UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :2220-9964
Main Author :Shazlyn Milleana Shaharudin
Additional Authors :Nurul Hila Zainuddin
Title :Regionalization of rainfall regimes using hybrid rf-bs couple with multivariate approaches
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Corporate Name :Universiti Pendidikan Sultan Idris

Abstract : Universiti Pendidikan Sultan Idris
Monthly precipitation data during the period of 1970 to 2019 obtained from the Mete-orological, Climatological and Geophysical Agency database were used to analyze regionalized precipitation regimes in Yogyakarta, Indonesia. There were missing values in 52.6% of the data, which were handled by a hybrid random forest approach and bootstrap method (RF-Bs). The present approach addresses large missing values and also reduces the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) in the search for the optimum minimal value. Cluster analysis was used to classify stations or grid points into different rainfall regimes. Hierarchical clustering analysis (HCA) of rainfall data reveal the pattern of behavior of the rainfall regime in a specific region by identifying homogeneous clusters. According to the HCA, four distinct and homogenous regions were recognized. Then, the principal component analysis (PCA) technique was used to homog-enize the rainfall series and optimally reduce the long-term rainfall records into a few variables. Moreover, PCA was applied to monthly rainfall data in order to validate the results of the HCA analysis. On the basis of the 75% of cumulative variation, 14 factors for the Dry season and the Rainy season, and 12 factors for the Inter-monsoon season, were extracted among the components using varimax rotation. Consideration of different groupings into these approaches opens up new advanced early warning systems in developing recommendations on how to differentiate climate change adaptation-and mitigation-related policies in order to minimize the largest economic damage and taking necessary precautions when multiple hazard events occur.

References

Adi-Kusumo, F., Gunardi, Utami, H., Nurjani, E., Sopaheluwakan, A., Aluicius, I. E., & Christiawan, T. (2016). Application of the empirical orthogonal function to study the rainfall pattern in daerah istimewa yogyakarta province. Paper presented at the AIP Conference Proceedings, , 1707 doi:10.1063/1.4940833 Retrieved from www.scopus.com

Aguilera, H., Guardiola-Albert, C., Serrano-Hidalgo, C., & Naranjo-Fernández, N. (2018). Estimating large amounts of missing precipitation data. EGU General Assembly Conference Abstracts, 22, 578-592. Retrieved from www.scopus.com

Aldrian, E., & Dwi Susanto, R. (2003). Identification of three dominant rainfall regions within indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23(12), 1435-1452. doi:10.1002/joc.950

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. American Statistician, 46(3), 175-185. doi:10.1080/00031305.1992.10475879

Amiri, M. A., Conoscenti, C., & Mesgari, M. S. (2018). Improving the accuracy of rainfall prediction using a regionalization approach and neural networks. Kuwait Journal of Science, 45(4), 66-75. Retrieved from www.scopus.com

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? -arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250. doi:10.5194/gmd-7-1247-2014

Dai, Q., Bray, M., Zhuo, L., Islam, T., & Han, D. (2017). A scheme for rain gauge network design based on remotely sensed rainfall measurements. Journal of Hydrometeorology, 18(2), 363-379. doi:10.1175/JHM-D-16-0136.1

Darand, M., & Mansouri Daneshvar, M. R. (2014). Regionalization of precipitation regimes in iran using principal component analysis and hierarchical clustering analysis. Environmental Processes, 1(4), 517-532. doi:10.1007/s40710-014-0039-1

Dodeen, H. M. (2003). Effectiveness of valid mean substitution in treating missing data in attitude assessment. Assessment and Evaluation in Higher Education, 28(5), 505-513. doi:10.1080/02602930301674

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7, 1-26. Retrieved from www.scopus.com

Efron, B., & Tibshirani, R. J. (1990). Regression Model, an Introduction to the Bootstrap, Retrieved from www.scopus.com

Everitt, B., & Hothorn, T. (2011). An introduction to applied multivariate analysis with R. An Introduction to Applied Multivariate Analysis with R, Retrieved from www.scopus.com

Goyal, M. K., & Gupta, V. (2014). Identification of homogeneous rainfall regimes in northeast region of india using fuzzy cluster analysis. Water Resources Management, 28(13), 4491-4511. doi:10.1007/s11269-014-0699-7

Gupta, A., Kamble, T., & Machiwal, D. (2017). Comparison of ordinary and bayesian kriging techniques in depicting rainfall variability in arid and semi-arid regions of north-west india. Environmental Earth Sciences, 76(15) doi:10.1007/s12665-017-6814-3

Haines, H. A., & Olley, J. M. (2017). The implications of regional variations in rainfall for reconstructing rainfall patterns using tree rings. Hydrological Processes, 31(16), 2951-2960. doi:10.1002/hyp.11238

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation techniques. Journal of Intelligent Information Systems, 17(2-3), 107-145. doi:10.1023/A:1012801612483

Harel, O., & Zhou, X. -. (2007). Multiple imputation: Review of theory, implementation and software. Statistics in Medicine, 26(16), 3057-3077. doi:10.1002/sim.2787

Heras, D., & Matovelle, C. (2021). Machine-learning methods for hydrological imputation data: Analysis of the goodness of fit of the model in hydrographic systems of the pacific - ecuador. [Métodos de aprendizado de máquina para dados de imputação hidrológica: Análise da qualidade de ajuste do modelo em sistemas hidrográficos do Pacífico - Equador] Revista Ambiente e Agua, 16(3) doi:10.4136/ambi-agua.2708

Hoyos, L. E., Cabido, M. R., & Cingolani, A. M. (2018). A multivariate approach to study drivers of land-cover changes through remote sensing in the dry chaco of argentina. ISPRS International Journal of Geo-Information, 7(5) doi:10.3390/ijgi7050170

Ibarra-Berastegi, G., Saénz, J., Ezcurra, A., Elías, A., Diaz Argandoña, J., & Errasti, I. (2011). Downscaling of surface moisture flux and precipitation in the ebro valley (spain) using analogues and analogues followed by random forests and multiple linear regression. Hydrology and Earth System Sciences, 15(6), 1895-1907. doi:10.5194/hess-15-1895-2011

Ismail, W. N. W., Zin, W. Z. W., & Ibrahim, W. (2017). Estimation of rainfall and stream flow missing data for terengganu, malaysia by using interpolation technique methods. Malaysian Journal of Fundamental and Applied Sciences, 13(3), 213-217. Retrieved from www.scopus.com

Jolliffe, I. T. (1986). Principal Component Analysis, Retrieved from www.scopus.com

Kamaruzaman, I. F., Zin, W. Z. W., & Ariff, N. M. (2017). A comparison of method for treating missing daily rainfall data in peninsular malaysia. Malaysian Journal of Fundamental and Applied Sciences, 13(4-1), 375-380. Retrieved from www.scopus.com

Kiviet, J. F. (1995). On bias, inconsistency, and efficiency of various estimators in dynamic panel data models. Journal of Econometrics, 68(1), 53-78. doi:10.1016/0304-4076(94)01643-E

Latupapua, H., Latupapua, A. I., Wahab, A., & Alaydrus, M. (2018). Wireless sensor network design for earthquake’s and landslide’s early warnings. Indonesian Journal of Electrical Engineering and Computer Science, 11(2), 437-445. doi:10.11591/ijeecs.v11.i2.pp437-445

Lee, H. S. (2015). General rainfall patterns in indonesia and the potential impacts of local seas on rainfall intensity. Water (Switzerland), 7(4), 1751-1768. doi:10.3390/w7041751

Lin, G. -., Chang, M. -., & Wu, J. -. (2017). A hybrid statistical downscaling method based on the classification of rainfall patterns. Water Resources Management, 31(1), 377-401. doi:10.1007/s11269-016-1532-2

Logue, J. J. (1984). Regional variations in the annual cycle of rainfall in ireland as revealed by principal component analysis. Journal of Climatology, 4(6), 597-607. doi:10.1002/joc.3370040604

Lusajo, M., Salim, C. J., & Kazumba, S. (2018). Estimation of missing river flow data for hydrological analysis: The case of great ruaha river catchment. Hydrol.Current Res, 9(2), 1-8. Retrieved from www.scopus.com

Machiwal, D., Dayal, D., & Kumar, S. (2017). Long-term rainfall trends and change points in hot and cold arid regions of india. Hydrological Sciences Journal, 62(7), 1050-1066. doi:10.1080/02626667.2017.1303705

Machiwal, D., Kumar, S., Meena, H. M., Santra, P., Singh, R. K., & Singh, D. V. (2019). Clustering of rainfall stations and distinguishing influential factors using PCA and HCA techniques over the western dry region of india. Meteorological Applications, 26(2), 300-311. doi:10.1002/met.1763

Medina-Cobo, M. T., García-Marín, A. P., Estévez, J., Jiménez-Hornero, F. J., & Ayuso-Muñoz, J. L. (2017). Obtaining homogeneous regions by determining the generalized fractal dimensions of validated daily rainfall data sets. Water Resources Management, 31(7), 2333-2348. doi:10.1007/s11269-017-1653-2

Messakh, J. J., Arwin, S., Hadihardaja, I. K., & Dupe, Z. (2015). Management strategy of water resources base on rainfall characteristics in the semi-arid region in indonesia. International Journal of Scientific & Engineering Research, 8, 331-338. Retrieved from www.scopus.com

Modarres, R., & Sarhadi, A. (2011). Statistically-based regionalization of rainfall climates of iran. Global and Planetary Change, 75(1-2), 67-75. doi:10.1016/j.gloplacha.2010.10.009

Nagel, J. B., Rieckermann, J., & Sudret, B. (2020). Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation. Reliability Engineering and System Safety, 195 doi:10.1016/j.ress.2019.106737

Nor, S. M. C. M., Shaharudin, S. M., Ismail, S., & Kismiantini. (2021). A rpca-based tukey's biweight for clustering identification on extreme rainfall data. Environment and Ecology Research, 9(3), 114-118. doi:10.13189/eer.2021.090303

Rodríguez, R., Pastorini, M., Etcheverry, L., Chreties, C., Fossati, M., Castro, A., & Gorgoglione, A. (2021). Water-quality data imputation with a high percentage of missing values: A machine learning approach. Sustainability (Switzerland), 13(11) doi:10.3390/su13116318

Saputra, A., Gomez, C., Delikostidis, I., Zawar-Reza, P., Hadmoko, D. S., Sartohadi, J., & Setiawan, M. A. (2018). Determining earthquake susceptible areas southeast of yogyakarta, Indonesia—outcrop analysis from structure from motion (SfM) and geographic information system (GIS). Geosciences (Switzerland), 8(4) doi:10.3390/geosciences8040132

Shaharudin, S. M., & Ahmad, N. (2017). Choice of cumulative percentage in principal component analysis for regionalization of peninsular malaysia based on the rainfall amount doi:10.1007/978-981-10-6502-6_19 Retrieved from www.scopus.com

Shaharudin, S. M., Ahmad, N., & Nor, S. M. C. M. (2020). A modified correlation in principal component analysis for torrential rainfall patterns identification. IAES International Journal of Artificial Intelligence, 9(4), 655-661. doi:10.11591/ijai.v9.i4.pp655-661

Shaharudin, S. M., Andayani, S., Binatari, N., Kurniawan, A., Ahmad Basri, M. A., & Zainuddin, N. H. (2020). Imputation methods for addressing missing data of monthly rainfall in yogyakarta, indonesia. Int.J.Adv.Trends Comput.Sci.Eng, 9, 646-651. Retrieved from www.scopus.com

Shaharudin, S. M., Nor, S. M. C. M., Tan, M. L., Samsudin, M. S., Azid, A., & Ismail, S. (2021). Spatial torrential rainfall modelling in pattern analysis based on robust pca approach. Polish Journal of Environmental Studies, 30(4), 3221-3230. doi:10.15244/pjoes/130677

Ward, J. H., Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236-244. doi:10.1080/01621459.1963.10500845

Widagdo, A., Pramumijoyo, S., & Harijoko, A. (2018). Morphotectono-volcanic of MenorehGajah-ijo volcanic rock in western side of yogyakarta-indonesia. Journal of Geoscience, Engineering, Environment, and Technology, 3(3) Retrieved from www.scopus.com

Yang, J. -., Cheng, C. -., & Chan, C. -. (2017). A time-series water level forecasting model based on imputation and variable selection method. Computational Intelligence and Neuroscience, 2017 doi:10.1155/2017/8734214


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.