UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
ADAS supports drivers with the required tools and augments to properly decide while
driving the car. It can safely control the car either by providing relevant information
around the car to the driver, or by taking control of the vehicle movement, partially or
completely. The purpose of this study is to develop an ADAS Data Acquisition Engine
based on heterogenous platform that utilises SoC and FPGA platforms. Furthermore,
the design methodology of heterogenous SoC-FPGA platform is developed to reduce
design complexity of heterogenous design flow. Furthermore, it unifies the hardware
and software design flows to reduce design cycle time required for development. The
proposed system was verified indoor to confirm system functionality. After that, the
proposed system was implemented on car for real-time system validation and testing.
The system was able to interact with LiDAR sensor, four ultrasonic sensors, and Inertial
Movement Unit (IMU) sensors. The LiDAR and ultrasonic were used for long distance,
and short distance measurements, respectively. The proposed system implemented on
FPGA consumed 15% of logic resources, and 76% of internal memory. The proposed
test plan has been derived based on case study reliability tests, system functionality
tests, data validation tests, and ADAS application functionality tests. Each test was
executed four times to ensure system reliability. The proposed system was able to detect
objects in short-range perspective through the ultrasonic sensor from 20 centimetres to
450 centimetres. Furthermore, the system was able to detect long-range distance
through the LiDAR from 4 meters, up to 70 meters. The car steering wheel orientation
was measured through the IMU sensor ranged from 58.8 angle (clockwise steering
movement) to -61.4 angle (anti-clockwise steering movement). The collected data was
postprocessed through Rapidminer studio software tool and was presented for further
Artificial Intelligence (AI) future applications. |
References |
Abid, F., Izeboudjen, N., Sahli, L., Lazib, D., Titri, S., Louiz, F., & Bakiri, M. (2018). Towards an open embedded system on chip for network applications. Latest Trends on Circuits, Systems and Signals.
Adafruit. (2020). MPU6050 6-DoF Accelerometer and Gyro. https://cdnlearn. adafruit.com/downloads/pdf/mpu6050-6-dof-accelerometer-andgyro. pdf?timestamp=1610817659
Alarcón, J., Salvador, R., Moreno, F., Cobos, P., & López, I. (2006). A new real-time hardware architecture for road line tracking using a particle filter. IEEE Industrial Electronics, IECON 2006-32nd Annual Conference On, 736–741.
Alsheikhy, A., & Said, F. (2019). Design of Embedded Vision System based on FPGASoC.
Anaya, J. J., Ponz, A., García, F., & Talavera, E. (2017). Motorcycle detection for ADAS through camera and V2V Communication, a comparative analysis of two modern technologies. Expert Systems with Applications, 77, 148–159.
Andrade, H., Lwakatare, L. E., Crnkovic, I., & Bosch, J. (2019). Software Challenges in Heterogeneous Computing: A Multiple Case Study in Industry. 2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), 148–155.
Andrade, H., Schroeder, J., & Crnkovic, I. (2019). Software deployment on heterogeneous platforms: A systematic mapping study. IEEE Transactions on Software Engineering.
Arndt, O. J., Träger, F. D., Mo\s s, T., & Blume, H. (2017). Portable Implementation of Advanced Driver-Assistance Algorithms on Heterogeneous Architectures. Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2017 IEEE International, 6–17.
B. Wu, H. Chiang, T. Lee, & J. Perng. (2008). The embedded driving-assistance system on Taiwan iTS-1. 2008 IEEE International Conference on Systems, Man and Cybernetics, 3382–3387. https://doi.org/10.1109/ICSMC.2008.4811820
Ball, J. E., & Tang, B. (2019). Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS). Multidisciplinary Digital Publishing Institute.
Batavia, P. H. (1999). Driver-adaptive lane departure warning systems. Carnegie Mellon University Pittsburgh,, USA.
Bauer, W., Holzinger, P., Rachuj, S., Haeublein, K., Reichenbach, M., & Fey, D. (2019). Evaluating HSA-Compatible Heterogeneous Systems for ADAS Applications. ARCS Workshop 2019; 32nd International Conference on Architecture of Computing Systems, 1–8.
Bécsi, T., Aradi, S., Fehér, Á., & Gáldi, G. (2017). Autonomous Vehicle Function Experiments with Low-Cost Environment Sensors. Transportation Research Procedia, 27, 333–340.
Bell, S., Pu, J., Hegarty, J., & Horowitz, M. (2018). Compiling algorithms for heterogeneous systems. Synthesis Lectures on Computer Architecture, 13(1), 1– 105.
Besta, M., Stanojevic, D., Licht, J. D. F., Ben-Nun, T., & Hoefler, T. (2019). Graph Processing on FPGAs: Taxonomy, Survey, Challenges. ArXiv Preprint ArXiv:1903.06697.
Bougharriou, S., Hamdaoui, F., & Mtibaa, A. (2016). Hardware architecture: Correlation-based approach for road sign detection. Advanced Technologies for Signal and Image Processing (ATSIP), 2016 2nd International Conference On, 247–251.
Brackenbury, L. E., Plana, L. A., & Pepper, J. (2010). System-on-chip design and implementation. IEEE Transactions on Education, 53(2), 272–281.
Brenot, F., Fillatreau, P., & Piat, J. (2015). FPGA based accelerator for visual features detection. Electronics, Control, Measurement, Signals and Their Application to Mechatronics (ECMSM), 2015 IEEE International Workshop Of, 1–6.
Burgio, P., Bertogna, M., Capodieci, N., Cavicchioli, R., Sojka, M., Houdek, P., Marongiu, A., Gai, P., Scordino, C., & Morelli, B. (2017). A software stack for next-generation automotive systems on many-core heterogeneous platforms. Microprocessors and Microsystems, 52, 299–311.
Calefato, C., Ferrarini, C., Landini, E., Kutila, M., & Quinteiro, E. G. (2016). The modularisation design approach applied to the ADAS domain: The DESERVE project experience. Transportation Research Procedia, 14, 2265–2273.
Campmany, V., Silva, S., Espinosa, A., Moure, J. C., Vázquez, D., & López, A. M. (2016). GPU-based pedestrian detection for autonomous driving. ArXiv Preprint ArXiv:1611.01642.
CHAABAN, K., SHAWKY, M., & CRUBILLE, P. (2009). A distributed embedded architecture for the evaluation of ADAS systems. IFAC Proceedings Volumes, 42(15), 237–244.
Chishiro, H., Suito, K., Ito, T., Maeda, S., Azumi, T., Funaoka, K., & Kato, S. (2019). Towards Heterogeneous Computing Platforms for Autonomous Driving. 2019 IEEE International Conference on Embedded Software and Systems (ICESS), 1–8.
D. Poddar, P. Swami, S. Nagori, P. Viswanath, M. Mathew, D. Kumar, A. Jain, & S. Jagannathan. (2017). Real time Structure from Motion for Driver Assistance System. 2017 IEEE International Conference on Consumer Electronics (ICCE), 231–232. https://doi.org/10.1109/ICCE.2017.7889295
Danowitz, A., Kelley, K., Mao, J., Stevenson, J. P., & Horowitz, M. (2012). CPU DB: Recording microprocessor history. Queue, 10(4), 10–27.
Dell. (2019). Dell EMC Isilon: Deep Learning Infrastructure for Autonomous Driving. Dell EMC Isilon. https://www.delltechnologies.com/enca/ collaterals/unauth/whitepapers/ solutions/h17918_deep_learning_infrastructure_for_autonomous_drivi ng.pdf
Diniz, W. F., Frémont, V., Fantoni, I., & Nóbrega, E. G. (2017). An FPGA-based architecture for embedded systems performance acceleration applied to Optimum-Path Forest classifier. Microprocessors and Microsystems, 52, 261– 271.
Du, S., Huang, T., Hou, J., Song, S., & Song, Y. (2019). FPGA based acceleration of game theory algorithm in edge computing for autonomous driving. Journal of Systems Architecture, 93, 33–39.
Faisal, I. A., Purboyo, T. W., & Ansori, A. S. R. (2020). A Review of Accelerometer Sensor and Gyroscope Sensor in IMU Sensors on Motion Capture. Journal of Engineering and Applied Sciences, 15(3), 826–829.
Fan, R., Prokhorov, V., & Dahnoun, N. (2016). Faster-than-real-time linear lane detection implementation using SoC DSP TMS320C6678. Imaging Systems and Techniques (IST), 2016 IEEE International Conference On, 306–311.
Fernandes, L. C., Souza, J. R., Pessin, G., Shinzato, P. Y., Sales, D., Mendes, C., Prado, M., Klaser, R., Magalhaes, A. C., & Hata, A. (2014). CaRINA intelligent robotic car: Architectural design and applications. Journal of Systems Architecture, 60(4), 372–392.
Forsberg, B., Palossi, D., Marongiu, A., & Benini, L. (2017). GPU-Accelerated Real- Time Path Planning and the Predictable Execution Model. Procedia Computer Science, 108, 2428–2432.
Galko, C., Rossi, R., & Savatier, X. (2014). Vehicle-hardware-in-the-loop system for adas prototyping and validation. Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV), 2014 International Conference On, 329–334.
Garmin. (2016). V3 Operation Manual and Technical Specifications. Garmin: Olathe, KS, USA, 1–14.
Gehrig, S., Schneider, N., Stalder, R., & Franke, U. (2017). Stereo vision during adverse weather—Using priors to increase robustness in real-time stereo vision. Image and Vision Computing, 68, 28–39.
Gerstlauer, A., Haubelt, C., Pimentel, A. D., Stefanov, T. P., Gajski, D. D., & Teich, J. (2009). Electronic system-level synthesis methodologies. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(10), 1517– 1530.
Giesemann, F., Payá-Vayá, G., Blume, H., Limmer, M., & Ritter, W. (2014). A comprehensive ASIC/FPGA prototyping environment for exploring embedded processing systems for advanced driver assistance applications. Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV), 2014 International Conference On, 314–321.
Goswami, P., Chitnis, K., Jadav, B., Kapania, A., & Sivasankaran, S. (2017). Software framework for runtime application monitoring of fail-safe multi-processor ADAS SoCs. 2017 IEEE International Conference on Consumer Electronics (ICCE), 39–42.
Greaves, D. J. (2011). System on Chip Design and Modelling. University of Cambridge Computer Laboratory Lecture Notes, 130.
Gruyer, D., Belaroussi, R., Li, X., Lusetti, B., Revilloud, M., & Glaser, S. (2015). PerSEE: A central sensors fusion electronic control unit for the development of perception-based ADAS. Machine Vision Applications (MVA), 2015 14th IAPR International Conference On, 250–254.
Gruyer, D., Magnier, V., Hamdi, K., Claussmann, L., Orfila, O., & Rakotonirainy, A. (2017). Perception, information processing and modeling: Critical stages for autonomous driving applications. Annual Reviews in Control, 44, 323–341.
Hammond, M., Qu, G., & Rawashdeh, O. A. (2015). Deploying and scheduling vision based advanced driver assistance systems (ADAS) on heterogeneous multicore embedded platform. Frontier of Computer Science and Technology (FCST), 2015 Ninth International Conference On, 172–177.
Hamza, B., Abdelhakim, K., & Brahim, C. (2012). FPGA design of a real-time obstacle detection system using stereovision. Microelectronics (ICM), 2012 24th International Conference On, 1–4.
Harada, K., Kanazawa, K., & Yasunaga, M. (2019). FPGA-Based Object Detection for Autonomous Driving System. 2019 International Conference on Field- Programmable Technology (ICFPT), 465–468.
Heimberger, M., Horgan, J., Hughes, C., McDonald, J., & Yogamani, S. (2017). Computer vision in automated parking systems: Design, implementation and challenges. Image and Vision Computing, 68, 88–101.
Hernandez-Juarez, D., Chacón, A., Espinosa, A., Vázquez, D., Moure, J. C., & López, A. M. (2016). Embedded real-time stereo estimation via semi-global matching on the GPU. Procedia Computer Science, 80, 143–153.
Hiltschera, J., Akulaa, S. P., Streiterb, R., & Wanielika, G. (2018). A flexible automotive systems architecture for next generation ADAS.
Huang, B. K., Vann, R. G. L., Freethy, S., Myers, R. M., Naylor, G., Sharples, R. M., & Shevchenko, V. F. (2012). FPGA-based embedded Linux technology in fusion: The MAST microwave imaging system. Fusion Engineering and Design, 87(12), 2106–2111.
Hwang, S., & Lee, Y. (2016). FPGA-based real-time lane detection for advanced driver assistance systems. Circuits and Systems (APCCAS), 2016 IEEE Asia Pacific Conference On, 218–219.
Hwu, W.-M. W. (2016). Chapter 1—Introduction. In W. W. Hwu (Ed.), Heterogeneous System Architecture (pp. 1–5). Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-800386-2.00009-2
Iagnemma, K., & Buehler, M. (2006). Editorial for Journal of Field Robotics—Special issue on the DARPA grand challenge. Journal of Field Robotics, 23(9), 655– 656.
Intel. (2009). Standard Cell ASIC to FPGA Design Methodology and Guidelines. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ an/an311.pdf
Intel. (2017). Quartus Prime standard edition handbook volume 1: Design and synthesis. USA.
Intel. (2020). AN 307: Intel® FPGA Design Flow for Xilinx Users. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ an/an307.pdf
Intel. (2021a). Intel FPGA and Programmable Devices. https://www.intel.com/content/www/us/en/products/programmable.html
Intel. (2021b). Skylake (microarchitecture). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Skylake_(microarchitecture)&oldid =998421085
Intel Corporation. (2014). Booting and Configuration Introduction. https://www.intel.cn/content/dam/www/programmable/us/en/pdfs/literature/hb /arria-10/a10_5400a.pdf
Intel Corporation. (2015). Instantiating the Nios II Processor. Instantiating the Nios II Processor
Intel PSG website. (2020). https://www.intel.com/content/www/us/en/programmable/products/boards_an d_kits/dev-kits/altera/kit-cyclone-v-soc.html
International Organization for Standardization. (2011). ISO/IEC/IEEE 42010:2011 Systems and Software Engineering—Architecture Description.
J. Rettkowski, A. Boutros, & D. Göhringer. (2015). Real-time pedestrian detection on a xilinx zynq using the HOG algorithm. 2015 International Conference on ReConFigurable Computing and FPGAs (ReConFig), 1–8. https://doi.org/10.1109/ReConFig.2015.7393339
Jian-feng, L., Chun-Yi, W., & Jie, H. (2012). A High Performance Data Storage Method for Embedded Linux Real-time Database in Power Systems. Energy Procedia, 16, 883–888.
Józwiak, L. (2017). Advanced mobile and wearable systems. Microprocessors and Microsystems, 50, 202–221.
K. Huang, B. Hu, L. Chen, A. Knoll, & Z. Wang. (2018). ADAS on COTS with OpenCL: A Case Study with Lane Detection. IEEE Transactions on Computers, 67(4), 559–565. https://doi.org/10.1109/TC.2017.2759203
Karan, S., Sudarshan, S., Aditya, S., Rameez, S., & Apurva, P. (2018). Component Measurement Using Ultrasonic Sensor. International Research Journal of Engineering and Technology (IRJET), 5(5). https://www.irjet.net/archives/V5/i5/IRJET-V5I5193.pdf
Khan, J., Tatkeu, C., Deloof, P., & Niar, S. (2011). Data association techniques for advanced driver assistance systems using embedded soft-core processors. ITS Telecommunications (ITST), 2011 11th International Conference On, 51–55.
Kocic, O., Simic, A., Bjelica, M. Z., & Maruna, T. (2016). Optimization of driver monitoring ADAS algorithm for heterogeneous platform. 2016 24th Telecommunications Forum (TELFOR), 1–4.
Komorkiewicz, M., Turek, K., Skruch, P., Kryjak, T., & Gorgon, M. (2016). FPGAbased Hardware-in-the-Loop environment using video injection concept for camera-based systems in automotive applications. Design and Architectures for Signal and Image Processing (DASIP), 2016 Conference On, 183–190.
Kudo, Y., Takada, A., Ishida, Y., & Izumi, T. (2019). An SoC-FPGA-Based Micro UGV with Localization and Motion Planning. 2019 International Conference on Field-Programmable Technology (ICFPT), 469–472.
Kukkala, V. K., Tunnell, J., Pasricha, S., & Bradley, T. (2018). Advanced driverassistance systems: A path toward autonomous vehicles. IEEE Consumer Electronics Magazine, 7(5), 18–25.
Kwon, S., & Lee, H.-J. (2016). Dense stereo-based real-time ROI generation for onroad obstacle detection. SoC Design Conference (ISOCC), 2016 International, 179–180.
Kyriazis, G. (2012). Heterogeneous system architecture: A technical review. AMD Fusion Developer Summit, 21.
Lee, K. J., Bong, K., Kim, C., Jang, J., Lee, K.-R., Lee, J., Kim, G., & Yoo, H.-J. (2017). A 502-GOPS and 0.984-mW dual-mode intelligent ADAS SoC with real-time semiglobal matching and intention prediction for smart automotive black box system. IEEE Journal of Solid-State Circuits, 52(1), 139–150.
Lee, S., Son, H., Choi, J. C., & Min, K. (2012). HOG feature extractor circuit for realtime human and vehicle detection. TENCON 2012-2012 IEEE Region 10 Conference, 1–5.
Lee, S.-S., Lee, E., Hwang, Y., & Jang, S.-J. (2016). Low-complexity hardware architecture of traffic sign recognition with IHSL color space for advanced driver assistance systems. Consumer Electronics-Asia (ICCE-Asia), IEEE International Conference On, 1–2.
Li, L., Fajar, E., Kurimoto, K., & Goto, S. (2005). A mixed design flow for FPGA prototyping of design with scan circuits. 2005 6th International Conference on ASIC, 2, 1127–1130.
Lin, I.-A., Lee, T.-Y., Chen, C.-M., & Liu, S.-Y. (2017). FPGA-based fast rain removal system using orientation-adaptive non-local mean filter. Consumer Electronics- Taiwan (ICCE-TW), 2017 IEEE International Conference On, 39–40.
Lohani, B., & Ghosh, S. (2017). Airborne LiDAR technology: A review of data collection and processing systems. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(4), 567–579.
Lopes, I. C., Benevenuti, F., Kastensmidt, F. L., Susin, A. A., & Rech, P. (2018). Reliability analysis on case-study traffic sign convolutional neural network on APSoC. Test Symposium (LATS), 2018 IEEE 19th Latin-American, 1–6.
Lopez, D., & Clairet, M. (2016). Fail silent and robust power management architectures to enable autonomous driving embedded systems. 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), 1–6.
Louis, L. (2016). WORKING PRINCIPLE OF ARDUINO AND U SING IT. International Journal of Control, Automation, Communication and Systems (IJCACS), 1(2), 21–29.
Lyytinen, H., Haataja, K., & Toivanen, P. (2009). Designing and implementing an embedded linux for limited resource devices. 2009 Eighth International Conference on Networks, 18–23.
Mandal, D. K., Sankaran, J., Gupta, A., Castille, K., Gondkar, S., Kamath, S., Sundar, P., & Phipps, A. (2014). An Embedded Vision Engine (EVE) for automotive vision processing. Circuits and Systems (ISCAS), 2014 IEEE International Symposium On, 49–52.
Martinez, L. A., & Marques, E. (2016). A hardware/software codesign framework for vision-based ADAS. Field Programmable Logic and Applications (FPL), 2016 26th International Conference On, 1–2.
Martínez-Barberá, H., & Herrero-Pérez, D. (2014). Multilayer distributed intelligent control of an autonomous car. Transportation Research Part C: Emerging Technologies, 39, 94–112.
Mensch, W. D., & Silage, D. A. (2000). System-on-chip design methodology in engineering education. International Conference on Engineering Education.
Milõs, J., Milan, V., Boris, D., & Milija, S. (2013). Using RapidMiner for Research: Experimental Evaluation of Learners. RapidMiner: Data Mining Use Cases and Business Analytics Applications, 439.
Mirnig, A. G., Gärtner, M., Laminger, A., Meschtscherjakov, A., Trösterer, S., Tscheligi, M., McCall, R., & McGee, F. (2017). Control transition interfaces in semiautonomous vehicles: A categorization framework and literature analysis. Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 209–220.
Mody, M., Sanghvi, H., Nandan, N., Dabral, S., Allu, R., Sagar, R., Chitnis, K., Jones, J., Jadhav, B., & Shivalingappa, S. (2017). A 216 gops flexible wdr image processor for adas soc. 2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS), 1–2.
Nvidia. (2018). UNMATCHED POWER. UNMATCHED CREATIVE FREEDOM. NVIDIA QUADRO P6000. https://www.nvidia.com/content/dam/enzz/ Solutions/design-visualization/productspage/quadro/quadrodesktop/ quadro-pascal-p6000-data-sheet-us-nv-704590-r1.pdf
Nvidia. (2020). NVIDIA DRIVE AGX. https://www.nvidia.com/en-us/self-drivingcars/ drive-platform/hardware/
O. Abid, Q. Cabannes, & B. Senouci. (2018). Supervisor and control investigation in smart/autonomous vehicles: Environment recognition and objects detection ADAS application case study. 2018 11th International Symposium on Mechatronics and Its Applications (ISMA), 1–7. https://doi.org/10.1109/ISMA.2018.8330135
Okamoto, K., & Tsiotras, P. (2019). Data-driven human driver lateral control models for developing haptic-shared control advanced driver assist systems. Robotics and Autonomous Systems, 114, 155–171.
Okuda, R., Kajiwara, Y., & Terashima, K. (2014). A survey of technical trend of ADAS and autonomous driving. Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test, 1–4.
P. Swami, A. Jain, P. Goswami, K. Chitnis, A. Dubey, & P. Chaudhari. (2017). High performance automotive radar signal processing on TI’s TDA3X platform. 2017 IEEE Radar Conference (RadarConf), 1317–1320. https://doi.org/10.1109/RADAR.2017.7944409
P. Yadav & J. Guddeti. (2017). A methodology for validation of system level synchronization in different interface standards for automotive microcontroller. 2017 2nd IEEE International Conference on Intelligent Transportation Engineering (ICITE), 67–71. https://doi.org/10.1109/ICITE.2017.8056883
Patel, J. J., Reddy, N., Kumari, P., Rajpal, R., Pujara, H., Jha, R., & Kalappurakkal, P. (2014). Embedded Linux platform for data acquisition systems. Fusion Engineering and Design, 89(5), 684–688.
Peng, J., Tian, L., Jia, X., Guo, H., Xu, Y., Xie, D., Luo, H., Shan, Y., & Wang, Y. (2019). Multi-task ADAS system on FPGA. 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), 171–174.
Purkayastha, A. A., Shiddhibhavi, S. A., & Tabkhi, H. (2018). Taxonomy of spatial parallelism on fpgas for massively parallel applications. 2018 31st IEEE International System-on-Chip Conference (SOCC), 55–60.
R. Bushey, H. Tabkhi, & G. Schirner. (2013). Flexible function-level acceleration of embedded vision applications using the Pipelined Vision Processor. 2013 Asilomar Conference on Signals, Systems and Computers, 1447–1452. https://doi.org/10.1109/ACSSC.2013.6810535
R. Saussard, B. Bouzid, M. Vasiliu, & R. Reynaud. (2015). Towards an Automatic Prediction of Image Processing Algorithms Performances on Embedded Heterogeneous Architectures. 2015 44th International Conference on Parallel Processing Workshops, 27–36. https://doi.org/10.1109/ICPPW.2015.14
Rahul, K. (2016). On-Road Intelligent Vehicles. Elsevier.
Ranft, B., Schoenwald, T., & Kitt, B. (2011). Parallel matching-based estimation-a case study on three different hardware architectures. Intelligent Vehicles Symposium (IV), 2011 IEEE, 1060–1067.
Rifenbark, S. (2014). Yocto Project Development Manual. https://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.pdf
Rupp, A., Tranninger, M., Wallner, R., Zubaca, J., Steinberger, M., & Horn, M. (2019). Fast and low-cost testing of advanced driver assistance systems using smallscale vehicles. IFAC-PapersOnLine, 52(5), 34–39.
Sahlbach, H., Whitty, S., Bende, O., & Ernst, R. (2010). A Scalable, High-Performance Motion Estimation Application for a Weakly-Programmable FPGA Architecture. Field Programmable Logic and Applications (FPL), 2010 International Conference On, 15–18.
Sally, G. (2010). Pro Linux embedded systems. Apress.
Salvador, O., & Angolini, D. (2014). Embedded Linux Development with Yocto Project. Packt Publishing Ltd.
Saussard, R., Bouzid, B., Vasiliu, M., & Reynaud, R. (2015a). Optimal performance prediction of ADAS algorithms on embedded parallel architectures. High Performance Computing and Communications (HPCC), 2015 IEEE 7th International Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE 12th International Conferen on Embedded Software and Systems (ICESS), 2015 IEEE 17th International Conference On, 213–218.
Saussard, R., Bouzid, B., Vasiliu, M., & Reynaud, R. (2015b). The embeddability of lane detection algorithms on heterogeneous architectures. Image Processing (ICIP), 2015 IEEE International Conference On, 4694–4697.
Schaub, A., de la Cruz, J. C. R., & Burschka, D. (2014). Autonomous parking using a highly maneuverable robotic vehicle. IFAC Proceedings Volumes, 47(3), 2640– 2645.
Schumacher, F., & Greiner, T. (2014). Matching cost computation algorithm and high speed fpga architecture for high quality real-time semi global matching stereo vision for road scenes. Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International Conference On, 3064–3069.
Schwiegelshohn, F., Gierke, L., & Hübner, M. (2015). FPGA based traffic sign detection for automotive camera systems. ReCoSoC, 1–6.
Schwiegelshohn, F., & Hübner, M. (2014). Design of an attention detection system on the zynq-7000 soc. ReConFigurable Computing and FPGAs (ReConFig), 2014 International Conference On, 1–6.
Senouci, B., Rouis, H., Han, D.-S., & Bourennanea, E. (2017). A hardware skinsegmentation IP for vision based smart ADAS through an FPGA prototyping. 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), 197–199.
Shi, W., Alawieh, M. B., Li, X., & Yu, H. (2017). Algorithm and hardware implementation for visual perception system in autonomous vehicle: A survey. Integration, 59, 148–156. https://doi.org/10.1016/j.vlsi.2017.07.007
Shibahara, S. (2018). Functional safety SoC for autonomous driving. 2018 IEEE Custom Integrated Circuits Conference (CICC), 1–8.
Soltani, A., & Assadian, F. (2016). A Hardware-in-the-Loop Facility for Integrated Vehicle Dynamics Control System Design and Validation. IFACPapersOnLine, 49(21), 32–38.
Spagnolo, F., Perri, S., Frustaci, F., & Corsonello, P. (2018). Connected component analysis for traffic sign recognition embedded processing systems. 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 749–752.
Tan, C. Y., Ismail, N., Ooi, C. Y., & Hon, J. Y. (2019). Accelerating Extreme Learning Machine on FPGA by Hardware Implementation of Given Rotation-QRD. International Journal of Integrated Engineering, 11(7), 31–39.
Tanaka, T., Ikeno, I., Tsuruoka, R., Kuchiba, T., Liao, W., & Mitsuyama, Y. (2019). Development of Autonomous Driving System Using Programmable SoCs. 2019 International Conference on Field-Programmable Technology (ICFPT), 453– 456.
Terasic. (2017a). DE10-Nano SoC User Manual. https://www.terasic.com.tw/cgibin/ page/archive_download.pl?Language=English&No=1046&FID=f1f656bb 5f040121c36f2f93f6b107ff
Terasic. (2017b). Terasic—SoC Platform—Cyclone—DE10-Nano Kit. https://www.terasic.com.tw/cgibin/ page/archive.pl?Language=English&CategoryNo=205&No=1046&PartNo =2
TI. (2013). Advanced Driver Assistance (ADAS) Solutions Guide. https://uk.farnell.com/wcsstore/ExtendedSitesCatalogAssetStore/cms/asset/im ages/europe/common/applications/automotive/pdf/ti-adas-solution-guide.pdf
TI. (2019). Ultrasonic Sensing Basics. https://www.ti.com/lit/an/slaa907c/slaa907c.pdf?ts=1610556385347&ref_url= https%253A%252F%252Fwww.google.com%252F
Vahidi, A., & Eskandarian, A. (2003). Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems, 4(3), 143–153.
Vanholme, B., Gruyer, D., Lusetti, B., Glaser, S., & Mammar, S. (2012). Highly automated driving on highways based on legal safety. IEEE Transactions on Intelligent Transportation Systems, 14(1), 333–347.
Velez, G., Cortés, A., Nieto, M., Vélez, I., & Otaegui, O. (2015). A reconfigurable embedded vision system for advanced driver assistance. Journal of Real-Time Image Processing, 10(4), 725–739. https://doi.org/10.1007/s11554-014-0412-3
Verma, R. K., Sukumar, N., & Sumathi, P. (2019). Vision-Based Estimation of Range and Direction of Preceding Vehicle for Advanced Driver Assistance Systems. 2019 IEEE 16th India Council International Conference (INDICON), 1–4. https://doi.org/10.1109/INDICON47234.2019.9030272
Viswanath, P., Chitnis, K., Swami, P., Mody, M., Shivalingappa, S., Nagori, S., Mathew, M., Desappan, K., Jagannathan, S., Poddar, D., Jain, A., Garud, H., Appia, V., Mangla, M., & Dabral, S. (2016, June). A Diverse Low Cost High Performance Platform for Advanced Driver Assistance System (ADAS) Applications. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.
Wang, X., Huang, K., & Knoll, A. (2019). Performance Optimisation of Parallelized ADAS Applications in FPGA-GPU Heterogeneous Systems: A Case Study With Lane Detection. IEEE Transactions on Intelligent Vehicles, 4(4), 519– 531.
Wang, Y., & Nouta, R. (2004). System design methodologies–High level synthesis and a VHDL implementation of a practical scheme for UWB communication [PhD Thesis]. Citeseer.
What is FPGA. (2020). https://www.intel.com/content/www/us/en/products/programmable/fpga/newto- fpgas/resource-center/overview.html
World Health Organization Report. (2020). https://www.who.int/news-room/factsheets/ detail/road-traffic-injuries
Wu, T., Liu, W., & Jin, Y. (2019). An End-to-End solution to Autonomous Driving based on Xilinx FPGA. 2019 International Conference on Field-Programmable Technology (ICFPT), 427–430.
Yadav, P., & Guddeti, J. (2016). FPGA based validation technique for Advanced Driver Assistance System. Embedded Computing and System Design (ISED), 2016 Sixth International Symposium On, 159–165.
Yao, Y., Zhang, Z., Yang, Z., Wang, J., & Lai, J. (2017). FPGA-based convolution neural network for traffic sign recognition. ASIC (ASICON), 2017 IEEE 12th International Conference On, 891–894.
Yi-Yuan Chen, Yuan-Yao Tu, Cheng-Hsiang Chiu, & Y. Chen. (2009). An embedded system for vehicle surrounding monitoring. 2009 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), 2, 92–95. https://doi.org/10.1109/PEITS.2009.5406797
Yoshizawa, A., & Iwasaki, H. (2018). Influence of a Driver’s Mindset on Understanding Driver-Assist Systems. 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), 393–400.
Zaimovic, S., Šiljak, H., & Jokic, D. (2018). Artificial Colloquist: Treating Social Anxiety Disorder Using Altera FPGA. IFAC-PapersOnLine, 51(6), 336–341.
Zhang, J., Wang, F.-Y., Wang, K., Lin, W.-H., Xu, X., & Chen, C. (2011). Data-driven intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1624–1639.
Zhang, X., Wei, X., Sang, Q., Chen, H., & Xie, Y. (2020). An Efficient FPGA-Based Implementation for Quantized Remote Sensing Image Scene Classification Network. Electronics, 9(9), 1344.
Zhong, G., Niar, S., Prakash, A., & Mitra, T. (2016). Design of multiple-target tracking system on heterogeneous system-on-chip devices. IEEE Transactions on Vehicular Technology, 65(6), 4802–4812.
Zhou, Y., Chen, Z., & Huang, X. (2016). A system-on-chip FPGA design for real-time traffic signal recognition system. Circuits and Systems (ISCAS), 2016 IEEE International Symposium On, 1778–1781.
Ziener, D. (2018). Improving Reliability, Security, and Efficiency of Reconfigurable Hardware Systems. ArXiv Preprint ArXiv:1809.11156.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |