UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :2073-4360
Main Author :Suriani Abu Bakar
Title :Functional properties of kenaf bast fibre anhydride modification enhancement with bionanocarbon in polymer nanobiocomposites
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
The miscibility between hydrophilic biofibre and hydrophobic matrix has been a challenge in developing polymer biocomposite. This study investigated the anhydride modification effect of propionic and succinic anhydrides on Kenaf fibre’s functional properties in vinyl ester bionanocomposites. Bionanocarbon from oil palm shell agricultural wastes enhanced nanofiller properties in the fibre-matrix interface via the resin transfer moulding technique. The succinylated fibre with the addition of the nanofiller in vinyl ester provided great improvement of the tensile, flexural, and impact strengths of 92.47 ± 1.19 MPa, 108.34 ± 1.40 MPa, and 8.94 ± 0.12 kJ m−2, respectively than the propionylated fibre. The physical, morphological, chemical structural, and thermal properties of bionanocomposites containing 3% bionanocarbon loading showed better enhancement properties. This enhancement was associated with the effect of the anhydride modification and the nanofiller’s homogeneity in bionanocarbon-Kenaf fibre-vinyl ester bonding. It appears that Kenaf fibre modified with propionic and succinic anhydrides incorporated with bionanocarbon can be successfully utilised as reinforcing materials in vinyl ester matrix. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

References

Abdul Khalil, H. P. S., & Suraya, N. L. (2011). Anhydride modification of cultivated kenaf bast fibers: Morphological, spectroscopic, and thermal studies. BioResources, 6(2), 1122-1135. Retrieved from www.scopus.com

Abdul Khalil, H. P. S., Suraya, N. L., Atiqah, N., Jawaid, M., & Hassan, A. (2013). Mechanical and thermal properties of chemical treated kenaf fibres reinforced polyester composites. Journal of Composite Materials, 47(26), 3343-3350. doi:10.1177/0021998312465026

Ahmed, A. S., Islam, M. S., Hassan, A., Mohamad Haafiz, M. K., Islam, K. N., & Arjmandi, R. (2014). Impact of succinic anhydride on the properties of jute fiber/polypropylene biocomposites. Fibers and Polymers, 15(2), 307-314. doi:10.1007/s12221-014-0307-8

Alfatah, T., Mistar, E. M., & Supardan, M. D. (2021). Porous structure and adsorptive properties of activated carbon derived from bambusa vulgaris striata by two-stage KOH/NaOH mixture activation for Hg2+ removal. Journal of Water Process Engineering, 43 doi:10.1016/j.jwpe.2021.102294

Ali, S., Rehman, S. A. U., Shah, I. A., Farid, M. U., An, A. K., & Huang, H. (2019). Efficient removal of zinc from water and wastewater effluents by hydroxylated and carboxylated carbon nanotube membranes: Behaviors and mechanisms of dynamic filtration. Journal of Hazardous Materials, 365, 64-73. doi:10.1016/j.jhazmat.2018.10.089

Arun Prakash, V. R., & Viswanthan, R. (2019). Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced azadirachta-indica blended epoxy multi-hybrid bio composite. Composites Part A: Applied Science and Manufacturing, 118, 317-326. doi:10.1016/j.compositesa.2019.01.008

Bai, L., Li, Z., Zhao, S., & Zheng, J. (2018). Covalent functionalization of carbon nanotubes with hydroxyl-terminated polydimethylsiloxane to enhance filler dispersion, interfacial adhesion and performance of poly(methylphenylsiloxane) composites. Composites Science and Technology, 165, 274-281. doi:10.1016/j.compscitech.2018.07.006

Bari, E., Sistani, A., Morrell, J. J., Pizzi, A., Akbari, M. R., & Ribera, J. (2021). Current strategies for the production of sustainable biopolymer composites. Polymers, 13(17) doi:10.3390/polym13172878

Beck, G., Strohbusch, S., Larnøy, E., Militz, H., & Hill, C. (2017). Accessibility of hydroxyl groups in anhydride modified wood as measured by deuterium exchange and saponification. Holzforschung, 72(1), 17-23. doi:10.1515/hf-2017-0059

Behnam, R., Roghani-Mamaqani, H., & Salami-Kalajahi, M. (2019). Preparation of carbon nanotube and polyurethane-imide hybrid composites by sol–gel reaction. Polymer Composites, 40(S2), E1903-E1909. doi:10.1002/pc.25193

Birnin-yauri, A. U., Ibrahim, N. A., Zainuddin, N., Abdan, K., Then, Y. Y., & Chieng, B. W. (2017). Effect of maleic anhydride-modified poly(lactic acid) on the properties of its hybrid fiber biocomposites. Polymers, 9(5) doi:10.3390/polym9050165

Cacua, K., Ordoñez, F., Zapata, C., Herrera, B., Pabón, E., & Buitrago-Sierra, R. (2019). Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583 doi:10.1016/j.colsurfa.2019.123960

Cavdar, A. D., Mengeloglu, F., Karakus, K., & Tomak, E. D. (2014). Effect of chemical modification with maleic, propionic, and succinic anhydrides on some properties of wood flour filled HDPE composites. BioResources, 9(4), 6490-6503. doi:10.15376/biores.9.4.6490-6503

Chee, S. S., Jawaid, M., Sultan, M. T. H., Alothman, O. Y., & Abdullah, L. C. (2020). Effects of nanoclay on physical and dimensional stability of Bamboo/Kenaf/nanoclay reinforced epoxy hybrid nanocomposites. Journal of Materials Research and Technology, 9(3), 5871-5880. doi:10.1016/j.jmrt.2020.03.114

Dehury, J., Nayak, S., & Mohanty, J. R. (2021). Comprehensive characterization sea purslane (sesuvium portulacastrum) fiber and the effect of surface modifications on physical, mechanical and thermal properties. Journal of Natural Fibers, doi:10.1080/15440478.2021.1904476

Emam, H. E., & Shaheen, T. I. (2019). Investigation into the role of surface modification of cellulose nanocrystals with succinic anhydride in dye removal. Journal of Polymers and the Environment, 27(11), 2419-2427. doi:10.1007/s10924-019-01533-9

Fan, W. -., Ding, Y., Tu, Z. -., Huang, K. -., Huang, C. -., & Yeh, J. -. (2018). Enhancement on ultimate tensile properties of ultrahigh molecular weight polyethylene composite fibers filled with activated nanocarbon particles with varying specific surface areas. Polymer Engineering and Science, 58(6), 980-990. doi:10.1002/pen.24655

Gallardo-Cervantes, M., González-García, Y., Pérez-Fonseca, A. A., González-López, M. E., Manríquez-González, R., Rodrigue, D., & Robledo-Ortíz, J. R. (2021). Biodegradability and improved mechanical performance of polyhydroxyalkanoates/agave fiber biocomposites compatibilized by different strategies. Journal of Applied Polymer Science, 138(15) doi:10.1002/app.50182

Haske-Cornelius, O., Bischof, S., Beer, B., Jimenez Bartolome, M., Olatunde Olakanmi, E., Mokoba, M., . . . Nyanhongo, G. S. (2019). Enzymatic synthesis of highly flexible lignin cross-linked succinyl-chitosan hydrogels reinforced with reed cellulose fibres. European Polymer Journal, 120 doi:10.1016/j.eurpolymj.2019.08.028

Herrera-Ramírez, L. C., Cano, M., & Guzman de Villoria, R. (2017). Low thermal and high electrical conductivity in hollow glass microspheres covered with carbon nanofiber–polymer composites. Composites Science and Technology, 151, 211-218. doi:10.1016/j.compscitech.2017.08.020

Jahandideh, A., Moini, N., Bajgholi, S., Zohuriaan-Mehr, M. J., & Kabiri, K. (2020). Making vinyl ester resin greener: Succinic acid–glycerol-derived reactive diluent as an alternative to styrene. Journal of Applied Polymer Science, 137(38) doi:10.1002/app.49144

Jawaid, M., Abdul Khalil, H. P. S., Hassan, A., & Abdallah, E. (2012). Bi-layer hybrid biocomposites: Chemical resistant and physical properties. BioResources, 7(2), 2344-2355. doi:10.15376/biores.7.2.2344-2355

Jawaid, M., Khalil, H. P. S. A., Bakar, A. A., & Khanam, P. N. (2011). Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites. Materials and Design, 32(2), 1014-1019. doi:10.1016/j.matdes.2010.07.033

Jiao, W., Liu, W., Yang, F., Jiang, L., Jiao, W., & Wang, R. (2017). Improving the interfacial property of carbon fiber/vinyl ester resin composite by grafting modification of sizing agent on carbon fiber surface. Journal of Materials Science, 52(24), 13812-13828. doi:10.1007/s10853-017-1485-8

Jung, J. S., Song, K. H., & Kim, S. H. (2021). Biodegradable acetylated kenaf fiber composites. Fibers Polym, 2021, 1-7. Retrieved from www.scopus.com

Khan, A., Asiri, A. M., Jawaid, M., Saba, N., & Inamuddin. (2020). Effect of cellulose nano fibers and nano clays on the mechanical, morphological, thermal and dynamic mechanical performance of kenaf/epoxy composites. Carbohydrate Polymers, 239 doi:10.1016/j.carbpol.2020.116248

Le Phuong, H. A., Izzati Ayob, N. A., Blanford, C. F., Mohammad Rawi, N. F., & Szekely, G. (2019). Nonwoven membrane supports from renewable resources: Bamboo fiber reinforced poly(lactic acid) composites. ACS Sustainable Chemistry and Engineering, 7(13), 11885-11893. doi:10.1021/acssuschemeng.9b02516

Leszczyńska, A., Radzik, P., Szefer, E., Mičušík, M., Omastová, M., & Pielichowski, K. (2019). Surface modification of cellulose nanocrystals with succinic anhydride. Polymers, 11(5) doi:10.3390/polym11050866

Li, B., Dong, S., Wu, X., Wang, C., Wang, X., & Fang, J. (2017). Anisotropic thermal property of magnetically oriented carbon nanotube/graphene polymer composites. Composites Science and Technology, 147, 52-61. doi:10.1016/j.compscitech.2017.05.006

Li, N., Ma, X., Zha, Q., Kim, K., Chen, Y., & Song, C. (2011). Maximizing the number of oxygen-containing functional groups on activated carbon by using ammonium persulfate and improving the temperature-programmed desorption characterization of carbon surface chemistry. Carbon, 49(15), 5002-5013. doi:10.1016/j.carbon.2011.07.015

Mahjoub, R., Yatim, J. M., Mohd Sam, A. R., & Raftari, M. (2014). Characteristics of continuous unidirectional kenaf fiber reinforced epoxy composites. Materials and Design, 64, 640-649. doi:10.1016/j.matdes.2014.08.010

Merino, D., Simonutti, R., Perotto, G., & Athanassiou, A. (2021). Direct transformation of industrial vegetable waste into bioplastic composites intended for agricultural mulch films. Green Chemistry, 23(16), 5956-5971. doi:10.1039/d1gc01316e

Mikociak, D., Rudawski, A., & Blazewicz, S. (2018). Mechanical and thermal properties of C/C composites modified with SiC nanofiller. Materials Science and Engineering A, 716, 220-227. doi:10.1016/j.msea.2018.01.048

Mistar, E. M., Ahmad, S., Muslim, A., Alfatah, T., & Supardan, M. D. (2018). Preparation and characterization of a high surface area of activated carbon from bambusa vulgaris - effect of NaOH activation and pyrolysis temperature. Paper presented at the IOP Conference Series: Materials Science and Engineering, , 334(1) doi:10.1088/1757-899X/334/1/012051 Retrieved from www.scopus.com

Mistar, E. M., Alfatah, T., & Supardan, M. D. (2020). Synthesis and characterization of activated carbon from bambusa vulgaris striata using two-step KOH activation. Journal of Materials Research and Technology, 9(3), 6278-6286. doi:10.1016/j.jmrt.2020.03.041

Mistar, E. M., Hasmita, I., Alfatah, T., Muslim, A., & Supardan, M. D. (2019). Adsorption of mercury(II) using activated carbon produced from bambusa vulgaris var. striata in a fixed-bed column. Sains Malaysiana, 48(4), 719-725. doi:10.17576/jsm-2019-4804-03

Mohammed, A. R., Atiqah, M. S. N., Gopakumar, D. A., Fazita, M. R., Rizal, S., Hermawan, D., . . . Khalil, H. P. S. A. (2020). Influence of layering pattern of modified kenaf fiber on thermomechanical properties of epoxy composites. Progress in Rubber, Plastics and Recycling Technology, 36(1), 47-62. doi:10.1177/1477760619895010

Nikolaeva, A. L., Gofman, I. V., Yakimansky, A. V., Ivan’kova, E. M., Abalov, I. V., Baranchikov, A. E., & Ivanov, V. K. (2020). Polyimide-based nanocomposites with binary CeO2/nanocarbon fillers: Conjointly enhanced thermal and mechanical properties. Polymers, 12(9), 1-17. doi:10.3390/polym12091952

Oushabi, A., Sair, S., Oudrhiri Hassani, F., Abboud, Y., Tanane, O., & El Bouari, A. (2017). The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite. South African Journal of Chemical Engineering, 23, 116-123. doi:10.1016/j.sajce.2017.04.005

Oveisi, M., Alinia Asli, M., & Mahmoodi, N. M. (2019). Carbon nanotube based metal-organic framework nanocomposites: Synthesis and their photocatalytic activity for decolorization of colored wastewater. Inorganica Chimica Acta, 487, 169-176. doi:10.1016/j.ica.2018.12.021

Paszkiewicz, S., Szymczyk, A., Zubkiewicz, A., Subocz, J., Stanik, R., & Szczepaniak, J. (2020). Enhanced functional properties of low-density polyethylene nanocomposites containing hybrid fillers of multi-walled carbon nanotubes and nano carbon black. Polymers, 12(6) doi:10.3390/POLYM12061356

Rizal, S., Alfatah, T., Abdul Khalil, H. P. S., Mistar, E. M., Abdullah, C. K., Olaiya, F. G., . . . Muksin, U. (2021). Properties and characterization of lignin nanoparticles functionalized in macroalgae biopolymer films. Nanomaterials, 11(3), 1-21. doi:10.3390/nano11030637

Rizal, S., Mistar, E. M., Rahman, A. A., Abdul Khalil, H. P. S., Oyekanmi, A. A., Olaiya, N. G., . . . Alfatah, T. (2021). Bionanocarbon functional material characterisation and enhancement properties in nonwoven kenaf fibre nanocomposites. Polymers, 13(14) doi:10.3390/polym13142303

Rizal, S., Saharudin, N. I., Olaiya, N. G., Abdul Khalil, H. P. S., Haafiz, M. K. M., Ikramullah, I., . . . Yahya, E. B. (2021). Functional properties and molecular degradation of schizostachyum brachycladum bamboo cellulose nanofibre in PLA-chitosan bionanocomposites. Molecules, 26(7) doi:10.3390/molecules26072008

Sapiai, N., Jumahat, A., Jawaid, M., Midani, M., & Khan, A. (2020). Tensile and flexural properties of silica nanoparticles modified unidirectional kenaf and hybrid glass/kenaf epoxy composites. Polymers, 12(11), 1-11. doi:10.3390/polym12112733

Shu, R., Jiang, X., Li, J., Shao, Z., Zhu, D., Song, T., & Luo, Z. (2019). Microstructures and mechanical properties of al-si alloy nanocomposites hybrid reinforced with nano-carbon and in-situ Al2O3. Journal of Alloys and Compounds, 800, 150-162. doi:10.1016/j.jallcom.2019.06.030

Silva, N. G. S., Maia, T. F., & Mulinari, D. R. (2021). Effect of acetylation with perchloric acid as catalyst in sugarcane bagasse waste. Journal of Natural Fibers, doi:10.1080/15440478.2021.1875352

Sumesh, K. R., Kanthavel, K., & Kavimani, V. (2020). Peanut oil cake-derived cellulose fiber: Extraction, application of mechanical and thermal properties in pineapple/flax natural fiber composites. International Journal of Biological Macromolecules, 150, 775-785. doi:10.1016/j.ijbiomac.2020.02.118

Teacă, C. -., & Tanasa, F. (2020). Wood surface modification-classic and modern approaches in wood chemical treatment by esterification reactions. Coatings, 10(7) doi:10.3390/coatings10070629

Uthaya Kumar, U. S., Abdulmadjid, S. N., Olaiya, N. G., Amirul, A. A., Rizal, S., Rahman, A. A., . . . Abdul Khalil, H. P. S. (2020). Extracted compounds from neem leaves as antimicrobial agent on the physico-chemical properties of seaweed-based biopolymer films. Polymers, 12(5) doi:10.3390/POLYM12051119

Uthaya Kumar, U. S., Paridah, M. T., Owolabi, F. A. T., Gopakumar, D. A., Rizal, S., Amirul, A. A., . . . Khalil, H. P. S. A. (2019). Neem leaves extract based seaweed bio-degradable composite films with excellent antimicrobial activity for sustainable packaging material. BioResources, 14(1), 700-713. doi:10.15376/biores.14.1.700-713

Venkatasudhahar, M., Ravichandran, A. T., & Dilipraja, N. (2021). Effect of stacking sequence on mechanical and moisture absorption properties of abaca-kenaf-carbon fiber reinforced hybrid composites. Journal of Natural Fibers, doi:10.1080/15440478.2021.1944434

Voros, V., Drioli, E., Fonte, C., & Szekely, G. (2019). Process intensification via continuous and simultaneous isolation of antioxidants: An upcycling approach for olive leaf waste. ACS Sustainable Chemistry and Engineering, 7(22), 18444-18452. doi:10.1021/acssuschemeng.9b04245

Wang, X., Liu, X., Smith, R. L., Jr., Liang, Y., & Qi, X. (2021). Direct one-pot synthesis of ordered mesoporous carbons from lignin with metal coordinated self-assembly. Green Chemistry, 23(21), 8632-8642. doi:10.1039/d1gc03030b

Weiland, K., Jones, M. P., Zinsser, F., Kontturi, E., Mautner, A., & Bismarck, A. (2021). Grow it yourself composites: Delignification and hybridisation of lignocellulosic material using animals and fungi. Green Chemistry, 23(19), 7506-7514. doi:10.1039/d1gc01835c

Wu, Y., Zeng, J., Huang, X., Yuan, Z., Liu, G., & Ding, J. (2021). Styrene-maleic anhydride/polyethersulfone blending membranes modified by PEI functionalized TiO2 to enhance separation and antifouling properties: Dye purification. Journal of Environmental Chemical Engineering, 9(5) doi:10.1016/j.jece.2021.106040

Yang, P., You, X., Yi, J., Fang, D., Bao, R., Shen, T., . . . Li, C. (2018). Influence of dispersion state of carbon nanotubes on electrical conductivity of copper matrix composites. Journal of Alloys and Compounds, 752, 376-380. doi:10.1016/j.jallcom.2018.04.129

Yusuff, I., Sarifuddin, N., & Ali, A. M. (2021). A review on kenaf fiber hybrid composites: Mechanical properties, potentials, and challenges in engineering applications. Progress in Rubber, Plastics and Recycling Technology, 37(1), 66-83. doi:10.1177/1477760620953438

Zhang, X., Zhao, N., & He, C. (2020). The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design – A review. Progress in Materials Science, 113 doi:10.1016/j.pmatsci.2020.100672

Zhu, T., Li, Y., & Sang, S. (2019). Heightening mechanical properties and thermal shock resistance of low–carbon magnesia–graphite refractories through the catalytic formation of nanocarbons and ceramic bonding phases. Journal of Alloys and Compounds, 783, 990-1000. doi:10.1016/j.jallcom.2018.12.310


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)