UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
A high concentration of phenol and its derivatives were found in the surface water of the Euphrates River in south Iraq?s Nasiriya city causing its pollution from the wastewater derived from different chemicals. This study includes modification of the TiO2 (anatase) bandgap by doping with platinum atoms using the sol-gel method. The modification would reduce the gap separating energy levels between conduction band CB and valance band VB, which in turn, would facilitate the transfer of excited electrons from VB to CB. Absorption of the energy from incident photons having the same or larger energy than that of the bandgap would promote the formation of the couple (electron-hole). The resulting (e-/h+) couple would act to produce (OH) radicals. OH radicals haze a power with full capacity to destroy organic pollutants in the water that are absorbed on the surface of the photocatalytic TiO2. The structure of prepared TiO2 powders was dulcified using XRD, the particle size and their distribution were characterized using Atomic Force Microscopy (AFM). The photocatalytic reaction was followed out using ATR-FTIR, UV-Vis spectrophotometry. The effect of the weight of the photocatalytic catalyst (TiO2) from (0.10 - 0.83 g. L-1) was studied to monitor its effect on the rate of decomposition of phenol on the pre-determined aqueous solution of the compound. The most effective weight was found to equal (0.43 g. L-1). The activities of TiO2 (anatase) and doped TiO2 with platinum were studied under the influence of a source of UV light and direct sunlight under the same conditions. The results revealed that the reaction obeys first-order kinetics having a rate constant of 4.69x10-6 min-1 for TiO2 and 9.44x10-6 min-1 for doped TiO2. ? 2021, Egyptian Society for the Development of Fisheries and Human Health. All rights reserved. |
References |
Abbas, A. A. A., & Hassan, F. M. (2018). Water quality assessment of euphrates river in qadisiyah province (diwaniyah river), iraq. Iraqi Journal of Agricultural Sciences, 49(2), 251-261. Retrieved from www.scopus.com Abdullah, E. J. (2013). Evaluation of surface water quality indices for heavy metals of diyala river-iraq. J Nat Sci Res, 3(8), 63-69. Retrieved from www.scopus.com Bagheri, S., Muhd Julkapli, N., & Bee Abd Hamid, S. (2014). Titanium dioxide as a catalyst support in heterogeneous catalysis. Scientific World Journal, 2014 doi:10.1155/2014/727496 Bayikadi, K. S., Wu, C. T., Chen, L. -., Chen, K. -., Chou, F. -., & Sankar, R. (2020). Synergistic optimization of thermoelectric performance of sb doped GeTe with a strained domain and domain boundaries. Journal of Materials Chemistry A, 8(10), 5332-5341. doi:10.1039/d0ta00628a Black, M., & King, J. (2009). The atlas of water: Mapping the world's most critical resource. The Atlas of Water: Mapping the World's most Critical Resource, Retrieved from www.scopus.com Chenier, P. J. (2002). Survey of industrial chemistry. Survey of Industrial Chemistry, Retrieved from www.scopus.com Cukrov, N., Tepić, N., Omanović, D., Lojen, S., Bura-Nakić, E., Vojvodić, V., & Pižeta, I. (2012). Qualitative interpretation of physico-chemical and isotopic parameters in the krka river (croatia) assessed by multivariate statistical analysis. International Journal of Environmental Analytical Chemistry, 92(10), 1187-1199. doi:10.1080/03067319.2010.550003 Darabdhara, G., Boruah, P. K., Borthakur, P., Hussain, N., Das, M. R., Ahamad, T., . . . Yamauchi, Y. (2016). Reduced graphene oxide nanosheets decorated with au-pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water. Nanoscale, 8(15), 8276-8287. doi:10.1039/c6nr00231e Das, T. K., Sakthivel, T. S., Jeyaranjan, A., Seal, S., & Bezbaruah, A. N. (2020). Ultra-high arsenic adsorption by graphene oxide iron nanohybrid: Removal mechanisms and potential applications. Chemosphere, 253 doi:10.1016/j.chemosphere.2020.126702 Dimkpa, C. O., Singh, U., Bindraban, P. S., Elmer, W. H., Gardea-Torresdey, J. L., & White, J. C. (2018). Exposure to weathered and fresh nanoparticle and ionic zn in soil promotes grain yield and modulates nutrient acquisition in wheat (triticum aestivum L.). Journal of Agricultural and Food Chemistry, 66(37), 9645-9656. doi:10.1021/acs.jafc.8b03840 Ewaid, S. H., & Abed, S. A. (2017). Water quality index for al-gharraf river, southern iraq. Egyptian Journal of Aquatic Research, 43(2), 117-122. doi:10.1016/j.ejar.2017.03.001 Gönüllü, Y., Haidry, A. A., & Saruhan, B. (2015). Nanotubular cr-doped TiO2 for use as high-temperature NO2 gas sensor. Sensors and Actuators, B: Chemical, 217, 78-87. doi:10.1016/j.snb.2014.11.065 Hashimoto, K., Irie, H., & Fujishima, A. (2005). TiO 2 photocatalysis: A historical overview and future prospects. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 44(12), 8269-8285. doi:10.1143/JJAP.44.8269 Hoffman, A. J., Carraway, E. R., & Hoffmann, M. R. (1994). Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids. Environmental Science and Technology, 28(5), 776-785. doi:10.1021/es00054a006 Hu, J., Qiao, Y., Zhou, L., & Li, S. (2012). Spatiotemporal distributions of nutrients in the downstream from gezhouba dam in yangtze river, china. Environmental Science and Pollution Research, 19(7), 2849-2859. doi:10.1007/s11356-012-0791-6 Ijaz, M., & Zafar, M. (2021). Titanium dioxide nanostructures as efficient photocatalyst: Progress, challenges and perspective. International Journal of Energy Research, 45(3), 3569-3589. doi:10.1002/er.6079 Karim, F., & Fakhruddin, A. N. M. (2012). Recent advances in the development of biosensor for phenol: A review. Reviews in Environmental Science and Biotechnology, 11(3), 261-274. doi:10.1007/s11157-012-9268-9 Kim, S., Hwang, S. -., & Choi, W. (2005). Visible light active platinum-ion-doped TiO2 photocatalyst. Journal of Physical Chemistry B, 109(51), 24260-24267. doi:10.1021/jp055278y Levchuk, I., Rueda Márquez, J. J., & Sillanpää, M. (2018). Removal of natural organic matter (NOM) from water by ion exchange – A review. Chemosphere, 192, 90-104. doi:10.1016/j.chemosphere.2017.10.101 Majno, G. (1975). The healing hand; man and wound in the ancient world. The Healing Hand: Man and Wound in the Ancient World, Retrieved from www.scopus.com Mandal, P., Upadhyay, R., & Hasan, A. (2010). Seasonal and spatial variation of yamuna river water quality in delhi, india. Environmental Monitoring and Assessment, 170(1-4), 661-670. doi:10.1007/s10661-009-1265-2 McGarigal, K., Cushman, S., & Stafford, S. (2000). Multivariate Statistics for Wildlife and Ecology Research, Retrieved from www.scopus.com Mozia, S., Tomaszewska, M., & Morawski, A. W. (2005). Photocatalytic degradation of azo-dye acid red 18. Desalination, 185(1-3), 449-456. doi:10.1016/j.desal.2005.04.050 Mustapha, A., & Nabegu, A. B. (2011). Surface water pollution source identification using principal component and factor analysis in getsi river, kano, nigeria. Australian Journal of Basic and Applied Sciences, 5(12), 1507-1512. Retrieved from www.scopus.com Nolan, M., Elliott, S. D., Mulley, J. S., Bennett, R. A., Basham, M., & Mulheran, P. (2008). Electronic structure of point defects in controlled self-doping of the TiO2 (110) surface: Combined photoemission spectroscopy and density functional theory study. Physical Review B - Condensed Matter and Materials Physics, 77(23) doi:10.1103/PhysRevB.77.235424 Pan, C. -., & Wu, J. C. S. (2006). Visible-light response cr-doped TiO2-XNX photocatalysts. Materials Chemistry and Physics, 100(1), 102-107. doi:10.1016/j.matchemphys.2005.12.013 Pan, Y., Liu, Y., Lin, Y., & Liu, C. (2016). Metal doping effect of the M-Co2P/Nitrogen-doped carbon nanotubes (M = fe, ni, cu) hydrogen evolution hybrid catalysts. ACS Applied Materials and Interfaces, 8(22), 13890-13901. doi:10.1021/acsami.6b02023 Paramasivam, I., Jha, H., Liu, N., & Schmuki, P. (2012). A review of photocatalysis using self-organized TiO 2 nanotubes and other ordered oxide nanostructures. Small, 8(20), 3073-3103. doi:10.1002/smll.201200564 Pradhan, U. K., Shirodkar, P. V., & Sahu, B. K. (2009). Physico-chemical characteristics of the coastal water off devi estuary, orissa and evaluation of its seasonal changes using chemometric techniques. Current Science, 96(9), 1203-1209. Retrieved from www.scopus.com Rappoport, Z. (2003). The Chemistry of Phenols, Retrieved from www.scopus.com Rashed, M. N., & El-Amin, A. A. (2007). Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources. Int.J.Phys.Sci., 2(3), 73-81. Retrieved from www.scopus.com Schulze, T. F., & Schmidt, T. W. (2015). Photochemical upconversion: Present status and prospects for its application to solar energy conversion. Energy and Environmental Science, 8(1), 103-125. doi:10.1039/c4ee02481h Shrestha, S., Kazama, F., & Nakamura, T. (2008). Use of principal component analysis, factor analysis and discriminant analysis to evaluate spatial and temporal variations in water quality of the mekong river. Journal of Hydroinformatics, 10(1), 43-56. doi:10.2166/hydro.2008.008 Singh, K. P., Malik, A., Mohan, D., Sinha, S., & Singh, V. K. (2005). Chemometric data analysis of pollutants in wastewater - A case study. Analytica Chimica Acta, 532(1), 15-25. doi:10.1016/j.aca.2004.10.043 Spath, P. L., & Dayton, D. C. (2003). Preliminary screening - technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. Preliminary Screening - Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas, Retrieved from www.scopus.com Sun, M., Liu, H., Sun, Z., & Li, W. (2020). Donor-acceptor codoping effects on tuned visible light response of TiO2. Journal of Environmental Chemical Engineering, 8(5) doi:10.1016/j.jece.2020.104168 Tobiszewski, M., Tsakovski, S., Simeonov, V., & Namieśnik, J. (2010). Surface water quality assessment by the use of combination of multivariate statistical classification and expert information. Chemosphere, 80(7), 740-746. doi:10.1016/j.chemosphere.2010.05.024 Vardhan, K. H., Kumar, P. S., & Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290 doi:10.1016/j.molliq.2019.111197 Vione, D., Encinas, A., Fabbri, D., & Calza, P. (2018). A model assessment of the potential of river water to induce the photochemical attenuation of pharmaceuticals downstream of a wastewater treatment plant (guadiana river, badajoz, spain). Chemosphere, 198, 473-481. doi:10.1016/j.chemosphere.2018.01.156 Vittori Antisari, L., Trivisano, C., Gessa, C., Gherardi, M., Simoni, A., Vianello, G., & Zamboni, N. (2010). Quality of municipal wastewater compared to surface waters of the river and crtificial canal network in different areas of the eastern po valley (italy). Water Qual Expo Health, 2(1), 1-13. Retrieved from www.scopus.com Wdaah Alsalih, M. (2019). MODIFICATION OF THE NANO TITANIUM BAND GAP REACTIONS OF SOLID DIOXIDE WITH (ANTIMONY) STIBIUM S AND ITS DETERMINATION PHOTOCATALYTIC ACTIVITY. Science Proceedings Series, 1(2), 161-164. Retrieved from www.scopus.com Wu, Y., Tao, X., Qing, Y., Xu, H., Yang, F., Luo, S., . . . Lu, X. (2019). Cr-doped FeNi–P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Advanced Materials, 31(15) doi:10.1002/adma.201900178 Yoon, H. Y., Lee, J. G., Esposti, L. D., Iafisco, M., Kim, P. J., Shin, S. G., . . . Adamiano, A. (2020). Synergistic release of crop nutrients and stimulants from hydroxyapatite nanoparticles functionalized with humic substances: Toward a multifunctional nanofertilizer. ACS Omega, 5(12), 6598-6610. doi:10.1021/acsomega.9b04354 Zhang, Q., Chere, E. K., McEnaney, K., Yao, M., Cao, F., Ni, Y., . . . Ren, Z. (2015). Enhancement of thermoelectric performance of n-type PbSe by cr doping with optimized carrier concentration. Advanced Energy Materials, 5(8) doi:10.1002/aenm.201401977 Zhu, X., Zhang, D., Chen, C. -., Zhang, Q., Liu, R. -., Xia, Z., . . . Lu, X. (2020). Harnessing the interplay of Fe–Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy, 71 doi:10.1016/j.nanoen.2020.104597 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |