

 

Park, J., & Lakes, R. R. (1998). Biomaterials. In An Introduction (3rd ed., pp. 1–16). 

 

Park, J., & Lakes, R. S. (2007). Biomaterials: an introduction. Springer Science &

Business Media.

 

Patel, N. R., & Gohil, P. P. (2012). A review on biomaterials: scope, applications & human anatomy 

significance. International Journal of Emerging Technology and Advanced Engineering, 2(4), 91-101.

 

Pflumm, R., Donchev, A., Mayer, S., Clemens, H., & Schütze, M. (2014). High- temperature oxidation 

behavior of multi-phase Mo-containing γ-TiAl-based alloys. Intermetallics, 53, 45-55.

 

Pilliar, R. M. (2021). Metallic biomaterials. In Biomedical materials (pp. 1-47).

Springer, Cham.

 

Pilliar, R. M. (ed.). Metallic biomaterials. In R. Narayan. (2009). Biomedical Materials (pp. 

41–81).

 

Prabhudev, K. H. (1988). Handbook of Heat Treatment of Steels, New Delhi, Tata.

McGraw-Hill Publishing Company Ltd.

 

Rack,  H.  J.,  &  Qazi,  J.  I.  (2006).  Titanium  alloys  for  biomedical applications. 

Materials Science and Engineering: C, 26(8), 1269-1277.

 

Rahmati, B., Sarhan, A. A., Zalnezhad, E., Kamiab, Z., Dabbagh, A., Choudhury, D., & Abas, W. A. B. 

W. (2016). Development of tantalum oxide (Ta-O) thin film coating on biomedical Ti-6Al-4V alloy to 

enhance mechanical properties and biocompatibility. Ceramics International, 42(1), 466-480.

 

Ramakrishna, S., Mayer, J., Wintermantel, E., & Leong, K. W. (2001). Biomedical applications of 

polymer-composite materials: a review. Composites science and technology, 61(9), 1189-1224.

 

Saldaña, L., Barranco, V., González-Carrasco, J. L., Rodríguez, M., Munuera, L., & Vilaboa, N. 

(2007). Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted 

Ti6Al4V alloy. Journal of Biomedical Materials Research Part A: An Official Journal of The Society 

for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for 

Biomaterials and the Korean Society for Biomaterials, 81(2), 334- 346.

 

Saleh, A. F., Abboud, J. H., & Benyounis, K. Y. (2010). Surface carburizing of Ti– 6Al–4V alloy by 

laser melting. Optics and Lasers in Engineering, 48(3), 257-

267.

 

Samal, S., Cho, S., Park, D. W., & Kim, H. (2012). Thermal characterization of titanium hydride in 

thermal oxidation process. Thermochimica acta, 542, 46- 51.

 

Savaloni, H., Khojier, K., & Torabi, S. (2010). Influence of N+ ion implantation on the corrosion 

and nano-structure of Ti samples. Corrosion science, 52(4), 1263-1267.

 

Sen,  M.,  &  Dastidar,  M.  G.  (2010).  Chromium  removal  using  various biosorbents. Journal of 

Environmental Health Science & Engineering, 7(3), 182-190.

 

Senopati, G., Sutowo, C., Rokhmanto, F., Kartika, I., & Suharno, B. (2020). Microstructure, 

Mechanical Properties, and Corrosion Resistance of Ti-6Mo- 6Nb-xSn  Alloys  for  Biomedical  

Application.  In  Materials  Science Forum (Vol. 988, pp. 175-181). Trans Tech Publications Ltd.

 

Shankar, A. R., Karthiselva, N. S., & Mudali, U. K. (2013). Thermal oxidation of titanium to 

improve corrosion resistance in boiling nitric acid medium. Surface and Coatings Technology, 235, 

45-53.

 

Sidambe, A. T. (2014). Biocompatibility of advanced manufactured titanium implants—A review. 

Materials, 7(12), 8168-8188.

 

Somsanith, N., Narayanan, T. S., Kim, Y. K., Park, I. S., Bae, T. S., & Lee, M. H. (2015). Surface 

medication of Ti–15Mo alloy by thermal oxidation: Evaluation of surface characteristics and 

corrosion resistance in Ringer's solution. Applied Surface Science, 356, 1117-1126.

 

Song, H. J., Kim, M. K., Jung, G. C., Vang, M. S., & Park, Y. J. (2007). The effects of spark 

anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics. 

Surface and Coatings Technology, 201(21), 8738- 8745.

 

Sul, Y. T., Johansson, C. B., Jeong, Y., & Albrektsson, T. (2001). The electrochemical oxide growth 

behaviour on titanium in acid and alkaline electrolytes. Medical engineering & physics, 23(5), 

329-346.

 

Sun, Q., Hu, T., Fan, H., Zhang, Y., & Hu, L. (2016). Thermal oxidation behavior and tribological 

properties of textured TC4 surface: Influence of thermal oxidation temperature and time. Tribology 

International, 94, 479-489.

 

Sun, T., Xue, N., Liu, C., Wang, C., & He, J. (2015). Bioactive (Si, O, N)/(Ti, O, N)/Ti composite 

coating on NiTi shape memory alloy for enhanced wear and

corrosion performance. Applied Surface Science, 356, 599-609.

 

Sutowo, C., Supriadi, S., Pramono, A. W., & Suharno, B. (2020). Microstructure, Mechanical 

Properties, and Corrosion Behavior of New βType Ti–Mo–Nb Based Alloys by Mn Addition for Implant 

Material. Eastern-European Journal of Enterprise Technologies, 1(12), 103.

 

Taniguchi, S., Uesaki, K., Zhu, Y. C., Matsumoto, Y., & Shibata, T. (1999). Influence of 

implantation of Al, Si, Cr or Mo ions on the oxidation behaviour of TiAl under thermal cycle 

conditions. Materials Science and Engineering: A, 266(1- 2), 267-275.

 

Tarakci, M., Korkmaz, K., Gencer, Y., & Usta, M. (2005). Plasma electrolytic surface carburizing  

and  hardening  of  pure  iron.  Surface  and  Coatings Technology, 199(2-3), 205-212.

 

Tsuji, N., Tanaka, S., & Takasugi, T. (2009). Effect of combined plasma-carburizing and 

deep-rolling on notch fatigue property of Ti-6Al-4V alloy. Materials Science and Engineering: A, 

499(1-2), 482-488.

 

Tsuji, N., Tanaka, S., & Takasugi, T. (2009). Effects of combined plasma-carburizing and 

shot-peening on fatigue and wear properties of Ti–6Al–4V alloy. Surface and Coatings Technology, 

203(10-11), 1400-1405.

 

Uwais, Z. A., Hussein, M. A., Samad, M. A., & Al-Aqeeli, N. (2017). Surface modification of 

metallic biomaterials for better tribological properties: A review. Arabian Journal for Science and 

Engineering, 42(11), 4493-4512.

 

Varlamov, V. P. (2016). Preparation and biocompatibility evaluation of pectin and chitosan cryogels 

for biomedical application, 1–37.

 

Velten, D., Biehl, V., Aubertin, F., Valeske, B., Possart, W., & Breme, J. (2002). Preparation of 

TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques 

and their characterization. Journal of Biomedical Materials Research: An Official Journal of The 

Society for Biomaterials and The Japanese Society for Biomaterials, 59(1), 18-28.

 

Wang, S., & Hu, J. (2014). Design of alignment-free cancelable fingerprint templates via curtailed 

circular convolution. Pattern Recognition, 47(3), 1321-1329.

 

Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., ... & Xie, Y. M. (2016). Topological 

design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A 

review. Biomaterials, 83, 127-141.

 

Weimer, A. W. (1997). Thermochemistry and kinetics. In Carbide, nitride and boride materials 

synthesis and processing (pp. 79-113). Springer, Dordrecht.

 

Wen, M., Wen, C., Hodgson, P., & Li, Y. (2014). Improvement of the biomedical properties of 

titanium using SMAT and thermal oxidation. Colloids and

surfaces B: biointerfaces, 116, 658-665.

 

Whitesides, G. M., & Wong, A. P. (2006). The intersection of biology and materials

science. MRS bulletin, 31(1), 19-27.

 

Williams,    D.    F.    (2008).    On    the    mechanisms    of biocompatibility. Biomaterials, 

29(20), 2941-2953.

 

Wu, S. K., Lee, C. Y., & Lin, H. C. (1997). A study of vacuum carburization of an equiatomic TiNi 

shape memory alloy. Scripta materialia, 37(6), 837-842.

 

Yetim, A. F. (2010). Investigation of wear behavior of titanium oxide films, produced by  anodic  

oxidation,  on  commercially  pure  titanium  in  vacuum conditions. Surface and Coatings 

Technology, 205(6), 1757-1763.

 

Yildiz, F., Yetim, A. F., Alsaran, A., & Efeoglu, I. (2009). Wear and corrosion behaviour of 

various surface treated medical grade titanium alloy in bio- simulated environment. Wear, 267(5-8), 

695-701.

 

Yin, X., Gotman, I., Klinger, L., & Gutmanas, E. Y. (2005). Formation of titanium carbide on 

graphite via powder immersion reaction assisted coating. Materials Science and Engineering: A, 

396(1-2), 107-114.

 

Zhang, B. B., Wang, B. L., Li, L., & Zheng, Y. F. (2011). Corrosion behavior of Ti– 5Ag  alloy  

with  and  without  thermal  oxidation  in  artificial  saliva solution. Dental materials, 27(3), 

214-220.

 

Zhang, D., Qi, Z., Wei, B., & Wang, Z. (2017). Low temperature thermal oxidation towards   

hafnium-coated   magnesium   alloy   for   biomedical application. Materials Letters, 190, 181-184.

 

Zhou, Y. L., & Luo, D. M. (2011). Corrosion behavior of Ti–Mo alloys cold rolled and heat treated. 

Journal of Alloys and Compounds, 509(21), 6267-6272.

 

Zhu,  . H., Cai, Z. B., Li, W., Yu, H. Y., & Zhou, Z. R. (2009). Fretting in prosthetic

devices related to human body. Tribology International, 42(9), 1360-1364.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.