UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :2077-0375
Main Author :Suriani Abu Bakar
Title :Fabrication of high performance pvdf hollow fiber membrane using less toxic solvent at different additive loading and air gap
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
Existing toxic solvents in the manufacturing of polymeric membranes have been raising concerns due to the risks of exposure to health and the environment. Furthermore, the lower tensile strength of the membrane renders these membranes unable to endure greater pressure during water treatment. To sustain a healthier ecosystem, fabrication of polyvinylidene fluoride (PVDF) hollow fiber membrane using a less toxic solvent, triethyl phosphate (TEP), with a lower molecular weight polyethylene glycol (PEG 400) (0–3 wt.%) additive were experimentally demonstrated via a phase inversion-based spinning technique at various air gap (10, 20 and 30 cm). Membrane with 2 wt.% of PEG 400 exhibited the desired ultrafiltration asymmetric morphology, while 3 wt.% PEG 400 resulting microfiltration. The surface roughness, porosity, and water flux performance increased as the loading of PEG 400 increased. The mechanical properties and contact angle of the fabricated membrane were influenced by the air gap where 20 cm indicate 2.91 MPa and 84.72◦, respectively, leading to a stronger tensile and hydrophilicity surface. Lower toxicity TEP as a solvent helped in increasing the tensile properties of the membrane as well as producing an eco-friendly membrane towards creating a sustainable environment. The comprehensive investigation in this study may present a novel composition for the robust structure of polymeric hollow fiber membrane that is suitable in membrane technology.

References

Abed, M. R. M., Kumbharkar, S. C., Groth, A. M., & Li, K. (2012). Ultrafiltration PVDF hollow fibre membranes with interconnected bicontinuous structures produced via a single-step phase inversion technique. Journal of Membrane Science, 407-408, 145-154. doi:10.1016/j.memsci.2012.03.029

Adam, M. R., Matsuura, T., Othman, M. H. D., Puteh, M. H., Pauzan, M. A. B., Ismail, A. F., . . . Abdullah, M. S. (2019). Feasibility study of the hybrid adsorptive hollow fibre ceramic membrane (HFCM) derived from natural zeolite for the removal of ammonia in wastewater. Process Safety and Environmental Protection, 122, 378-385. doi:10.1016/j.psep.2018.12.003

Adam, M. R., Othman, M. H. D., Kadir, S. H. S. A., Sokri, M. N. M., Tai, Z. S., Iwamoto, Y., . . . Jaafar, J. (2020). Influence of the natural zeolite particle size toward the ammonia adsorption activity in ceramic hollow fiber membrane. Membranes, 10(4) doi:10.3390/membranes10040063

Ahmad, A. L., & Shafie, Z. M. H. M. (2017). Effect of air gap distance on PES/PVA hollow fibre membrane's morphology and performance. Journal of Physical Science, 28, 185-199. doi:10.21315/jps2017.28.s1.12

Aminudin, N. N., Basri, H., Harun, Z., Yunos, M. Z., & Sean, G. P. (2013). Comparative study on effect of PEG and PVP as additives on polysulfone (PSF) membrane structure and performance. Jurnal Teknologi (Sciences and Engineering), 65(4), 47-51. doi:10.11113/jt.v65.2327

Ang, M. B. M. Y., Lau, V. J., Ji, Y. -., Huang, S. -., An, Q. -., Caparanga, A. R., . . . Lai, J. -. (2017). Correlating PSf support physicochemical properties with the formation of piperazine-based polyamide and evaluating the resultant nanofiltration membrane performance. Polymers, 9(10) doi:10.3390/polym9100505

Arahman, N., Mulyati, S., & Fahrina, A. (2019). Morphology and performance of pvdf membranes composed of triethylphospate and dimethyl sulfoxide solvents. Materials Research Express, 6(6) doi:10.1088/2053-1591/ab1032

Bassyouni, M., Abdel-Aziz, M. H., Zoromba, M. S., Abdel-Hamid, S. M. S., & Drioli, E. (2019). A review of polymeric nanocomposite membranes for water purification. Journal of Industrial and Engineering Chemistry, 73, 19-46. doi:10.1016/j.jiec.2019.01.045

Bellardita, M., Camera-Roda, G., Loddo, V., Parrino, F., & Palmisano, L. (2020). Coupling of membrane and photocatalytic technologies for selective formation of high added value chemicals. Catalysis Today, 340, 128-144. doi:10.1016/j.cattod.2018.09.024

Byrne, F. P., Jin, S., Paggiola, G., Petchey, T. H. M., Clark, J. H., Farmer, T. J., . . . Sherwood, J. (2016). Tools and techniques for solvent selection: Green solvent selection guides. Sustain.Chem.Process., 4(1), 1-24. Retrieved from www.scopus.com

Chang, J., Zuo, J., Zhang, L., O'Brien, G. S., & Chung, T. -. (2017). Using green solvent, triethyl phosphate (TEP), to fabricate highly porous PVDF hollow fiber membranes for membrane distillation. Journal of Membrane Science, 539, 295-304. doi:10.1016/j.memsci.2017.06.002

Dzinun, H., Othman, M. H. D., Ismail, A. F., Puteh, M. H., Rahman, M. A., & Jaafar, J. (2015). Photocatalytic degradation of nonylphenol by immobilized TiO2 in dual layer hollow fibre membranes. Chemical Engineering Journal, 269, 255-261. doi:10.1016/j.cej.2015.01.114

Fadhil, S., Marino, T., Makki, H. F., Alsalhy, Q. F., Blefari, S., Macedonio, F., . . . Figoli, A. (2016). Novel PVDF-HFP flat sheet membranes prepared by triethyl phosphate (TEP) solvent for direct contact membrane distillation. Chemical Engineering and Processing: Process Intensification, 102, 16-26. doi:10.1016/j.cep.2016.01.007

Feng, Y., Han, G., Chung, T. -., Weber, M., Widjojo, N., & Maletzko, C. (2017). Effects of polyethylene glycol on membrane formation and properties of hydrophilic sulfonated polyphenylenesulfone (sPPSU) membranes. Journal of Membrane Science, 531, 27-35. doi:10.1016/j.memsci.2017.02.040

Kamali, M., Suhas, D. P., Costa, M. E., Capela, I., & Aminabhavi, T. M. (2019). Sustainability considerations in membrane-based technologies for industrial effluents treatment. Chemical Engineering Journal, 368, 474-494. doi:10.1016/j.cej.2019.02.075

Kamaludin, R., Mohamad Puad, A. S., Othman, M. H. D., Kadir, S. H. S. A., & Harun, Z. (2019). Incorporation of N-doped TiO2 into dual layer hollow fiber (DLHF) membrane for visible light-driven photocatalytic removal of reactive black 5. Polymer Testing, 78 doi:10.1016/j.polymertesting.2019.105939

Khulbe, K. C., Feng, C. Y., & Matsuura, T. (2010). Membrane characterization. Water and Wastewater Treatment Technologies, Retrieved from www.scopus.com

Koyuncu, I., Sengur, R., Turken, T., Guclu, S., & Pasaoglu, M. E. (2015). Advances in water treatment by microfiltration, ultrafiltration, and nanofiltration. Advances in membrane technologies for water treatment: Materials, processes and applications (pp. 83-128) doi:10.1016/B978-1-78242-121-4.00003-4 Retrieved from www.scopus.com

Kuvarega, A. T., Khumalo, N., Dlamini, D., & Mamba, B. B. (2018). Polysulfone/N,pd co-doped TiO2 composite membranes for photocatalytic dye degradation. Separation and Purification Technology, 191, 122-133. doi:10.1016/j.seppur.2017.07.064

Li, Q., Xu, Z. -., & Yu, L. -. (2010). Effects of mixed solvents and PVDF types on performances of PVDF microporous membranes. Journal of Applied Polymer Science, 115(4), 2277-2287. doi:10.1002/app.31324

Li, R., Wu, Z., Wangb, Y., Ding, L., & Wang, Y. (2016). Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin. Biotechnology Reports, 9, 46-52. doi:10.1016/j.btre.2016.01.002

Liu, F., Tao, M. -., & Xue, L. -. (2012). PVDF membranes with inter-connected pores prepared via a nat-ips process. Desalination, 298, 99-105. doi:10.1016/j.desal.2012.05.016

Ma, J., Zhao, J., Ren, Z., & Li, L. (2012). Preparation and characterization of PVDF-PFSA flat sheet ultrafiltration membranes. Frontiers of Chemical Science and Engineering, 6(3), 301-310. doi:10.1007/s11705-012-1204-6

Ma, Y., Shi, F., Ma, J., Wu, M., Zhang, J., & Gao, C. (2011). Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes. Desalination, 272(1-3), 51-58. doi:10.1016/j.desal.2010.12.054

Marino, T., Russo, F., & Figoli, A. (2018). The formation of polyvinylidene fluoride membranes with tailored properties via vapour/non-solvent induced phase separation. Membranes, 8(3) doi:10.3390/membranes8030071

Milescu, R. A., McElroy, C. R., Farmer, T. J., Williams, P. M., Walters, M. J., & Clark, J. H. (2019). Fabrication of PES/PVP water filtration membranes using cyrene®, a safer bio-based polar aprotic solvent. Advances in Polymer Technology, 2019 doi:10.1155/2019/9692859

Mousavi, S. M., Saljoughi, E., & Sheikhi-Kouhsar, M. R. (2013). Preparation and characterization of nanoporous polysulfone membranes with high hydrophilic property using variation in CBT and addition of tetronic-1107 surfactant. Journal of Applied Polymer Science, 127(5), 4177-4185. doi:10.1002/app.38006

Nawi, N. I. M., Chean, H. M., Shamsuddin, N., Bilad, M. R., Narkkun, T., Faungnawakij, K., & Khan, A. L. (2020). Development of hydrophilic PVDF membrane using vapour induced phase separation method for produced water treatment. Membranes, 10(6), 1-17. doi:10.3390/membranes10060121

Nikooe, N., & Saljoughi, E. (2017). Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution. Applied Surface Science, 413, 41-49. doi:10.1016/j.apsusc.2017.04.029

Pauzan, M. A. B., Hubadillah, S. K., Othman, M. H. D., Ismail, N. J., Puteh, M. H., Abdullah, H., . . . Yinn, W. K. (2021). Fabrication and characterization of robust zirconia-kaolin hollow fiber membrane: Alkaline dissolution study in ammonia solution. Korean Journal of Chemical Engineering, 38(12), 2446-2460. doi:10.1007/s11814-021-0888-z

Paxton, N. C., Wong, C. S., Desselle, M. R., Allenby, M. C., & Woodruff, M. A. (2020). Bone morphogenetic protein–assisted bone regeneration and applications in biofabrication. Biomaterials for organ and tissue regeneration: New technologies and future prospects (pp. 363-391) doi:10.1016/B978-0-08-102906-0.00016-7 Retrieved from www.scopus.com

Plisko, T. V., Bildyukevich, A. V., Usosky, V. V., & Volkov, V. V. (2016). Influence of the concentration and molecular weight of polyethylene glycol on the structure and permeability of polysulfone hollow fiber membranes. Petroleum Chemistry, 56(4), 321-329. doi:10.1134/S096554411604006X

Rajender, I., Abdullah, B., & Asiri, M. (2020). Self-Standing Substrates' Materials and Applications, , 120-126. Retrieved from www.scopus.com

Sai Guru Srinivasan, S., Govardhanan, B., Aabel, P., Ashok, M., & Santhosh Kumar, M. C. (2019). Effect of oxygen partial pressure on the tuning of copper oxide thin films by reactive sputtering for solar light driven photocatalysis. Solar Energy, 187, 368-378. doi:10.1016/j.solener.2019.05.057

Saleh, T. A., & Gupta, V. K. (2016). Chapter 5 – synthesis of nanomaterial–polymer membranes by polymerization methods. Nanomaterial and Polymer Membranes, , 135-160. Retrieved from www.scopus.com

Shi, H., Liu, F., & Xue, L. (2013). Fabrication and characterization of antibacterial PVDF hollow fibre membrane by doping ag-loaded zeolites. Journal of Membrane Science, 437, 205-215. doi:10.1016/j.memsci.2013.03.009

Singh, M., Verma, S. K., Biswas, I., & Mehta, R. (2018). Effect of molecular weight of polyethylene glycol on the rheological properties of fumed silica-polyethylene glycol shear thickening fluid. Materials Research Express, 5(5) doi:10.1088/2053-1591/aac25c

Slimane, F. Z., Ellouze, F., & Amar, N. B. (2019). Fouling mechanism and screening of backwash parameters: Seawater ultrafiltration case. Environmental Engineering Research, 24(2), 298-308. doi:10.4491/eer.2018.165

Song, H., Shao, J., Wang, J., & Zhong, X. (2014). The removal of natural organic matter with LiCl-TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis. Desalination, 344, 412-421. doi:10.1016/j.desal.2014.04.012

Srivastava, H. P., Arthanareeswaran, G., Anantharaman, N., & Starov, V. M. (2011). Performance and properties of modified poly (vinylidene fluoride) membranes using general purpose polystyrene (GPPS) by DIPS method. Desalination, 283, 169-177. doi:10.1016/j.desal.2011.02.042

Subramaniam, M. N., Goh, P. S., Lau, W. J., Tan, Y. H., Ng, B. C., & Ismail, A. F. (2017). Hydrophilic hollow fiber PVDF ultrafiltration membrane incorporated with titanate nanotubes for decolourization of aerobically-treated palm oil mill effluent. Chemical Engineering Journal, 316, 101-110. doi:10.1016/j.cej.2017.01.088

Syawaliah, Arahman, N., Mukramah, & Mulyati, S. (2017). Effects of PEG molecular weights on PVDF membrane for humic acid-fed ultrafiltration process. Paper presented at the IOP Conference Series: Materials Science and Engineering, , 180(1) doi:10.1088/1757-899X/180/1/012129 Retrieved from www.scopus.com

Tang, Y., Li, N., Liu, A., Ding, S., Yi, C., & Liu, H. (2012). Effect of spinning conditions on the structure and performance of hydrophobic PVDF hollow fiber membranes for membrane distillation. Desalination, 287, 326-339. doi:10.1016/j.desal.2011.11.045

Tavakolmoghadam, M., Rekabdar, F., Hemmati, M., & Mohammadi, T. (2016). Poly (vinylidene fluride) membrane preparation and characterization: Effects of mixed solvents and PEG molecular weight. J.Pet.Sci.Technol, 6, 11. Retrieved from www.scopus.com

Thanakkasaranee, S., Kim, D., & Seo, J. (2018). Preparation and characterization of poly(ether-block-amide)/polyethylene glycol composite films with temperature- dependent permeation. Polymers, 10(2) doi:10.3390/polym10020225

Wang, L., Huang, D., Wang, X., Meng, X., Lv, Y., Wang, X., & Miao, R. (2015). Preparation of PVDF membranes via the low-temperature TIPS method with diluent mixtures: The role of coagulation conditions and cooling rate. Desalination, 361, 25-37. doi:10.1016/j.desal.2015.01.039

Wang, X., Xiao, C., Liu, H., Huang, Q., Hao, J., & Fu, H. (2018). Poly(vinylidene fluoride-hexafluoropropylene) porous membrane with controllable structure and applications in efficient oil/water separation. Materials, 11(3) doi:10.3390/ma11030443

Wu, Y., Zhu, H., Feng, L., & Zhang, L. (2016). Effects of polyethylene glycol on the structure and filtration performance of thin-film PA-psf composite forward osmosis membranes. Separation Science and Technology (Philadelphia), 51(5), 862-873. doi:10.1080/01496395.2015.1119846

Yeow, M. L., Liu, Y. T., & Li, K. (2004). Morphological study of poly(vinylidene fluoride) asymmetric membranes: Effects of the solvent, additive, and dope temperature. Journal of Applied Polymer Science, 92(3), 1782-1789. doi:10.1002/app.20141

Zhang, Y., Lin, R., Yuan, M., & Yue, X. (2013). Effects of pore-forming additives on structures and properties of PVDF/Fe3+/Cu2+ hollow fiber membranes. Desalination and Water Treatment, 51(19-21), 3903-3908. doi:10.1080/19443994.2013.781741


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)