UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The novel hematite (α-Fe2O3)/nickel oxide (NiO) heterostructures were grown on fluorine-doped tin oxide (FTO) coated glass substrates at various deposited NiO of 3, 5, and 7 layers. The heterostructures were successfully synthesized using the immersion and sol–gel spin coating methods for α-Fe2O3 and NiO films, respectively. The field emission scanning electron microscopy analysis showed that each sample of α-Fe2O3/NiO heterostructures has a unique surface morphology when deposited with different NiO layers. The X-ray diffraction pattern shows that the number of NiO layers affected the diffraction peaks. The NiO diffraction peak intensity at (111) plane increased when the deposition number of NiO layer was increased. The crystallite sizes of NiO were 35.4, 33.6, and 38.0 nm for 3-, 5-, and 7-layer NiO, respectively. The interplanar spacing, lattice parameter, and unit cell volume indicate NiO with 3-layer as the highest, while 5-and 7-layer had the same values. Meanwhile, the strain and stress values show the compressive strain and tensile stress, respectively. The optical properties reveal that the highest transmittance and the lowest absorbance percentages were recorded for a 3-layer NiO sample. In contrast, the lowest transmittance and the highest absorbance percentages were obtained for the sample with 5-layer NiO. Different thicknesses and morphologies of heterostructures explained these situations. In addition, each unique heterostructure of α-Fe2O3/NiO with high visible light absorption nature is perceived to reduce the bandgap energy and has the potential to be used in sensor and solar cell applications. |
References |
Abdullah, M. A. R., Mamat, M. H., Ismail, A. S., Malek, M. F., Suriani, A. B., Ahmad, M. K., . . . Rusop, M. (2019). Direct and seedless growth of nickel oxide nanosheet architectures on ITO using a novel solution immersion method. Materials Letters, 236, 460-464. doi:10.1016/j.matlet.2018.10.163 Ahmad, W. R. W., Mamat, M. H., Khusaimi, Z., Ismail, A. S., & Rusop, M. (2019). Impact of annealing temperature to the performance of hematite-based humidity sensor. Indonesian Journal of Electrical Engineering and Computer Science, 13(3), 1079-1086. doi:10.11591/ijeecs.v13.i3.pp1079-1086 Chen, Y., Cai, R., Yang, Y., Liu, C., Yuan, A., Yang, H., & Shen, X. (2017). Cyanometallic frameworks derived hierarchical porous Fe2O3/NiO microflowers with excellent lithium-storage property. Journal of Alloys and Compounds, 698, 469-475. doi:10.1016/j.jallcom.2016.12.230 Dong, S., Wu, D., Gao, W., Hao, H., Liu, G., & Yan, S. (2020). Multi-dimensional templated synthesis of hierarchical Fe2O3/NiO composites and their superior ethanol sensing properties promoted by nanoscale p-n heterojunctions. Dalton Transactions, 49(4), 1300-1310. doi:10.1039/c9dt04185k Fahmi, N. F. Q., Mamat, M. H., Zoolfakar, A. S., Razak, A. H. A., & Rusop, M. (2019). Effect of zn-doping on the structural, optical, and humidity sensing properties of sol-gel synthesized NiO thin film. International Journal of Recent Technology and Engineering, 8, 6745-6749. Retrieved from www.scopus.com Gawande, M. B., Pandey, R. K., & Jayaram, R. V. (2012). Role of mixed metal oxides in catalysis science - versatile applications in organic synthesis. Catalysis Science and Technology, 2(6), 1113-1125. doi:10.1039/c2cy00490a Huo, Y., Zhu, Y., Xie, J., Cao, G., Zhu, T., Zhao, X., & Zhang, S. (2013). Controllable synthesis of hollow α-Fe2O3 nanostructures, their growth mechanism, and the morphology-reserved conversion to magnetic Fe3O4/C nanocomposites. RSC Advances, 3(41), 19097-19103. doi:10.1039/c3ra42764a Ibupoto, Z. H., Abbasi, M. A., Liu, X., Alsalhi, M. S., & Willander, M. (2014). The synthesis of NiO/TiO2 heterostructures and their valence band offset determination. Journal of Nanomaterials, 2014 doi:10.1155/2014/928658 Ismail, A. S., Mamat, M. H., Malek, M. F., Yusoff, M. M., Mohamed, R., Sin, N. D. M., . . . Rusop, M. (2018). Heterogeneous SnO2/ZnO nanoparticulate film: Facile synthesis and humidity sensing capability. Materials Science in Semiconductor Processing, 81, 127-138. doi:10.1016/j.mssp.2018.03.022 Ismail, A. S., Mamat, M. H., Yusoff, M. M., Malek, M. F., Zoolfakar, A. S., Rani, R. A., . . . Rusop, M. (2018). Enhanced humidity sensing performance using sn-doped ZnO nanorod Array/SnO2 nanowire heteronetwork fabricated via two-step solution immersion. Materials Letters, 210, 258-262. doi:10.1016/j.matlet.2017.09.040 Kozuka, H. (2018). Stress evolution and cracking in sol-gel-derived thin films. Handbook of sol-gel science and technology: Processing, characterization and applications (pp. 275-311) doi:10.1007/978-3-319-32101-1_12 Retrieved from www.scopus.com Lee, H., Huang, Y. -., Horn, M. W., & Feng, S. -. (2018). Engineered optical and electrical performance of rf-sputtered undoped nickel oxide thin films for inverted perovskite solar cells. Scientific Reports, 8(1) doi:10.1038/s41598-018-23907-0 Li, L., Liang, P., Liu, C., Zhang, H., Mitsuzaki, N., & Chen, Z. (2019). New method for improving the bulk charge separation of hematite with enhanced water splitting. International Journal of Hydrogen Energy, 44(8), 4208-4217. doi:10.1016/j.ijhydene.2018.12.125 Mamat, M. H., Hafizah, N. N., & Rusop, M. (2013). Fabrication of thin, dense and small-diameter zinc oxide nanorod array-based ultraviolet photoconductive sensors with high sensitivity by catalyst-free radio frequency magnetron sputtering. Materials Letters, 93, 215-218. doi:10.1016/j.matlet.2012.11.105 Mamat, M. H., Malek, M. F., Hafizah, N. N., Asiah, M. N., Suriani, A. B., Mohamed, A., . . . Rusop, M. (2016). Effect of oxygen flow rate on the ultraviolet sensing properties of zinc oxide nanocolumn arrays grown by radio frequency magnetron sputtering. Ceramics International, 42(3), 4107-4119. doi:10.1016/j.ceramint.2015.11.083 Mamat, M. H., Parimon, N., Ismail, A. S., Shameem Banu, I. B., Sathik Basha, S., Rani, R. A., . . . Rusop, M. (2020). Synthesis, structural and optical properties of mesostructured, X-doped NiO (x = zn, sn, fe) nanoflake network films. Materials Research Bulletin, 127 doi:10.1016/j.materresbull.2020.110860 Mamat, M. H., Parimon, N., Ismail, A. S., Shameem Banu, I. B., Sathik Basha, S., Vijayaraghavan, G. V., . . . Rusop, M. (2019). Structural, optical, and electrical evolution of sol–gel-immersion grown nickel oxide nanosheet array films on aluminium doping. Journal of Materials Science: Materials in Electronics, 30(10), 9916-9930. doi:10.1007/s10854-019-01330-z Md Sin, N. D., Mamat, M. H., Malek, M. F., & Rusop, M. (2014). Fabrication of nanocubic ZnO/SnO2 film-based humidity sensor with high sensitivity by ultrasonic-assisted solution growth method at different zn:Sn precursor ratios. Applied Nanoscience (Switzerland), 4(7), 829-838. doi:10.1007/s13204-013-0262-5 Mohamed, A., Ardyani, T., Abu Bakar, S., Sagisaka, M., Umetsu, Y., Hamon, J. J., . . . Eastoe, J. (2018). Rational design of aromatic surfactants for graphene/natural rubber latex nanocomposites with enhanced electrical conductivity. Journal of Colloid and Interface Science, 516, 34-47. doi:10.1016/j.jcis.2018.01.041 Parimon, N., Mamat, M. H., Abdullah, M. A. R., Ismail, A. S., Ahmad, W. R. W., Banu, I. B. S., & Rusop, M. (2018). Nanocarnation-like nickel oxide thin film: Structural and optical properties. International Journal of Engineering and Technology(UAE), 7(4), 103-106. Retrieved from www.scopus.com Parimon, N., Mamat, M. H., Ahmad, M. K., Shameem Banu, I. B., & Rusop, M. (2019). Highly porous NiO nanoflower-based humidity sensor grown on seedless glass substrate via one-step simplistic immersion method. International Journal of Engineering and Advanced Technology, 9(1), 5718-5722. doi:10.35940/ijeat.A3052.109119 Parimon, N., Mamat, M. H., Shameem Banu, I. B., Vasimalai, N., Ahmad, M. K., Suriani, A. B., . . . Rusop, M. (2020). Fabrication, structural, optical, electrical, and humidity sensing characteristics of hierarchical NiO nanosheet/nanoball-flower-like structure films. Journal of Materials Science: Materials in Electronics, 31(14), 11673-11687. doi:10.1007/s10854-020-03719-7 Pastrana, E. C., Zamora, V., Wang, D., & Alarcón, H. (2019). Fabrication and characterization of α-Fe2O3/CuO heterostructure thin films via dip-coating technique for improved photoelectrochemical performance. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(3) doi:10.1088/2043-6254/ab3d2f Rashad, M., Darwish, A. A. A., & AlGarni, S. E. (2019). High electrical conductivity of NiO/xFe2O3(x = 0.0, 0.3, 0.5, 0.7 and 1) nanoparticles for solid-state electronics. Journal of Magnetism and Magnetic Materials, 491 doi:10.1016/j.jmmm.2019.165577 Sakorikar, T., Kavitha, M. K., Vayalamkuzhi, P., & Jaiswal, M. (2017). Thickness-dependent crack propagation in uniaxially strained conducting graphene oxide films on flexible substrates. Scientific Reports, 7(1) doi:10.1038/s41598-017-02703-2 Sankova, N., & Parkhomchuk, E. (2020). Pseudomorphism and size stabilization of hematite particles in the organic phase synthesis. Journal of Solid State Chemistry, 282 doi:10.1016/j.jssc.2019.121130 Sun, G. -., Kheel, H., Lee, J. K., Choi, S., Lee, S., & Lee, C. (2016). H2S gas sensing properties of Fe2O3 nanoparticle-decorated NiO nanoplate sensors. Surface and Coatings Technology, 307, 1088-1095. doi:10.1016/j.surfcoat.2016.06.066 Swaminarayan, S., & Srolovitz, D. J. (1996). Surface segregation in thin films. Acta Materialia, 44(5), 2067-2072. doi:10.1016/1359-6454(95)00282-0 Tan, W., Tan, J., Fan, L., Yu, Z., Qian, J., & Huang, X. (2018). Fe2O3-loaded NiO nanosheets for fast response/recovery and high response gas sensor. Sensors and Actuators, B: Chemical, 256, 282-293. doi:10.1016/j.snb.2017.09.187 Uddin, M. T., Babot, O., Thomas, L., Olivier, C., Redaelli, M., D'Arienzo, M., . . . Toupance, T. (2015). New insights into the photocatalytic properties of RuO2/TiO2 mesoporous heterostructures for hydrogen production and organic pollutant photodecomposition. Journal of Physical Chemistry C, 119(13), 7006-7015. doi:10.1021/jp512769u Wang, C., Cui, Y., & Tang, K. (2013). One-pot synthesis of α-Fe2O3nanospheres by solvothermal method. Nanoscale Research Letters, 8(1), 1-4. doi:10.1186/1556-276X-8-213 Way, A., Luke, J., Evans, A. D., Li, Z., Kim, J. -., Durrant, J. R., . . . Tsoi, W. C. (2019). Fluorine doped tin oxide as an alternative of indium tin oxide for bottom electrode of semi-transparent organic photovoltaic devices. AIP Advances, 9(8) doi:10.1063/1.5104333 Yusoff, M. M., Mamat, M. H., Abdullah, M. A. R., Ismail, A. S., Malek, M. F., Zoolfakar, A. S., . . . Rusop, M. (2020). Coupling heterostructure of thickness-controlled nickel oxide nanosheets layer and titanium dioxide nanorod arrays via immersion route for self-powered solid-state ultraviolet photosensor applications. Measurement: Journal of the International Measurement Confederation, 149 doi:10.1016/j.measurement.2019.106982 Zaini Zansahdan, M., HafizMamat, M., Salina, M., Khusaimi, Z., Noor, U. M., & Rusop, M. (2010). Heat treatment effects on the surface morphology and optical properties of ZnO nanostructures. Physica Status Solidi (C) Current Topics in Solid State Physics, 7(9), 2286-2289. doi:10.1002/pssc.200983722 Zeid, E. F. A., Ibrahem, I. A., Ali, A. M., & Mohamed, W. A. A. (2019). The effect of CdO content on the crystal structure, surface morphology, optical properties and photocatalytic efficiency of p-NiO/n-CdO nanocomposite. Results in Physics, 12, 562-570. doi:10.1016/j.rinp.2018.12.009 Zhang, D., Wang, Y., Wang, Y., Zhang, Y., & Song, X. -. (2020). Fe2O3/NiO photocathode for photocatalytic methanol fuel cell: An insight on solar energy conversion. Journal of Alloys and Compounds, 815 doi:10.1016/j.jallcom.2019.152377 Zhao, H., Li, C. -., Liu, L. -., Palma, B., Hu, Z. -., Renneckar, S., . . . Su, B. -. (2021). n-p heterojunction of TiO2-NiO core-shell structure for efficient hydrogen generation and lignin photoreforming. Journal of Colloid and Interface Science, 585, 694-704. doi:10.1016/j.jcis.2020.10.049 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |