UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The study has two objectives, first is exploring the variables that affect the intention to use mobile learning and second is investigating the experience moderator effect on the variables that influence intention to use mobile learning in higher education institutions (HEI) in Iraq. Then formulate a model for intention to use mobile learning. A questionnaire has been conducted in this research for collecting the feedback from the participants. The findings confirmed that social influence (SI), performance expectancy (PE), “facilitating conditions” (FCs), effort expectancy (EE) and “satisfaction” (SA) have an important influence on the intention to use mobile learning. But, this study has rejected the “personal innovativeness” (PINN) factor as it was found not important. Furthermore, the study has confirmed that the experience moderator variable has an influence of EE, SI, and PE on the intention to use mobile learning. This study is significant to the field of discipline as it will provide a roadmap for HEI to recognize the factors that affect the intention to use mobile learning. |
References |
Abu-Al-Aish, A., & Love, S. (2013). Factors influencing students' acceptance of m-learning: An investigation in higher education. International Review of Research in Open and Distance Learning, 14(5), 82-107. doi:10.19173/irrodl.v14i5.1631 Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information Systems Research, 9(2), 204-215. doi:10.1287/isre.9.2.204 Ali, R. A., & Arshad, M. R. M. (2016). Understanding intention to use mobile learning: A perspective of the extended unified theory of acceptance and use of technology. INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 3(7), 81-88. Retrieved from www.scopus.com Aliaga, M., & Gunderson, B. (2000). Introduction to Quantitative Research, , 1-11. Retrieved from www.scopus.com Alkhalaf, S., Drew, S., AlGhamdi, R., & Alfarraj, O. (2012). E-learning system on higher education institutions in KSA: Attitudes and perceptions of faculty members. Procedia-Social and Behavioral Sciences, 47, 1199-1205. Retrieved from www.scopus.com Awang, Z. (2012). Structural equation modeling using AMOS graphic. Structural Equation Modeling using AMOS Graphic, Retrieved from www.scopus.com Azeez, N. D., & Lakulu, M. M. (2018). Evaluation framework of M-government services success in malaysia. Journal of Theoretical and Applied Information Technology, 96(24), 8194-8226. Retrieved from www.scopus.com Briz-Ponce, L., Pereira, A., Carvalho, L., Juanes-Méndez, J. A., & García-Peñalvo, F. J. (2017). Learning with mobile technologies – students’ behavior. Computers in Human Behavior, 72, 612-620. doi:10.1016/j.chb.2016.05.027 Chow, M., Herold, D. K., Choo, T. -., & Chan, K. (2012). Extending the technology acceptance model to explore the intention to use second life for enhancing healthcare education. Computers and Education, 59(4), 1136-1144. doi:10.1016/j.compedu.2012.05.011 Choy, L. T. (2014). The strengths and weaknesses of research methodology: Comparison and complimentary between qualitative and quantitative approaches. IOSR Journal of Humanities and Social Science, 19(4), 99-104. Retrieved from www.scopus.com Cruz, Y., Boughzala, I., & Assar, S. (2014). Technology acceptance and actual use with mobile leraning: First stage for studying the influence of learning styles on the behavioral intention. Paper presented at the ECIS 2014 Proceedings - 22nd European Conference on Information Systems, Retrieved from www.scopus.com Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. Retrieved from www.scopus.com Deutsch, M., & Gerard, H. B. (1955). A study of normative and informational social influences upon individual judgment. Journal of Abnormal and Social Psychology, 51(3), 629-636. doi:10.1037/h0046408 Dominici, G., & Palumbo, F. (2013). How to build an e-learning product: Factors for student/customer satisfaction. Business Horizons, 56(1), 87-96. doi:10.1016/j.bushor.2012.09.011 Dudwick, N., Kuehnast, K., Jones, V. N., & Woolcock, M. (2006). Analyzing social capital in context: A guide to using qualitative methods and data. Analyzing Social Capital in Context: A Guide to using Qualitative Methods and Data, Retrieved from www.scopus.com George, D., & Mallery, P. (2003). SPSS for windows step by step: A simple guide and reference 11.0 update. SPSS for Windows Step by Step: A Simple Guide and Reference, Retrieved from www.scopus.com Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1995). Multivariate Data Analysis, Retrieved from www.scopus.com Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2013). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Retrieved from www.scopus.com Hassanzadeh, A., Kanaani, F., & Elahi, S. (2012). A model for measuring e-learning systems success in universities. Expert Systems with Applications, 39(12), 10959-10966. doi:10.1016/j.eswa.2012.03.028 Husain, N. M., Lakulu, M. M., & Sarkawi, S. (2017). The need for a competency model of programming teachers: A need analysis survey. International Journal of Scientific and Research Publications, 7(6), 265-269. Retrieved from www.scopus.com Iqbal, S., & Bhatti, Z. A. (2017). What drives m-learning? an empirical investigation of university student perceptions in pakistan. Higher Education Research and Development, 36(4), 730-746. doi:10.1080/07294360.2016.1236782 Izkair, A. S., Lakulu, M. M., & Mussa, I. H. (2020). Intention to use mobile learning in higher education institutions: Review paper. International Journal of Education Science Technology and Engineering, 3(2), 78-84. Retrieved from www.scopus.com Lowry, P. B., & Gaskin, J. (2014). Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: When to choose it and how to use it. IEEE Transactions on Professional Communication, 57(2), 123-146. doi:10.1109/TPC.2014.2312452 Mohamad, A. J., Lakulu, M., & Samsudin, K. (2016). The development of a mobile application for kindergarten early reading: Challenges and opportunities. Journal of Engineering and Applied Sciences, 11(3), 380-383. Retrieved from www.scopus.com Mohamad, A. J., & Lakulu, M. M. (2017). A framework of mobile educational application for kindergarten early reading. The International Journal of Multimedia & its Applications, 9, 113-119. Retrieved from www.scopus.com Mohamad, M., Maringe, F., & Woollard, J. (2012). Mobile learning in malaysian schools:Opportunities and challenges of introducing teaching through mobile phones. International Journal for E-Learning Security, 2(1), 133-137. Retrieved from www.scopus.com Mohammadi, H. (2015). Social and individual antecedents of m-learning adoption in iran. Computers in Human Behavior, 49, 191-207. doi:10.1016/j.chb.2015.03.006 Murali, R., & Manimekalai, J. (2012). Adoption of mobile technology in a learning environment. International Conference on Emerging Trends of Computer & Information Technology (ICETCIT 2012), , 29-33. Retrieved from www.scopus.com Najmul Islam, A. K. M. (2014). Sources of satisfaction and dissatisfaction with a learning management system in post-adoption stage: A critical incident technique approach. Computers in Human Behavior, 30, 249-261. doi:10.1016/j.chb.2013.09.010 Pallant, J. (2001). SPSS Survival Manual, Retrieved from www.scopus.com Poong, Y. S., Yamaguchi, S., & Takada, J. -. (2017). Investigating the drivers of mobile learning acceptance among young adults in the world heritage town of luang prabang, laos. Information Development, 33(1), 57-71. doi:10.1177/0266666916638136 Rashotte, L. (2007). Social influence. Blackwell Encyclopedia of Sociology, , 4426-4429. Retrieved from www.scopus.com Rogers, E. M. (1995). Diffusion of Innovations, Retrieved from www.scopus.com Sánchez-Prieto, J. C., Olmos-Migueláñez, S., & García-Peñalvo, F. J. (2016). Informal tools in formal contexts: Development of a model to assess the acceptance of mobile technologies among teachers. Computers in Human Behavior, 55, 519-528. doi:10.1016/j.chb.2015.07.002 Tan, G. W. -., Ooi, K. -., Leong, L. -., & Lin, B. (2014). Predicting the drivers of behavioral intention to use mobile learning: A hybrid SEM-neural networks approach. Computers in Human Behavior, 36, 198-213. doi:10.1016/j.chb.2014.03.052 Varshney, U., & Vetter, R. (2002). Mobile commerce: Framework, applications and networking support. Mobile Networks and Applications, 7(3), 185-198. doi:10.1023/A:1014570512129 Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly: Management Information Systems, 27(3), 425-478. doi:10.2307/30036540 Yin, R. K. (1994). Case Study Research: Design and Methods, Retrieved from www.scopus.com Zaremohzzabieh, Z., Samah, B. A., Omar, S. Z., Bolong, J., & Mohamed Shaffril, H. A. (2014). Fisherman's acceptance of information and communication technology integration in malaysia: Exploring the moderating effect of age and experience. Journal of Applied Sciences, 14(9), 873-882. Retrieved from www.scopus.com |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |