UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Phyllanthus acidus (L.) Skeels (Phyllanthaceae family) is a plant that is widely distributed in Asian countries, which is traditionally used as a medicinal plant to treat various ailments. Inspired by the uses of the plant, the aim of this study was to extract and isolate bioactive compounds from P. acidus as potential antimicrobials. The isolation and identification of phyllanthol (1) and meso-hydrobenzoin (2) from the dichloromethane bark extract of P. acidus are presented. The structures of these compounds were elucidated by extensive spectroscopic analyses. To the best of our knowledge, compound 1 is a known compound and compound 2 is the first report presented on the isolation and structural elucidation as a natural compound. The bark extract and the isolated compounds were evaluated for antibacterial activities against Escherichia coli, Enterococcus faecium, Pseudomonas aeruginosa, and Staphylococcus aureus by disc diffusion assay, minimal inhibitory concentration (MIC), and half-maximal inhibitory concentration (IC50). Compounds 1 and 2 showed significant activities against Escherichia coli (IC50 value = 0.42 and 0.47 ?g/mL, respectively), Enterococcus faecium (IC50 value = 0.86 and 0.43 ?g/mL, respectively), Pseudomonas aeruginosa (IC50 value = 0.45 and 0.44 ?g/mL, respectively), and Staphylococcus aureus (IC50 value = 12.87 and 0.44 ?g/mL, respectively). These compounds also showed significant antiplasmodial activities towards the 3D7 strain with IC50 value of 0.218 ?M for compound 1 and 0.228 ?M for compound 2, in vitro. All the isolated compounds were not active against MRC-5 cells with an IC50 value of more than 60 ?g/mL. From the results obtained, P. acidus has been proven as a source of molecules with therapeutic potentials. ? 2021 Malaysian Institute of Chemistry. All rights reserved. |
References |
Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496. doi:10.1093/ajcp/45.4_ts.493 Desjardins, R. E., Canfield, C. J., Haynes, J. D., & Chulay, J. D. (1979). Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrobial Agents and Chemotherapy, 16(6), 710-718. doi:10.1128/AAC.16.6.710 Imazato, S., Kuramoto, A., Takahashi, Y., Ebisu, S., & Peters, M. C. (2006). In vitro antibacterial effects of the dentin primer of clearfil protect bond. Dental Materials, 22(6), 527-532. doi:10.1016/j.dental.2005.05.009 Jagessar, R. C., Mars, A., & Gomes, G. (2008). Selective antimicrobial properties of phyllanthus acidus leaf extract against candida albicans, escherichia coli and staphylococcus aureus using stokes disc diffusion, well diffusion, streak plate and a dilution method. Nature and Science, 6(2), 24-38. Retrieved from www.scopus.com Kalkreuter, E., Pan, G., Cepeda, A. J., & Shen, B. (2020). Targeting bacterial genomes for natural product discovery. Trends in Pharmacological Sciences, 41(1), 13-26. doi:10.1016/j.tips.2019.11.002 Li, J. T., Sun, X. L., Lin, Z. P., & Li, T. S. (2006). Pinacol coupling of aromatic aldehydes using la-TiCl4 in CH3COOEt under ultrasound irradiation. E-Journal of Chemistry, 3(4), 230-235. Retrieved from www.scopus.com Lim, T. K. (2012). Calophyllum inophyllum. in: Edible medicinal and non-medicinal plants. Edible Medicinal and Non-Medicinal Plants, 2, 7-20. Retrieved from www.scopus.com Morton, J. F. (1987). Fruits of Warm Climates, , 125-128. Retrieved from www.scopus.com Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63. doi:10.1016/0022-1759(83)90303-4 Omulokoli, E., Khan, B., & Chhabra, S. C. (1997). Antiplasmodial activity of four kenyan medicinal plants. Journal of Ethnopharmacology, 56(2), 133-137. doi:10.1016/S0378-8741(97)01521-3 Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., & Simons, A. (2009). Agroforestree Database: A Tree Reference and Selection Guide Version 4.0, Retrieved from www.scopus.com Prigitano, A., RomanĂ², L., Auxilia, F., Castaldi, S., & Tortorano, A. M. (2018). Antibiotic resistance: Italian awareness survey 2016. Journal of Infection and Public Health, 11(1), 30-34. doi:10.1016/j.jiph.2017.02.010 Sarker, S. D., Nahar, L., & Kumarasamy, Y. (2007). Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 42(4), 321-324. doi:10.1016/j.ymeth.2007.01.006 Subhadrabandhu, S. (2001). Under-utilized tropical fruits of thailand. Under-Utilized Tropical Fruits of Thailand, Retrieved from www.scopus.com Tan, S. -., Tan, E. N. -., Lim, Q. -., & Nafiah, M. A. (2020). Phyllanthus acidus (L.) skeels: A review of its traditional uses, phytochemistry, and pharmacological properties. Journal of Ethnopharmacology, 253 doi:10.1016/j.jep.2020.112610 Thomford, N. E., Senthebane, D. A., Rowe, A., Munro, D., Seele, P., Maroyi, A., & Dzobo, K. (2018). Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. International Journal of Molecular Sciences, 19(6) doi:10.3390/ijms19061578 Trager, W., & Jensen, J. B. (2005). Human malaria parasites in continuous culture. Journal of Parasitology, 91(3), 484-486. doi:10.1645/0022-3395(2005)091[0484:HMPICC]2.0.CO;2 Unander, D. W., Webster, G. L., & Blumberg, B. S. (1991). Uses and bioassays in phyllanthus (euphorbiaceae): A compilation. II. the subgenus phyllanthus. Journal of Ethnopharmacology, 34(2-3), 97-133. doi:10.1016/0378-8741(91)90029-D |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |