UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :L Education
ISSN :2169-3536
Main Author :Muhamad Razuhanafi Mat Yazid
Title :A landscape of research on bus driver behavior: taxonomy, open challenges, motivations, recommendations, limitations, and pathways solution in future
Place of Production :Tanjung Malim
Publisher :Fakulti Seni, Komputeran dan Industri Kreatif
Year of Publication :2021
Notes :IEEE Access
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Driver behavior is a concerning issue in the area of intelligent transportation system (ITS). Driver behavior is a significant key player in a wide range of unpleasant events during the ride, such as accidents or crashes, traffic congestion, harsh braking, and acceleration/deceleration. Influencing factors of driver behavior have been explored in several studies. It is imperative to investigate these factors in order to provide a comprehensive analysis and to categorize them on the basis of a coherent taxonomy. With that, this study conducted a systematic review on prior studies that focused on bus driver behavior, particularly in the ITS. This study also established a taxonomy on the topic of driver behavior in multiple areas of ITS and their classifications. Different databases, namely ScienceDirect, Web of Science, and IEEE Explore, were utilized to obtain relevant articles from 2008 to 2021 (15 April). Several filtering and scanning stages were performed according to the exclusion/inclusion criteria on all 2,803 articles obtained; however, only 87 articles met the criteria. The final set of articles were categorized into a taxonomy. The first part of the taxonomy focuses on five main factors that influence driver behavior: environmental, demographic, habit, vehicle, and on-road routine factors. The second part of the taxonomy discusses the mapping of data collection methods on the basis of four categories: real-time data collection, survey, simulation, and benchmark. Discussion and analysis were provided to highlight the critical literature gaps on bus driver behavior in the ITS, involving the use of real-time data collection, which is imperative for acquiring highly accurate and sophisticated data. This multi-field systematic review has exposed new research opportunities, motivations, challenges, limitations, and recommendations and highlighted the need for the synergistic integration of interdisciplinary works. Overall, this study presented pathways solution in future direction on the basis of three sequenced phases, namely design, labeling and validation, and machine learning. This study can serve as a guide for future researchers, as it addressed the ambiguities in the ITS-driver behavior domain and provided valuable information on these ITS-driver behavior trends. ? 2013 IEEE.

References

Af Wahlberg, A. E. (2012). Changes in driver celeration behaviour over time: Do drivers learn from collisions? Transportation Research Part F: Traffic Psychology and Behaviour, 15(5), 471-479. doi:10.1016/j.trf.2012.04.002

Ahmad, M. S., Zulkipli, Z. H., Ameer Batcha, W., Paiman, N. F., Mohd Faudzi, S. A., Othman, I., & Osman, M. R. (2017). An observational study on speeding among malaysian express bus drivers. Journal of the Society of Automotive Engineers Malaysia, 1(2), 94-102. Retrieved from www.scopus.com

Al-Mayouf, Y. R. B., Mahdi, O. A., Taha, N. A., Abdullah, N. F., Khan, S., & Alam, M. (2018). Accident management system based on vehicular network for an intelligent transportation system in urban environments. Journal of Advanced Transportation, 2018 doi:10.1155/2018/6168981

An, S. -., Lee, B. -., & Shin, D. -. (2011). A survey of intelligent transportation systems. Paper presented at the Proceedings - 3rd International Conference on Computational Intelligence, Communication Systems and Networks, CICSyN 2011, 332-337. doi:10.1109/CICSyN.2011.76 Retrieved from www.scopus.com

Anderson, P., & Geroliminis, N. (2020). Dynamic lane restrictions on congested arterials. Transportation Research Part A: Policy and Practice, 135, 224-243. doi:10.1016/j.tra.2020.03.009

Balakrishnan, S., & Sivanandan, R. (2015). Influence of lane and vehicle subclass on free-flow speeds for urban roads in heterogeneous traffic. Paper presented at the Transportation Research Procedia, , 10 166-175. doi:10.1016/j.trpro.2015.09.066 Retrieved from www.scopus.com

Barcelo, J., & Casas, J. (2005). Dynamic network simulation with aimsun doi:10.1007/0-387-24109-4_3 Retrieved from www.scopus.com

Bolovinou, A., Amditis, A., Bellotti, F., & Tarkiainen, M. (2014). Driving style recognition for co-operative driving: A survey. ADAPTIVE 2014, the Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications, , 73-78. Retrieved from www.scopus.com

Boonmee, S., & Tangamchit, P. (2009). Portable reckless driving detection system. Paper presented at the 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2009, , 1 412-415. doi:10.1109/ECTICON.2009.5137037 Retrieved from www.scopus.com

Cafiso, S., Di Graziano, A., & Pappalardo, G. (2012). Road safety issues for bus transport management. Procedia-Social and Behavioral Sciences, 48, 2251-2261. Retrieved from www.scopus.com

Carmona, J., De Miguel, M. A., Martin, D., Garcia, F., & De La Escalera, A. (2016). Embedded system for driver behavior analysis based on GMM. Paper presented at the IEEE Intelligent Vehicles Symposium, Proceedings, , 2016-August 61-65. doi:10.1109/IVS.2016.7535365 Retrieved from www.scopus.com

Chang, J. (2016). Summary of NHTSA Heavy-Vehicle Vehicle-to-Vehicle Safety Communications Research Transp.Res.Board, USA, Tech.Rep.S2-S06-RW-1, Retrieved from www.scopus.com

Chen, C. -., & Kao, Y. -. (2013). The connection between the hassles-burnout relationship, as moderated by coping, and aberrant behaviors and health problems among bus drivers. Accident Analysis and Prevention, 53, 105-111. doi:10.1016/j.aap.2013.01.004

Dandapat, S., Bhattacharyya, K., & Maitra, B. (2020). Quantifying factors influencing urban bus passenger boarding and alighting dynamics in an emerging economy. Journal of Transportation Engineering Part A: Systems, 146(6) doi:10.1061/JTEPBS.0000348

Dave, S. M., Raykundaliya, D. P., & Shah, S. N. (2013). Modeling trip attributes and feasibility study of co-ordinated bus for school trips of children. Procedia - Soc.Behav.Sci., 104, 650-659. Retrieved from www.scopus.com

de Abreu e Silva, J., Moura, F., Garcia, B., & Vargas, R. (2015). Influential vectors in fuel consumption by an urban bus operator: Bus route, driver behavior or vehicle type? Transportation Research Part D: Transport and Environment, 38, 94-104. doi:10.1016/j.trd.2015.04.003

Deng, Z., Chu, D., Wu, C., He, Y., & Cui, J. (2019). Curve safe speed model considering driving style based on driver behaviour questionnaire. Transportation Research Part F: Traffic Psychology and Behaviour, 65, 536-547. doi:10.1016/j.trf.2018.02.007

Diah, J. M., & Hamidun, N. Q. A. (2018). The methodology review of traffic safety monitoring by using video recording for express bus in malaysia. Paper presented at the Proceedings - 2018 IEEE 14th International Colloquium on Signal Processing and its Application, CSPA 2018, 1-6. doi:10.1109/CSPA.2018.8368675 Retrieved from www.scopus.com

Dorn, L., Stephen, L., Wåhlberg, A., & Gandolfi, J. (2010). Development and validation of a self-report measure of bus driver behaviour. Ergonomics, 53(12), 1420-1433. doi:10.1080/00140139.2010.532882

Duarte, G. O., Gonçalves, G. A., & Farias, T. L. (2013). Vehicle monitoring for driver training in bus companies - application in two case studies in portugal. Transportation Research Part D: Transport and Environment, 18(1), 103-109. doi:10.1016/j.trd.2012.10.001

Eren, H., Makinist, S., Akin, E., & Yilmaz, A. (2012). Estimating driving behavior by a smartphone. Paper presented at the IEEE Intelligent Vehicles Symposium, Proceedings, 234-239. doi:10.1109/IVS.2012.6232298 Retrieved from www.scopus.com

Gibson, M., & Carnovale, M. (2015). The effects of road pricing on driver behavior and air pollution. Journal of Urban Economics, 89, 62-73. doi:10.1016/j.jue.2015.06.005

Gilandeh, S. S., Hosseinlou, M. H., & Anarkooli, A. J. (2018). Examining bus driver behavior as a function of roadway features under daytime and nighttime lighting conditions: Driving simulator study. Safety Science, 110, 142-151. doi:10.1016/j.ssci.2018.08.011

Goh, K., Currie, G., Sarvi, M., & Logan, D. (2014). Factors affecting the probability of bus drivers being at-fault in bus-involved accidents. Accident Analysis and Prevention, 66, 20-26. doi:10.1016/j.aap.2013.12.022

Goh, K. C. K., Currie, G., Sarvi, M., & Logan, D. (2014). Bus accident analysis of routes with/without bus priority. Accident Analysis and Prevention, 65, 18-27. doi:10.1016/j.aap.2013.12.002

Haber, Z. B., De la Varga, I., Graybeal, B. A., Nakashoji, B., & El-Helou, R. (2018). Properties and behavior of UHPC-class materials. Properties and Behavior of UHPC-Class Materials, Retrieved from www.scopus.com

Hamdar, S. H., Qin, L., & Talebpour, A. (2016). Weather and road geometry impact on longitudinal driving behavior: Exploratory analysis using an empirically supported acceleration modeling framework. Transportation Research Part C: Emerging Technologies, 67, 193-213. doi:10.1016/j.trc.2016.01.017

Heqimi, G., Gates, T. J., & Kay, J. J. (2018). Using spatial interpolation to determine impacts of annual snowfall on traffic crashes for limited access freeway segments. Accident Analysis and Prevention, 121, 202-212. doi:10.1016/j.aap.2018.09.014

Hickman, J. S., & Hanowski, R. J. (2012). An assessment of commercial motor vehicle driver distraction using naturalistic driving data. Traffic Injury Prevention, 13(6), 612-619. doi:10.1080/15389588.2012.683841

Huang, Y. -., Lin, P. -., & Wang, J. (2018). The influence of bus and taxi drivers’ public self-consciousness and social anxiety on aberrant driving behaviors. Accident Analysis and Prevention, 117, 145-153. doi:10.1016/j.aap.2018.04.014

Hungund, A. P., Pai, G., & Pradhan, A. K. (2021). Systematic review of research on driver distraction in the context of advanced driver assistance systems doi:10.1177/03611981211004129 Retrieved from www.scopus.com

Hwang, C. -., Chen, M. -., Shih, C. -., Chen, H. -., & Liu, W. K. (2018). Apply scikit-learn in python to analyze driver behavior based on OBD data. Paper presented at the Proceedings - 32nd IEEE International Conference on Advanced Information Networking and Applications Workshops, WAINA 2018, , 2018-January 636-639. doi:10.1109/WAINA.2018.00159 Retrieved from www.scopus.com

Kar, G., Asiroglu, B., & Bir, F. S. (2019). Scotto: Real-time driver behavior scoring using in-vehicle data. Paper presented at the IEEE Vehicular Technology Conference, , 2019-April doi:10.1109/VTCSpring.2019.8746461 Retrieved from www.scopus.com

Khoo, H. L., & Ahmed, M. (2018). Modeling of passengers’ safety perception for buses on mountainous roads. Accident Analysis and Prevention, 113, 106-116. doi:10.1016/j.aap.2018.01.025

Khorram, B., af Wåhlberg, A. E., & Tavakoli Kashani, A. (2020). Longitudinal jerk and celeration as measures of safety in bus rapid transit drivers in tehran. Theoretical Issues in Ergonomics Science, 21(5), 577-594. doi:10.1080/1463922X.2020.1719228

Kostovasili, M., & Antoniou, C. (2017). Simulation-based evaluation of evacuation effectiveness using driving behavior sensitivity analysis. Simulation Modelling Practice and Theory, 70, 135-148. doi:10.1016/j.simpat.2016.10.010

Law, T. H., Daud, M. S., Hamid, H., & Haron, N. A. (2017). Development of safety performance index for intercity buses: An exploratory factor analysis approach. Transport Policy, 58, 46-52. doi:10.1016/j.tranpol.2017.05.003

Li, H., Wolf, J. C., Mathew, J. K., Navali, N., Zehr, S. D., Hardin, B. L., & Bullock, D. M. (2020). Leveraging connected vehicles to provide enhanced roadway condition information. Journal of Transportation Engineering Part A: Systems, 146(8) doi:10.1061/JTEPBS.0000370

Liimatainen, H. (2011). Utilization of fuel consumption data in an ecodriving incentive system for heavy-duty vehicle drivers. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1087-1095. doi:10.1109/TITS.2011.2142182

Lin, B. T. W., & Hwang, S. -. (2012). Effect prediction of time-gaps for adaptive cruise control (ACC) and in-vehicle tasks on bus driver performance. Safety Science, 50(1), 68-75. doi:10.1016/j.ssci.2011.07.003

Lin, T. -., Hwang, S. -., & Green, P. A. (2009). Effects of time-gap settings of adaptive cruise control (ACC) on driving performance and subjective acceptance in a bus driving simulator. Safety Science, 47(5), 620-625. doi:10.1016/j.ssci.2008.08.004

Liu, H., Rodgers, M. O., & Guensler, R. (2019). The impact of road grade on vehicle accelerations behavior, PM2.5 emissions, and dispersion modeling. Transportation Research Part D: Transport and Environment, 75, 297-319. doi:10.1016/j.trd.2019.09.006

Liu, H., Rodgers, M. O., Liu, F., & Guensler, R. (2020). Bayesian approach in estimating the road grade impact on vehicle speed and acceleration on freeways. Transportmetrica A: Transport Science, 16(3), 602-625. doi:10.1080/23249935.2020.1722280

Ma, H., Xie, H., Huang, D., & Xiong, S. (2015). Effects of driving style on the fuel consumption of city buses under different road conditions and vehicle masses. Transportation Research Part D: Transport and Environment, 41, 205-216. doi:10.1016/j.trd.2015.10.003

Mallia, L., Lazuras, L., Violani, C., & Lucidi, F. (2015). Crash risk and aberrant driving behaviors among bus drivers: The role of personality and attitudes towards traffic safety. Accident Analysis and Prevention, 79, 145-151. doi:10.1016/j.aap.2015.03.034

Markkula, G., Engström, J., Lodin, J., Bärgman, J., & Victor, T. (2016). A farewell to brake reaction times? kinematics-dependent brake response in naturalistic rear-end emergencies. Accident Analysis and Prevention, 95, 209-226. doi:10.1016/j.aap.2016.07.007

Maslać, M., Antić, B., Lipovac, K., Pešić, D., & Milutinović, N. (2018). Behaviours of drivers in serbia: Non-professional versus professional drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 52, 101-111. doi:10.1016/j.trf.2017.11.020

Meseguer, J. E., Calafate, C. T., Cano, J. C., & Manzoni, P. (2013). DrivingStyles: A smartphone application to assess driver behavior. Paper presented at the Proceedings - IEEE Symposium on Computers and Communications, 535-540. doi:10.1109/ISCC.2013.6755001 Retrieved from www.scopus.com

Mihaly, A., & Gaspar, P. (2016). Driver categorization based on vehicle motion and trajectory data. Paper presented at the CINTI 2015 - 16th IEEE International Symposium on Computational Intelligence and Informatics, Proceedings, 101-105. doi:10.1109/CINTI.2015.7382902 Retrieved from www.scopus.com

Mohammadzadeh Moghaddam, A., & Ayati, E. (2014). Introducing a risk estimation index for drivers: A case of iran. Safety Science, 62, 90-97. doi:10.1016/j.ssci.2013.08.004

Morgan, J. F., Duley, A. R., & Hancock, P. A. (2010). Driver responses to differing urban work zone configurations. Accident Analysis and Prevention, 42(3), 978-985. doi:10.1016/j.aap.2009.12.021

Naiem, A., Reda, M., El-Beltagy, M., & El-Khodary, I. (2010). An agent based approach for modeling traffic flow. Paper presented at the INFOS2010 - 2010 7th International Conference on Informatics and Systems, Retrieved from www.scopus.com

Park, H. -., Kim, D. -., Kho, S. -., & Park, P. Y. (2017). Cross-classified multilevel models for severity of commercial motor vehicle crashes considering heterogeneity among companies and regions. Accident Analysis and Prevention, 106, 305-314. doi:10.1016/j.aap.2017.06.009

Phumphuang, P., Wuttidittachotti, P., & Saiprasert, C. (2016). Driver identification using variance of the acceleration data. Paper presented at the ICSEC 2015 - 19th International Computer Science and Engineering Conference: Hybrid Cloud Computing: A New Approach for Big Data Era, doi:10.1109/ICSEC.2015.7401436 Retrieved from www.scopus.com

Rahemi, Z., Ajorpaz, N. M., Sharifi Esfahani, M., & Aghajani, M. (2017). Sensation-seeking and factors related to dangerous driving behaviors among iranian drivers. Personality and Individual Differences, 116, 314-318. doi:10.1016/j.paid.2017.05.004

Ratanavaraha, V., & Jomnonkwao, S. (2014). Model of users' expectations of drivers of sightseeing buses: Confirmatory factor analysis. Transport Policy, 36, 253-262. doi:10.1016/j.tranpol.2014.09.004

Reason, J., Manstead, A., Stephen, S., Baxter, J., & Campbell, K. (1990). Errors and violations on the roads: A real distinction? Ergonomics, 33(10-11), 1315-1332. doi:10.1080/00140139008925335

Rodrigues, J. G. P., Kaiseler, M., Aguiar, A., Cunha, J. P. S., & Barros, J. (2015). A mobile sensing approach to stress detection and memory activation for public bus drivers. IEEE Transactions on Intelligent Transportation Systems, 16(6), 3294-3303. doi:10.1109/TITS.2015.2445314

Rolim, C., Baptista, P., Duarte, G., Farias, T., & Pereira, J. (2017). Real-time feedback impacts on eco-driving behavior and influential variables in fuel consumption in a lisbon urban bus operator. IEEE Transactions on Intelligent Transportation Systems, 18(11), 3061-3071. doi:10.1109/TITS.2017.2657333

Rolim, C., Baptista, P., Duarte, G., Farias, T., & Shiftan, Y. (2014). Quantification of the impacts of eco-driving training and real-time feedback on urban buses driver's behaviour. Paper presented at the Transportation Research Procedia, , 3 70-79. doi:10.1016/j.trpro.2014.10.092 Retrieved from www.scopus.com

Sam, E. F., Daniels, S., Brijs, K., Brijs, T., & Wets, G. (2018). Modelling public bus/minibus transport accident severity in ghana. Accident Analysis and Prevention, 119, 114-121. doi:10.1016/j.aap.2018.07.008

Shaharudin, M. Y., Al Balkhis, M. A. H., Mujir, M. S., & Hassan, O. H. (2012). Conceptual framework of design study on façade of hi-deck bus using FRP composite. Paper presented at the BEIAC 2012 - 2012 IEEE Business, Engineering and Industrial Applications Colloquium, 121-124. doi:10.1109/BEIAC.2012.6226034 Retrieved from www.scopus.com

Shaharudin, M. Y., Al Balkhis, M. A. H., Mujir, M. S., & Hassan, O. H. (2013). Line, shape and trend of innovative façade design of high deck bus for medium scale coachbuilder. Paper presented at the BEIAC 2013 - 2013 IEEE Business Engineering and Industrial Applications Colloquium, 202-204. doi:10.1109/BEIAC.2013.6560115 Retrieved from www.scopus.com

Silvano, A. P., & Ohlin, M. (2019). Non-collision incidents on buses due to acceleration and braking manoeuvres leading to falling events among standing passengers. Journal of Transport and Health, 14 doi:10.1016/j.jth.2019.04.006

Singh, M. K., & Rao, K. R. (2020). Cellular automata models for signalised and unsignalised intersections with special attention to mixed traffic flow: A review. IET Intelligent Transport Systems, 14(12), 1507-1516. doi:10.1049/iet-its.2020.0062

Song, C., Wu, J., Liu, M., Gong, H., & Gou, B. (2012). RESen: Sensing and evaluating the riding experience based on crowdsourcing by smart phones. Paper presented at the Proceedings - 2012 8th International Conference on Mobile Ad Hoc and Sensor Networks, MSN 2012, 147-152. doi:10.1109/MSN.2012.10 Retrieved from www.scopus.com

Strömberg, H. K., & Karlsson, I. C. M. (2013). Comparative effects of eco-driving initiatives aimed at urban bus drivers - results from a field trial. Transportation Research Part D: Transport and Environment, 22, 28-33. doi:10.1016/j.trd.2013.02.011

Taylor, A. H., & Dorn, L. (2006). Stress, fatigue, health, and risk of road traffic accidents among professional drivers: The contribution of physical inactivity doi:10.1146/annurev.publhealth.27.021405.102117 Retrieved from www.scopus.com

Tian, X., Cai, Y., Sun, X., Zhu, Z., & Xu, Y. (2019). An adaptive ECMS with driving style recognition for energy optimization of parallel hybrid electric buses. Energy, 189 doi:10.1016/j.energy.2019.116151

Useche, S. A., Ortiz, V. G., & Cendales, B. E. (2017). Stress-related psychosocial factors at work, fatigue, and risky driving behavior in bus rapid transport (BRT) drivers. Accident Analysis and Prevention, 104, 106-114. doi:10.1016/j.aap.2017.04.023

Vaitkus, V., Lengvenis, P., & Žylius, G. (2014). Driving style classification using long-term accelerometer information. Paper presented at the 2014 19th International Conference on Methods and Models in Automation and Robotics, MMAR 2014, 641-644. doi:10.1109/MMAR.2014.6957429 Retrieved from www.scopus.com

Verma, A., Chakrabarty, N., Velmurugan, S., Bhat, B. P., & Kumar, B. D. (2017). Sensation seeking behavior and crash involvement of indian bus drivers. Paper presented at the Transportation Research Procedia, , 25 4750-4762. doi:10.1016/j.trpro.2017.05.487 Retrieved from www.scopus.com

Virojboonkiate, N., Vateekul, P., & Rojviboonchai, K. (2018). Driver identification using histogram and neural network from acceleration data. Paper presented at the International Conference on Communication Technology Proceedings, ICCT, , 2017-October 1560-1564. doi:10.1109/ICCT.2017.8359893 Retrieved from www.scopus.com

Yan, Y., & Fan, Y. (2017). Infiuence of the driver style difference in the acceleration process on the energy consumption of the EV bus in. Proc.Int.Conf.Eng.Adv.Technol, , 2672-2680. Retrieved from www.scopus.com

Yao, J., Yang, X., Zhu, T., Danno, M., & Miyaji, M. (2009). Chinese driver behavior characteristics research at intersection based on intelligent vehicle-infrastructure integration experimental platform. Paper presented at the 2009 2nd International Conference on Intelligent Computing Technology and Automation, ICICTA 2009, , 3 523-528. doi:10.1109/ICICTA.2009.592 Retrieved from www.scopus.com

Yuan, Y., Lu, Y., & Wang, Q. (2020). Adaptive forward vehicle collision warning based on driving behavior. Neurocomputing, 408, 64-71. doi:10.1016/j.neucom.2019.11.024

Zhai, W., Jiang, Y., & Ji, S. (2019). Research on the application of data mining algorithms in intelligent transportation. Int.J.Adv.Pervas.Ubiquitous Comput, 11(2), 1-10. Retrieved from www.scopus.com

Zhang, D., Xiao, Q., Wang, J., & Li, K. (2013). Driver curve speed model and its application to ACC speed control in curved roads. International Journal of Automotive Technology, 14(2), 241-247. doi:10.1007/s12239-013-0027-x

Zhang, Y., & Fricker, J. D. (2020). Multi-state semi-markov modeling of recurrent events: Estimating driver waiting time at semi-controlled crosswalks. Analytic Methods in Accident Research, 28 doi:10.1016/j.amar.2020.100131

Zhang, Z., Ma, T., Ji, N., Hu, Z., & Zhu, W. (2019). An assessment of the relationship between driving skills and driving behaviors among chinese bus drivers. Advances in Mechanical Engineering, 11(1) doi:10.1177/1687814018824916


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.