UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Theoretical models have become increasingly complex, but the dual-phase structural equation modelling (SEM) and artificial neural network analysis can be used by scholars to unveil the causal interactions and nonlinear relationships between variables. However, not only a single open issue and challenge?but several of them?are encountered in the use of different multi-assessment types of measurement model to achieve the reliability and validity whilst implementing SEM, but the gaps have not been fully determined at present. The issues significantly impact the effectiveness process of selecting the most suitable method to assess the measurement model of SEM. Once the best sequence quality improvement is met, it then needs to present a recommendable solution. To this end, this study completes the literature by presenting a systematic review of all main advanced aspects of the SEM reliability and validity approaches. Firstly, the databases of ScienceDirect, IEEE Xplore, Web of Science and Scopus were checked for the retrospective studies. A total of 239 papers were gathered for the period covering 2016 to June 2021. Then, the obtained articles were filtered according to the predefined inclusion criteria. Sixty articles were ultimately selected and divided into three categories (single, hybrid and other types) to enable a new representation of the crossover taxonomy amongst ?SEM reliability and validity? and ?multi-assessment methods for structural model? for the first time. The three categories had been matched with the SEM processes, and each of the detailed models were defined to determine the sets of principal criteria of the entire selected SEM approaches. Consequently, this multi-field interdisciplinary review was used to expose the state-of-the-art challenges and open issues (i.e. multiple-evaluation criteria, importance criteria and data variation) related to the sets of SEM criteria necessitating a selection process for deriving the best SEM method. Each issue entailed a ?wherefore?, and multi-criteria decision making was adopted to handle the complexity problems in the different cases. Thus, a new three-phase decision-making methodology was constructed. In the first phase, a decision matrix (DM) was identified for the SEM approach; the composition of the decision alternatives and identified criteria were derived from the academic literature. In the second phase, the development methodology was achieved on the basis of the integrated multi-criteria DM techniques. The analytic hierarchy process was used for the subjective weighting of the criteria within the constructed DM, whereas the vlsekriterijumska optimizcija i kaompromisno resenje technique was used for ranking and selecting the best SEM methods. In the third phase, an objective validation approach was adopted to validate the proposed methodology. The outcome of this novel approach is intended to guide decision makers and policymakers on the easy evaluation of their goals of selecting the most suitable computing methods and the improvement of the reliability and validity of SEM. ? 2021 Elsevier Ltd |
References |
Abbas, S., Hadi, A. A., Abdullah, H. O., Alnoor, A., Khattak, Z. Z., & Khaw, K. W. (2021). Encountering covid-19 and perceived stress and the role of a health climate among medical workers. Current Psychology, , 1-14. Retrieved from www.scopus.com Abdullah, H., Ismail, I., Alnoor, A., & Yaqoub, E. (2021). Effect of perceived support on employee's voice behaviour through the work engagement: A moderator role of locus of control. International Journal of Process Management and Benchmarking, 11(1), 60-79. doi:10.1504/IJPMB.2021.112253 Abubakar, A. M., Namin, B. H., Harazneh, I., Arasli, H., & Tunç, T. (2017). Does gender moderates the relationship between favoritism/nepotism, supervisor incivility, cynicism and workplace withdrawal: A neural network and SEM approach. Tourism Management Perspectives, 23, 129-139. doi:10.1016/j.tmp.2017.06.001 Ahani, A., Rahim, N. Z. A., & Nilashi, M. (2017). Forecasting social CRM adoption in SMEs: A combined SEM-neural network method. Computers in Human Behavior, 75, 560-578. doi:10.1016/j.chb.2017.05.032 AL-Abrrow, H. (2020). Understanding employees’ responses to the COVID-19 pandemic: The attractiveness of healthcare jobs. Journal of Public Affairs, 1-15 Retrieved from www.scopus.com Al-Abrrow, H., Ali, J., & Alnoor, A. J. (2019). Multilevel influence of routine redesigning, legitimacy and functional affordance on sustainability accounting: Mediating role of organizational sense-making. Global Business Review, , 1-26. Retrieved from www.scopus.com Alam, M. Z., Hu, W., Kaium, M. A., Hoque, M. R., & Alam, M. M. D. (2020). Understanding the determinants of mHealth apps adoption in bangladesh: A SEM-neural network approach. Technology in Society, 61 doi:10.1016/j.techsoc.2020.101255 Alam, M. Z., Hu, W., Kaium, M. A., Hoque, M. R., & Alam, M. M. D. (2020). Understanding the determinants of mHealth apps adoption in bangladesh: A SEM-neural network approach. Technology in Society, 61 doi:10.1016/j.techsoc.2020.101255 Alamoodi, A. H., Zaidan, B. B., Zaidan, A. A., Albahri, O. S., Mohammed, K. I., Malik, R. Q., . . . Alaa, M. (2021). Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review. Expert Systems with Applications, 167 doi:10.1016/j.eswa.2020.114155 Albahri, A. S., Alwan, J. K., Taha, Z. K., Ismail, S. F., Hamid, R. A., Zaidan, A. A., . . . Alsalem, M. A. (2021). IoT-based telemedicine for disease prevention and health promotion: State-of-the-art. Journal of Network and Computer Applications, 173 doi:10.1016/j.jnca.2020.102873 Albahri, A. S., Hamid, R. A., Alwan, J., Al-qays, Z. T., Zaidan, A. A., Zaidan, B. B., . . . Madhloom, H. T. (2020). Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): A systematic review. Journal of Medical Systems, 44(7) doi:10.1007/s10916-020-01582-x Alkawsi, G. A., Ali, N., Mustafa, A. S., Baashar, Y., Alhussian, H., Alkahtani, A., . . . Ekanayake, J. (2021). A hybrid SEM-neural network method for identifying acceptance factors of the smart meters in malaysia: Challenges perspective. Alexandria Engineering Journal, 60(1), 227-240. doi:10.1016/j.aej.2020.07.002 Alnoor, A. (2020). Human capital dimensions and firm performance, mediating role of knowledge management. International Journal of Business Excellence, 20(2), 149-168. doi:10.1504/IJBEX.2020.105357 Asadi, S., Abdullah, R., Safaei, M., & Nazir, S. (0000). Retrieved from www.scopus.com Batra, K., & Morgan, A. E. (2020). , 1. Retrieved from www.scopus.com Binsawad, M. H. (2020). Corporate social responsibility in higher education: A PLS-SEM neural network approach. IEEE Access, 8, 29125-29131. doi:10.1109/ACCESS.2020.2972225 Chen, C. -., & Tsang, S. -. (2019). Predicting adoption of mobile payments from the perspective of taxi drivers. IET Intelligent Transport Systems, 13(7), 1116-1124. doi:10.1049/iet-its.2018.5437 Chen, H., Liu, H., Chu, X., Zhang, L., & Yan, B. (2020). A two-phased SEM-neural network approach for consumer preference analysis. Advanced Engineering Informatics, 46 doi:10.1016/j.aei.2020.101156 Coelho, A., Moutinho, L., Hutcheson, G. D., & Silva, M. M. S. (2012). Artificial neural networks and structural equation modelling: An empirical comparison to evaluate business customer loyalty. Quantitative modelling in marketing and management (pp. 117-150) doi:10.1142/9789814407724_0006 Retrieved from www.scopus.com Cooper, C., Booth, A., Varley-Campbell, J., Britten, N., & Garside, R. (2018). Defining the process to literature searching in systematic reviews: A literature review of guidance and supporting studies. BMC Medical Research Methodology, 18(1) doi:10.1186/s12874-018-0545-3 Dadashova, B., Arenas-Ramírez, B., Mira-Mcwilliams, J., & Aparicio-Izquierdo, F. (2016). Methodological development for selection of significant predictors explaining fatal road accidents. Accident Analysis and Prevention, 90, 82-94. doi:10.1016/j.aap.2016.02.003 Foo, P. -., Lee, V. -., Tan, G. W. -., & Ooi, K. -. (2018). A gateway to realising sustainability performance via green supply chain management practices: A PLS–ANN approach. Expert Systems with Applications, 107, 1-14. doi:10.1016/j.eswa.2018.04.013 Gerbing, D. W., & Hamilton, J. G. (1996). Viability of exploratory factor analysis as a precursor to confirmatory factor analysis. Structural Equation Modeling, 3(1), 62-72. doi:10.1080/10705519609540030 Hair Jr., J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106-121. doi:10.1108/EBR-10-2013-0128 Hair, J., Hollingsworth, C. L., Randolph, A. B., & Chong, A. Y. L. (2017). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management and Data Systems, 117(3), 442-458. doi:10.1108/IMDS-04-2016-0130 Hair, J. F., Jr., Howard, M. C., & Nitzl, C. (2020). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research, 109, 101-110. doi:10.1016/j.jbusres.2019.11.069 Hamid, R. A., Albahri, A. S., Alwan, J. K., Al-Qaysi, Z. T., Albahri, O. S., Zaidan, A. A., . . . Zaidan, B. B. (2021). How smart is e-tourism? A systematic review of smart tourism recommendation system applying data management. Computer Science Review, 39 doi:10.1016/j.cosrev.2020.100337 Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. doi:10.1007/s11747-014-0403-8 Hew, J. -., Badaruddin, M. N. B. A., & Moorthy, M. K. (2017). Crafting a smartphone repurchase decision making process: Do brand attachment and gender matter? Telematics and Informatics, 34(4), 34-56. doi:10.1016/j.tele.2016.12.009 Hew, J. -., Leong, L. -., Tan, G. W. -., Lee, V. -., & Ooi, K. -. (2018). Mobile social tourism shopping: A dual-stage analysis of a multi-mediation model. Tourism Management, 66, 121-139. doi:10.1016/j.tourman.2017.10.005 Higueras-Castillo, E., Kalinic, Z., Marinkovic, V., & Liébana-Cabanillas, F. J. (2020). A mixed analysis of perceptions of electric and hybrid vehicles. Energy Policy, 136 doi:10.1016/j.enpol.2019.111076 Hsu, S. -., Chen, W. -., & Hsieh, M. -. (2006). Robustness testing of PLS, LISREL, EQS and ANN-based SEM for measuring customer satisfaction. Total Quality Management and Business Excellence, 17(3), 355-372. doi:10.1080/14783360500451465 Islam, A. K. M. N., Laato, S., Talukder, S., & Sutinen, E. (2020). Misinformation sharing and social media fatigue during COVID-19: An affordance and cognitive load perspective. Technological Forecasting and Social Change, 159 doi:10.1016/j.techfore.2020.120201 Kalinić, Z., Marinković, V., Kalinić, L., & Liébana-Cabanillas, F. (2021). Neural network modeling of consumer satisfaction in mobile commerce: An empirical analysis. Expert Systems with Applications, 175 doi:10.1016/j.eswa.2021.114803 Kalinic, Z., Marinkovic, V., Molinillo, S., & Liébana-Cabanillas, F. (2019). A multi-analytical approach to peer-to-peer mobile payment acceptance prediction. Journal of Retailing and Consumer Services, 49, 143-153. doi:10.1016/j.jretconser.2019.03.016 Kalinic, Z., Marinkovic, V., Molinillo, S., & Liébana-Cabanillas, F. (2019). A multi-analytical approach to peer-to-peer mobile payment acceptance prediction. Journal of Retailing and Consumer Services, 49, 143-153. doi:10.1016/j.jretconser.2019.03.016 Khayer, A., Talukder, M. S., Bao, Y., & Hossain, M. N. (2020). Cloud computing adoption and its impact on SMEs’ performance for cloud supported operations: A dual-stage analytical approach. Technology in Society, 60 doi:10.1016/j.techsoc.2019.101225 Kheirollahpour, M. M., Danaee, M. M., Merican, A. F. A. F., & Shariff, A. A. A. A. (2020). Prediction of the influential factors on eating behaviors: A hybrid model of structural equation modelling-artificial neural networks. Scientific World Journal, 2020 doi:10.1155/2020/4194293 Kim, Y. -., Lee, J. -., Lee, S. -., & Kim, W. Y. (2021). Use of quick sequential organ failure assessment score-based sepsis clinical decision support system may be helpful to predict sepsis development. Signa Vitae, 17(5), 86-94. doi:10.22514/sv.2021.082 Lee, V. -., Foo, A. T. -., & Leong, L. -. (0000). Retrieved from www.scopus.com Lee, V. -., Hew, J. -., Leong, L. -., Tan, G. W. -., & Ooi, K. -. (2020). Wearable payment: A deep learning-based dual-stage SEM-ANN analysis. Expert Systems with Applications, 157 doi:10.1016/j.eswa.2020.113477 Leong, L. -., Hew, T. -., Ooi, K. -., & Chong, A. Y. -. (2020). Predicting the antecedents of trust in social commerce – A hybrid structural equation modeling with neural network approach. Journal of Business Research, 110, 24-40. doi:10.1016/j.jbusres.2019.11.056 Leong, L. -., Hew, T. -., Ooi, K. -., & Dwivedi, Y. K. (2020). Predicting trust in online advertising with an SEM-artificial neural network approach. Expert Systems with Applications, 162 doi:10.1016/j.eswa.2020.113849 Leong, L. -., Hew, T. -., Ooi, K. -., & Wei, J. (2020). Predicting mobile wallet resistance: A two-staged structural equation modeling-artificial neural network approach. International Journal of Information Management, 51 doi:10.1016/j.ijinfomgt.2019.102047 Li, X., Gao, Z., Chen, Z., Zeng, G., León, T., Liang, J., . . . Chen, R. (2017). Eutrophication research of dongting lake: An integrated ML-SEM with neural network approach. International Journal of Environment and Pollution, 62(1), 31-52. doi:10.1504/IJEP.2017.088180 Li, Y., Yang, S., Zhang, S., & Zhang, W. (2019). Mobile social media use intention in emergencies among gen Y in china: An integrative framework of gratifications, task-technology fit, and media dependency. Telematics and Informatics, 42 doi:10.1016/j.tele.2019.101244 Liébana-Cabanillas, F., Marinković, V., & Kalinić, Z. (2017). A SEM-neural network approach for predicting antecedents of m-commerce acceptance. International Journal of Information Management, 37(2), 14-24. doi:10.1016/j.ijinfomgt.2016.10.008 Liébana-Cabanillas, F., Marinkovic, V., Ramos de Luna, I., & Kalinic, Z. (2018). Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach. Technological Forecasting and Social Change, 129, 117-130. doi:10.1016/j.techfore.2017.12.015 Mohsin, A. H., Jalood, N. S., Baqer, M. J., Alamoodi, A. H., Almahdi, E. M., Albahri, A. S., . . . Jasim, A. N. (2020). Finger vein biometrics: Taxonomy analysis, open challenges, future directions, and recommended solution for decentralised network architectures. IEEE Access, 8, 9821-9845. doi:10.1109/ACCESS.2020.2964788 Mohsin, A. H., Zaidan, A. A., Zaidan, B. B., Albahri, A. S., Albahri, O. S., Alsalem, M. A., & Mohammed, K. I. (2018). Real-time remote health monitoring systems using body sensor information and finger vein biometric verification: A multi-layer systematic review. Journal of Medical Systems, 42(12) doi:10.1007/s10916-018-1104-5 Mohsin, A. H., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Albahri, A. S., Alsalem, M. A., & Mohammed, K. I. (2019). Based medical systems for Patient’s authentication: Towards a new verification secure framework using CIA standard. Journal of Medical Systems, 43(7) doi:10.1007/s10916-019-1264-y Mohsin, A. H., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Albahri, A. S., Alsalem, M. A., & Mohammed, K. I. (2019). Blockchain authentication of network applications: Taxonomy, classification, capabilities, open challenges, motivations, recommendations and future directions. Computer Standards and Interfaces, 64, 41-60. doi:10.1016/j.csi.2018.12.002 Mohsin, A. H., Zaidan, A. A., Zaidan, B. B., bin Ariffin, S. A., Albahri, O. S., Albahri, A. S., . . . Hashim, M. (2018). Real-time medical systems based on human biometric steganography: A systematic review. Journal of Medical Systems, 42(12) doi:10.1007/s10916-018-1103-6 Nair, D. J., Rashidi, T. H., & Dixit, V. V. (2017). Estimating surplus food supply for food rescue and delivery operations. Socio-Economic Planning Sciences, 57, 73-83. doi:10.1016/j.seps.2016.09.004 Najmi, A., Kanapathy, K., & Aziz, A. A. (2021). Exploring consumer participation in environment management: Findings from two-staged structural equation modelling-artificial neural network approach. Corporate Social Responsibility and Environmental Management, 28(1), 184-195. doi:10.1002/csr.2041 Najmi, A., Kanapathy, K., & Aziz, A. A. (2021). Understanding consumer participation in managing ICT waste: Findings from two-staged Structural Equation Modeling–Artificial neural network approach. Environmental Science and Pollution Research, 28(12), 14782-14796. doi:10.1007/s11356-020-11675-2 Najmi, A., Kanapathy, K., Aziz, A. A. J. C. S. R., & Management, E. (0000). Retrieved from www.scopus.com Ooi, K. -., Lee, V. -., Tan, G. W. -., Hew, T. -., & Hew, J. -. (2018). Cloud computing in manufacturing: The next industrial revolution in malaysia? Expert Systems with Applications, 93, 376-394. doi:10.1016/j.eswa.2017.10.009 Ooi, K. -., & Tan, G. (0000). Retrieved from www.scopus.com Parsad, C., & Mittal, S. (2020). 10, 23-33. Retrieved from www.scopus.com Pičuljan, A., Protić, A., Haznadar, M., & Šustić, A. J. S. V. (2020). The role of B-line artifacts on lung ultrasound in critically ill patients. Journal of Anesthesia, Intensive Care, Emergency and Pain Medicine, 7, 1. Retrieved from www.scopus.com Priyadarshinee, P., Raut, R. D., Jha, M. K., & Gardas, B. B. (2017). Understanding and predicting the determinants of cloud computing adoption: A two staged hybrid SEM - neural networks approach. Computers in Human Behavior, 76, 341-362. doi:10.1016/j.chb.2017.07.027 Raut, R., Priyadarshinee, P., Gardas, B. B., Narkhede, B. E., & Nehete, R. (0000). Retrieved from www.scopus.com Raut, R. D., Mangla, S. K., Narwane, V. S., Gardas, B. B., Priyadarshinee, P., & Narkhede, B. E. (2019). Linking big data analytics and operational sustainability practices for sustainable business management. Journal of Cleaner Production, 224, 10-24. doi:10.1016/j.jclepro.2019.03.181 Raut, R. D., Priyadarshinee, P., Gardas, B. B., Jha, M. K. J. T. F., & Change, S. (0000). Retrieved from www.scopus.com Ray, A., Bala, P. K., & Rana, N. P. (2021). Exploring the drivers of customers’ brand attitudes of online travel agency services: A text-mining based approach. Journal of Business Research, 128, 391-404. doi:10.1016/j.jbusres.2021.02.028 Shahzad, F., Xiu, G., Shafique Khan, M. A., & Shahbaz, M. (2020). Predicting the adoption of a mobile government security response system from the user's perspective: An application of the artificial neural network approach. Technology in Society, 62 doi:10.1016/j.techsoc.2020.101278 Sharma, S. K., Al-Badi, A., Rana, N. P., & Al-Azizi, L. (0000). Retrieved from www.scopus.com Sharma, S. K., Joshi, A., & Sharma, H. (2016). A multi-analytical approach to predict the facebook usage in higher education. Computers in Human Behavior, 55, 340-353. doi:10.1016/j.chb.2015.09.020 Sharma, S. K., & Sharma, M. (2019). Examining the role of trust and quality dimensions in the actual usage of mobile banking services: An empirical investigation. International Journal of Information Management, 44, 65-75. doi:10.1016/j.ijinfomgt.2018.09.013 Shuwandy, M. L., Zaidan, B. B., Zaidan, A. A., & Albahri, A. S. (2019). Sensor-based mHealth authentication for real-time remote healthcare monitoring system: A multilayer systematic review. Journal of Medical Systems, 43(2) doi:10.1007/s10916-018-1149-5 Shuwandy, M. L., Zaidan, B. B., Zaidan, A. A., Albahri, A. S., Alamoodi, A. H., Albahri, O. S., & Alazab, M. (2020). mHealth authentication approach based 3D touchscreen and microphone sensors for real-time remote healthcare monitoring system: Comprehensive review, open issues and methodological aspects. Computer Science Review, 38 doi:10.1016/j.cosrev.2020.100300 Sila, I., & Walczak, S. J. P. P. (0000). 28(5) Retrieved from www.scopus.com Song, M., Qiao, L., & Law, R. (2020). Formation path of customer engagement in virtual brand community based on back propagation neural network algorithm. International Journal of Computational Science and Engineering, 22(4), 454-465. doi:10.1504/IJCSE.2020.109405 Talal, M., Zaidan, A. A., Zaidan, B. B., Albahri, A. S., Alamoodi, A. H., Albahri, O. S., . . . Mohammed, K. I. (2019). Smart home-based IoT for real-time and secure remote health monitoring of triage and priority system using body sensors: Multi-driven systematic review. Journal of Medical Systems, 43(3) doi:10.1007/s10916-019-1158-z Talukder, M. S., Sorwar, G., Bao, Y., Ahmed, J. U., & Palash, M. A. S. (2020). Predicting antecedents of wearable healthcare technology acceptance by elderly: A combined SEM-neural network approach. Technological Forecasting and Social Change, 150 doi:10.1016/j.techfore.2019.119793 Tiruwa, A., Yadav, R., & Suri, P. K. (2018). Modelling facebook usage for collaborative learning in higher education. Journal of Applied Research in Higher Education, 10(3), 357-379. doi:10.1108/JARHE-08-2017-0088 Wong, L. -., Leong, L. -., Hew, J. -., Tan, G. W. -., & Ooi, K. -. (2020). Time to seize the digital evolution: Adoption of blockchain in operations and supply chain management among malaysian SMEs. International Journal of Information Management, 52 doi:10.1016/j.ijinfomgt.2019.08.005 Zabukovšek, S. S., Kalinic, Z., Bobek, S., & Tominc, P. (0000). Retrieved from www.scopus.com Zaidan, A. A., Zaidan, B. B., Qahtan, M. Y., Albahri, O. S., Albahri, A. S., Alaa, M., . . . Lim, C. K. (2018). A survey on communication components for IoT-based technologies in smart homes. Telecommunication Systems, 69(1), 1-25. doi:10.1007/s11235-018-0430-8 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |