UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This study investigated the effect of acidified water at different pH values and extraction time on the phenolic profile (anthocyanins, hydroxycinnamic acids and flavonols), antioxidant activity and colour characteristics of dried blackcurrant pomaces (DBP) extracts. Extractions were carried out using acetic acid in water (pH 1.5, 2.0, 2.5 and 3.0) for 2 and 6 h at 30 °C. Phenolics concentration in DBP extracts were influenced by the pH of acidified water (p < 0.05), while extraction pH, extraction time and their combination had significant impact on total phenolics, antioxidant activity and colour of DBP extracts (p < 0.05). Regardless of the extraction time, very low pH (1.5) was positively associated with high amounts of anthocyanins, hydroxycinnamic acids and flavonols in DPB extracts. Also, extracts obtained at pH 1.5 had the highest amount of total phenolics and antioxidant activity. Overall, acetic acid in water as extraction medium may influence greatly the phenolic profile and colour of DBP extracts, which could be utilised as alternative to synthetic food colourants. |
References |
Amr, A., & Al-Tamimi, E. (2007). Stability of the crude extracts of ranunculus asiaticus anthocyanins and their use as food colourants. International Journal of Food Science and Technology, 42(8), 985-991. doi:10.1111/j.1365-2621.2006.01334.x Azman, E. M., Charalampopoulos, D., & Chatzifragkou, A. (2020). Acetic acid buffer as extraction medium for free and bound phenolics from dried blackcurrant (ribes nigrum L.) skins. Journal of Food Science, 85(11), 3745-3755. doi:10.1111/1750-3841.15466 Azman, E. M., House, A., Charalampopoulos, D., & Chatzifragkou, A. (2021). Effect of dehydration on phenolic compounds and antioxidant activity of blackcurrant (ribes nigrum L.) pomace. International Journal of Food Science and Technology, 56(2), 600-607. doi:10.1111/ijfs.14762 Basegmez, H. I. O., Povilaitis, D., Kitrytė, V., Kraujalienė, V., Šulniūtė, V., Alasalvar, C., & Venskutonis, P. R. (2017). Biorefining of blackcurrant pomace into high value functional ingredients using supercritical CO2, pressurized liquid and enzyme assisted extractions. Journal of Supercritical Fluids, 124, 10-19. doi:10.1016/j.supflu.2017.01.003 Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of 'antioxidant power': The FRAP assay. Analytical Biochemistry, 239(1), 70-76. doi:10.1006/abio.1996.0292 Chigurupati, N., Saiki, L., Gayser Jr, C., & Dash, A. K. (2002). Evaluation of red cabbage dye as a potential natural color for pharmaceutical use. International Journal of Pharmaceutics, 241(2), 293-299. doi:10.1016/S0378-5173(02)00246-6 Clifford, M. N. (2000). Anthocyanins - nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80(7), 1063-1072. doi:10.1002/(SICI)1097-0010(20000515)80:7<1063::AID-JSFA605>3.0.CO;2-Q Cyboran, S., Bonarska-Kujawa, D., Pruchnik, H., Zyłka, R., Oszmiański, J., & Kleszczyńska, H. (2014). Phenolic content and biological activity of extracts of blackcurrant fruit and leaves. Food Research International, 65(PA), 47-58. doi:10.1016/j.foodres.2014.05.037 de Souza, V. R., Pereira, P. A. P., Teixeira, T. R., Silva, T. L. T. d., Pio, R., & Queiroz, F. (2015). Influence of processing on the antioxidant capacity and bioactive compounds in jellies from different blackberry cultivars. International Journal of Food Science and Technology, 50(7), 1658-1665. doi:10.1111/ijfs.12819 Durazzo, A. (2018). Extractable and non-extractable polyphenols: An overview doi:10.1039/9781788013208-00037 Retrieved from www.scopus.com Everette, J. D., Bryant, Q. M., Green, A. M., Abbey, Y. A., Wangila, G. W., & Walker, R. B. (2010). Thorough study of reactivity of various compound classes toward the folin-ciocalteu reagent. Journal of Agricultural and Food Chemistry, 58(14), 8139-8144. doi:10.1021/jf1005935 Fernandes, A., Oliveira, J., Teixeira, N., Mateus, N., & De Freitas, V. (2017). A review of the current knowledge of red wine colour. Journal International Des Sciences De La Vigne Et Du Vin, 51(1), 1-21. Retrieved from www.scopus.com Fidelis, M., De Moura, C., Kabbas, T., Pap, N., Mattila, P., Mäkinen, S., . . . Granato, D. (2019). Fruit seeds as sources of bioactive compounds: Sustainable production of high value-added ingredients from by-products within circular economy. Molecules, 24(21) doi:10.3390/molecules24213854 He, J., & Giusti, M. M. (2011). High-purity isolation of anthocyanins mixtures from fruits and vegetables - A novel solid-phase extraction method using mixed mode cation-exchange chromatography. Journal of Chromatography A, 1218(44), 7914-7922. doi:10.1016/j.chroma.2011.09.005 Hui, X., Wu, G., Han, D., Gong, X., Stipkovits, L., Wu, X., . . . Brennan, C. S. (2021). Bioactive compounds from blueberry and blackcurrant powder alter the physicochemical and hypoglycaemic properties of oat bran paste. LWT, 143 doi:10.1016/j.lwt.2021.111167 Kähkönen, M. P., Hopia, A. I., & Heinonen, M. (2001). Berry phenolics and their antioxidant activity. Journal of Agricultural and Food Chemistry, 49(8), 4076-4082. doi:10.1021/jf010152t Kapasakalidis, P. G., Rastall, R. A., & Gordon, M. H. (2006). Extraction of polyphenols from processed black currant (ribes nigrum L.) residues. Journal of Agricultural and Food Chemistry, 54(11), 4016-4021. doi:10.1021/jf052999l Kirca, A., Özkan, M., & Cemeroǧlu, B. (2006). Stability of black carrot anthocyanins in various fruit juices and nectars. Food Chemistry, 97(4), 598-605. doi:10.1016/j.foodchem.2005.05.036 Kupina, S., Fields, C., Roman, M. C., & Brunelle, S. L. (2018). Determination of total phenolic content using the folin-C assay: Single-laboratory validation, first action 2017.13. Journal of AOAC International, 101(5), 1466-1472. doi:10.5740/jaoacint.18-0031 Laaksonen, O., Mäkilä, L., Tahvonen, R., Kallio, H., & Yang, B. (2013). Sensory quality and compositional characteristics of blackcurrant juices produced by different processes. Food Chemistry, 138(4), 2421-2429. doi:10.1016/j.foodchem.2012.12.035 Laaksonen, O. A., Mäkilä, L., Sandell, M. A., Salminen, J. -., Liu, P., Kallio, H. P., & Yang, B. (2014). Chemical-sensory characteristics and consumer responses of blackcurrant juices produced by different industrial processes. Food and Bioprocess Technology, 7(10), 2877-2888. doi:10.1007/s11947-014-1316-8 Lapidot, T., Harel, S., Akiri, B., Granit, R., & Kanner, J. (1999). pH-dependent forms of red wine anthocyanins as antioxidants. Journal of Agricultural and Food Chemistry, 47(1), 67-70. doi:10.1021/jf980704g Lapornik, B., Prošek, M., & Wondra, A. G. (2005). Comparison of extracts prepared from plant by-products using different solvents and extraction time. Journal of Food Engineering, 71(2), 214-222. doi:10.1016/j.jfoodeng.2004.10.036 Lee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of AOAC International, 88(5), 1269-1278. doi:10.1093/jaoac/88.5.1269 Michalska, A., Wojdyło, A., Lech, K., Łysiak, G. P., & Figiel, A. (2017). Effect of different drying techniques on physical properties, total polyphenols and antioxidant capacity of blackcurrant pomace powders. LWT, 78, 114-121. doi:10.1016/j.lwt.2016.12.008 Milivojevic, J., Maksimovic, V., & Nikolic, M. (2009). Sugar and organic acids profile in the fruits of black and red currant cultivars. J.Agric.Sci., 54, 105-117. Retrieved from www.scopus.com Mourtzinos, I., Prodromidis, P., Grigorakis, S., Makris, D. P., Biliaderis, C. G., & Moschakis, T. (2018). Natural food colorants derived from onion wastes: Application in a yoghurt product. Electrophoresis, 39(15), 1975-1983. doi:10.1002/elps.201800073 Norman, G. (2010). Likert scales, levels of measurement and the "laws" of statistics. Advances in Health Sciences Education, 15(5), 625-632. doi:10.1007/s10459-010-9222-y Oancea, S., Stoia, M., & Coman, D. (2012). Effects of extraction conditions on bioactive anthocyanin content of vaccinium corymbosum in the perspective of food applications. Paper presented at the Procedia Engineering, , 42 489-495. doi:10.1016/j.proeng.2012.07.440 Retrieved from www.scopus.com Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5 doi:10.1017/jns.2016.41 Paunović, S. M., Mašković, P., Nikolić, M., & Miletić, R. (2017). Bioactive compounds and antimicrobial activity of black currant (ribes nigrum L.) berries and leaves extract obtained by different soil management system. Scientia Horticulturae, 222, 69-75. doi:10.1016/j.scienta.2017.05.015 Pearson, E. S. (1931). The analysis of variance in cases of non-normal variation. Biometrika, 23, 114-133. Retrieved from www.scopus.com Raikos, V., Ni, H., Hayes, H., & Ranawana, V. (2019). Antioxidant properties of a yogurt beverage enriched with salal (gaultheria shallon) berries and blackcurrant (ribes nigrum) pomace during cold storage. Beverages, 5(1) doi:10.3390/beverages5010002 Rodriguez-Saona, L. E., & Wrolstad, R. E. (2001). Extraction, isolation, and purification of anthocyanins. Current Protocols in Food Analytical Chemistry, , 1-11. Retrieved from www.scopus.com Rose, P. M., Cantrill, V., Benohoud, M., Tidder, A., Rayner, C. M., & Blackburn, R. S. (2018). Application of anthocyanins from blackcurrant (ribes nigrum L.) fruit waste as renewable hair dyes. Journal of Agricultural and Food Chemistry, 66(26), 6790-6798. doi:10.1021/acs.jafc.8b01044 Saura-Calixto, F. (2012). Concept and health-related properties of nonextractable polyphenols: The missing dietary polyphenols. Journal of Agricultural and Food Chemistry, 60(45), 11195-11200. doi:10.1021/jf303758j Shrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron.Young Sci., 2(1), 21-25. Retrieved from www.scopus.com Spigno, G., Tramelli, L., & De Faveri, D. M. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering, 81(1), 200-208. doi:10.1016/j.jfoodeng.2006.10.021 Sun-Waterhouse, D., Zhou, J., & Wadhwa, S. S. (2013). Drinking yoghurts with berry polyphenols added before and after fermentation. Food Control, 32(2), 450-460. doi:10.1016/j.foodcont.2013.01.011 Tidder, A., Benohoud, M., Rayner, C. M., & Blackburn, R. S. (0000). Extraction of anthocyanins from blackcurrant (ribes nigrum L.) fruit waste and application as renewable textile dyes. 91st Textile Institute World Conference Book of Abstracts, , 18-19. Retrieved from www.scopus.com Toscano Martínez, H., Gagneten, M., Díaz-Calderón, P., Enrione, J., Salvatori, D., Schebor, C., & Leiva, G. (2021). Natural food colorant from blackcurrant spray-dried powder obtained by enzymatic treatment: Characterization and acceptability. Journal of Food Processing and Preservation, 45(1) doi:10.1111/jfpp.15011 Vergara-Salinas, J. R., Bulnes, P., Zúñiga, M. C., Pérez-Jiménez, J., Torres, J. L., Mateos-Martín, M. L., . . . Pérez-Correa, J. R. (2013). Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation. Journal of Agricultural and Food Chemistry, 61(28), 6929-6936. doi:10.1021/jf4010143 Viljanen, K., Kylli, P., Hubbermann, E. -., Schwarz, K., & Heinonen, M. (2005). Anthocyanin antioxidant activity and partition behavior in whey protein emulsion. Journal of Agricultural and Food Chemistry, 53(6), 2022-2027. doi:10.1021/jf047975d Wrolstad, R. E. (2004). Symposium 12: Interaction of natural colors with other ingredients. anthocyanin pigments - bioactivity and coloring properties. Journal of Food Science, 69(5), C419-C421. doi:10.1111/j.1365-2621.2004.tb10709.x Wrolstad, R. E., & Smith, D. E. (2010). Color analysis. Food Analysis, , 573-586. Retrieved from www.scopus.com Wu, X., Gu, L., Prior, R. L., & McKay, S. (2004). Characterization of anthocyanins and proanthocyanidins in some cultivars of ribes, aronia, and sambucus and their antioxidant capacity. Journal of Agricultural and Food Chemistry, 52(26), 7846-7856. doi:10.1021/jf0486850 Xu, Z., Afacan, A., & Chuang, K. T. (1999). Removal of acetic acid from water by catalytic distillation. part 1: Experimental studies. Canadian Journal of Chemical Engineering, 77(4), 676-681. doi:10.1002/cjce.5450770408 Yang, J., He, X., & Zhao, D. (2013). Factors affecting phytochemical stability. Handbook of plant food phytochemicals: Sources, stability and extraction (pp. 332-374) doi:10.1002/9781118464717.ch15 Retrieved from www.scopus.com |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |