UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Plants of the genus Piper have long been used as medicinal herbs. The chemistry of Piper species has been widely investigated and phytochemical investigations conducted in all parts of the world have led to the isolation of a number of physiologically active compounds. Thus, this study was carried out to investigate the phytochemicals from Piper abbreviatum and their acetylcholinesterase inhibitory activity, which has not been previously investigated. Fractionation and purification of the aerial parts of P. abbreviatum led to the isolation and identification of five methoxylated flavonoids, namely 5,7-dimethoxyflavone, 4,5,7-Trimethoxyflavone, 3',4',5,7-tetramethoxyflavone, 5-hydroxy-7-methoxyflavone, 5-hydroxy-4,7-dimethoxyflavone, together with lupeol, lupenone, ?-sitosterol, and ?-sitostenone. The structures of these compounds were obtained by analysis of their spectroscopic data, as well as the comparison with that of reported data. Acetylcholinesterase inhibitory activity revealed that all isolated flavones were found to inhibit AChE with percentage inhibition values ranged from 24.2 to 58.2%. This is the first report on the isolation of methoxylated flavonoid from P. abbreviatum. The high variants of flavonoid compounds from this species may be used as chemotaxonomic markers for this Piper species. ? 2020 Chemical Society of Ethiopia. All rights reserved. |
References |
Ahmad, F., Poongavanam, N., Taher, M., Arbain, D., Jamal, R., & Read, R. W. (2002). Flavones from piper ungaromense C.DC. ACGC Chem Res Commun, 14, 64-69. Retrieved from www.scopus.com Chopra, K., Misra, S., & Kuhad, A. (2011). Current perspectives on pharmacotherapy of alzheimer's disease. Expert Opinion on Pharmacotherapy, 12(3), 335-350. doi:10.1517/14656566.2011.520702 Emrizal, Ahmad, F., Sirat, H. M., Jamaludin, F., Mustapha, N. M., Ali, R. M., & Arbain, D. (2008). Anti-inflammatory activity of piper magnibaccum (piperaceae). Natural Product Communications, 3(10), 1719-1721. doi:10.1177/1934578x0800301028 Fan, P., Hay, A. -., Marston, A., & Hostettmann, K. (2008). Acetylcholinesterase-inhibitory activity of linarin from buddleja davidii, structure-activity relationships of related flavonoids, and chemical investigation of buddleja nitida. Pharmaceutical Biology, 46(9), 596-601. doi:10.1080/13880200802179592 Ji, H. -., & Zhang, H. -. (2006). Theoretical evaluation of flavonoids as multipotent agents to combat alzheimer's disease. Journal of Molecular Structure: THEOCHEM, 767(1-3), 3-9. doi:10.1016/j.theochem.2006.04.041 Khan, M., Salah, A. A. E., Muhammad, M. K., & Nawsher, K. (2012). Anti-acetylcholinesterase activity of piper sarmentosum by a continuous immobilized-enzyme assay. APCBEE Procedia, 2, 199-220. Retrieved from www.scopus.com Khan, M. T. H., Orhan, I., Şenol, F. S., Kartal, M., Şener, B., Dvorská, M., . . . Šlapetová, T. (2009). Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies. Chemico-Biological Interactions, 181(3), 383-389. doi:10.1016/j.cbi.2009.06.024 Lagunay, R. A. E., & Uy, M. M. (2015). Evaluation of the phytochemical constituents of the leaves of ficus minahassae tesym & de vr., casuarina equisetifolia linn., leucosyke capitellata (pior) wedd., cassia sophera linn., derris elliptica benth., cyperus brevifolius (rottb.) hassk., piper abbreviatum opiz., ixora chinensis lam., leea aculeata blume, and drymoglossum piloselloides linn. AAB Bioflux, 7(1), 51-58. Retrieved from www.scopus.com Mangoyi, R., Midiwo, J., & Mukanganyama, S. (2015). Isolation and characterization of an antifungal compound 5-hydroxy-7,4'-dimethoxyflavone from combretum zeyheri. BMC Complementary and Alternative Medicine, 15(1) doi:10.1186/s12906-015-0934-7 Mukherjee, P. K., Kumar, V., Mal, M., & Houghton, P. J. (2007). Acetylcholinesterase inhibitors from plants. Phytomedicine, 14(4), 289-300. doi:10.1016/j.phymed.2007.02.002 Murray, A. P., Faraoni, M. B., Castro, M. J., Alza, N. P., & Cavallaro, V. (2013). Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Current Neuropharmacology, 11(4), 388-413. doi:10.2174/1570159X11311040004 Roberts, M. R., & Paul, N. D. (2006). Seduced by the dark side: Integrating molecular and ecological perspectives onfence against pests and pathogens. New Phytologist, 170(4), 677-699. doi:10.1111/j.1469-8137.2006.01707.x Salleh, W. M. N. H. W., Ahmad, F., Heng Yen, K., & Zulkifli, R. M. (2016). Anticholinesterase and anti-inflammatory constituents from beilschmiedia pulverulenta kosterm. Natural Product Sciences, 22(4), 225-230. doi:10.20307/nps.2016.22.4.225 Salleh, W. M. N. H. W., Ahmad, F., Heng Yen, K., & Zulkifli, R. M. (2016). Anticholinesterase and anti-inflammatory constituents from beilschmiedia pulverulenta kosterm. Natural Product Sciences, 22(4), 225-230. doi:10.20307/nps.2016.22.4.225 Salleh, W. M. N. H. W., Ahmad, F., Khong, H. Y., Zulkifli, R. M., Chen, J. -., Nahar, L., . . . Sarker, S. D. (2016). Beilschglabrines A and B: Two new bioactive phenanthrene alkaloids from the stem bark of beilschmiedia glabra. Phytochemistry Letters, 16, 192-196. doi:10.1016/j.phytol.2016.04.013 Salleh, W. M. N. H. W., Ahmad, F., & Yen, K. H. (2015). Antioxidant and anticholinesterase activities of essential oils of cinnamomum griffithii and C. macrocarpum. Natural Product Communications, 10(8), 1465-1468. doi:10.1177/1934578x1501000838 Salleh, W. M. N. H. W., Ahmad, F., & Yen, K. H. (2015). Chemical constituents from piper caninum and antibacterial activity. Journal of Applied Pharmaceutical Science, 5(6), 020-025. doi:10.7324/JAPS.2015.50604 Salleh, W. M. N. H. W., Ahmad, F., Yen, K. H., Zulkifli, R. M., & Sarker, S. D. (2016). Madangones A and B: Two new neolignans from the stem bark of beilschmiedia madang and their bioactivities. Phytochemistry Letters, 15, 168-173. doi:10.1016/j.phytol.2016.01.004 Salleh, W. M. N. H. W., Hashim, N. A., Ahmad, F., & Yen, K. H. (2014). Anticholinesterase and antityrosinase activities of ten piper species from malaysia. Advanced Pharmaceutical Bulletin, 4, 527-531. doi:10.5681/apb.2014.078 Salleh, W. M. N. H. W., Hashim, N. A., & Khamis, S. (2019). Chemical constituents and lipoxygenase inhibitory activity of piper stylosum MiQ. Bulletin of the Chemical Society of Ethiopia, 33(3), 587-592. doi:10.4314/bcse.v33i3.19 Salleha, W. M. N. H. W., Ahmada, F., & Yenb, K. H. (2014). Chemical compositions and antimicrobial activity of the essential oils of piper abbreviatum, P. erecticaule and P. lanatum (piperaceae). Natural Product Communications, 9(12), 1795-1798. Retrieved from www.scopus.com Uriarte-Pueyo, I., & Calvo, M. I. (2011). Flavonoids as acetylcholinesterase inhibitors. Current Medicinal Chemistry, 18(34), 5289-5302. doi:10.2174/092986711798184325 Wiart, C., Hannah, N. A., Yassim, M., Hamimah, H., & Sulaiman, M. (2004). Antimicrobial activity of tiger's betel (piper porphyrophyllum N.E. br., piperaceae). Phytotherapy Research, 18(9), 783-784. doi:10.1002/ptr.1564 Williams, P., Sorribas, A., & Howes, M. -. R. (2011). Natural products as a source of alzheimer's drug leads. Natural Product Reports, 28(1), 48-77. doi:10.1039/c0np00027b Wu, D., Nair, M. G., & DeWitt, D. L. (2002). Novel compounds from piper methysticum forst (kava kava) roots and their effect on cyclooxygenase enzyme. Journal of Agricultural and Food Chemistry, 50(4), 701-705. doi:10.1021/jf010963x |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |