UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Rare-earth oxides microparticles doped tellurite-based glass have been studied extensively to improve the capability of optoelectronic devices. We report a detailed comparison between two sets of glass series containing samarium microparticles and nanoparticles denoted as ZBTSm-MPs and ZBTSm-NPs, respectively. The two sets of glass have been successfully fabricated via melt-quenching technique with chemical formula {[(TeO2)0.70 (B2O3)0.30]0.7 (ZnO)0.3}1?y (Sm2O3 (MPs/NPs))y with y = 0.005, 0.01, 0.02, 0.03, 0.04 and 0.05 mol fraction. The TEM analysis confirmed the existence and formation of nanoparticles in ZBTSm-NPs glasses. The density of ZBTSm-NPs glasses was found higher than ZBTSm-MPs glasses due to the distributions of nano-scale particles in tellurite glass network. There was a linear trend of increment in the refractive index in both sets of glass series along with the concentrations of dopants. The refractive index of ZBTSm-NPs glasses was found higher than ZBTSm-MPs glasses due to the shift in compactness of glass structure with nano-scale particles. In comparison, the absorption peaks of ZBTSm-MPs glasses were greater than ZBTSm-NPs glasses which were mainly due to the restriction of electrons mobility in glass network with nano-scale particles. The optical band gap energy in ZBTSm-NPs glasses was found greater than ZBTSm-MPs glasses which correspond to the widening of forbidden gap with nano-scale particles. The polarizability of ZBTSm-NPs and ZBTSm-MPs was found in non-linear trends along with dopant concentrations. Based on these findings, the improvement of optical properties has been made by introducing samarium oxide nanoparticles in tellurite glass which is beneficial for optoelectronic devices. ? 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
References |
Abdel-Baki, M., & El-Diasty, F. (2006). Optical properties of oxide glasses containing transition metals: Case of titanium- and chromium-containing glasses. Current Opinion in Solid State and Materials Science, 10(5-6), 217-229. doi:10.1016/j.cossms.2007.08.001 Ahlawat, N., Sanghi, S., Agarwal, A., & Rani, S. (2009). Effect of Li2O on structure and optical properties of lithium bismosilicate glasses. Journal of Alloys and Compounds, 480(2), 516-520. doi:10.1016/j.jallcom.2009.01.116 Ahmadi, F., Hussin, R., & Ghoshal, S. K. (2016). Judd-ofelt intensity parameters of samarium-doped magnesium zinc sulfophosphate glass. Journal of Non-Crystalline Solids, 448, 43-51. doi:10.1016/j.jnoncrysol.2016.06.040 Azlan, M. N., Halimah, M. K., Suriani, A. B., Azlina, Y., & El-Mallawany, R. (2019). Electronic polarizability and third-order nonlinearity of Nd3+ doped borotellurite glass for potential optical fiber. Materials Chemistry and Physics, 236 doi:10.1016/j.matchemphys.2019.121812 Azlan, M. N., Halimah, M. K., Suriani, A. B., Azlina, Y., Umar, S. A., & El-Mallawany, R. (2019). Upconversion properties of erbium nanoparticles doped tellurite glasses for high efficient laser glass. Optics Communications, 448, 82-88. doi:10.1016/j.optcom.2019.05.022 Azlina, Y., Azlan, M. N., Halimah, M. K., Umar, S. A., El-Mallawany, R., & Najmi, G. (2020). Optical performance of neodymium nanoparticles doped tellurite glasses. Physica B: Condensed Matter, 577 doi:10.1016/j.physb.2019.411784 Boukhris, I., Kebaili, I., Sayyed, M. I., Askin, A., & Rammah, Y. S. (2020). Linear, nonlinear optical and photon attenuation properties of La3+ doped tellurite glasses. Optical Materials, 108 doi:10.1016/j.optmat.2020.110196 Devaraja, C., Gowda, G. V. J., Eraiah, B., & Keshavamurthy, K. (2021). Optical properties of bismuth tellurite glasses doped with holmium oxide. Ceramics International, 47(6), 7602-7607. doi:10.1016/j.ceramint.2020.11.099 Dimitrov, V., & Komatsu, T. (1999). Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses. Journal of Non-Crystalline Solids, 249(2-3), 160-179. doi:10.1016/S0022-3093(99)00317-8 Ding, N., Diao, J., Zhang, D., Zheng, T., & Lv, J. (2020). Spectroscopic properties of Yb3+ and Nd3+ co-doped tellurite glass for 1.0 μm laser application. Ceramics International, 46(16), 25633-25637. doi:10.1016/j.ceramint.2020.07.038 Eevon, C., Halimah, M. K., Azlan, M. N., El-Mallawany, R., & Hii, S. L. (2019). Optical and thermal properties of TeO2-B2O3-Gd2O3 glass systems. Materials Science- Poland, doi:10.2478/msp-2019-0074 Elazoumi, S. H., Sidek, H. A. A., Rammah, Y. S., El-Mallawany, R., Halimah, M. K., Matori, K. A., & Zaid, M. H. M. (2018). Effect of PbO on optical properties of tellurite glass. Results in Physics, 8, 16-25. doi:10.1016/j.rinp.2017.11.010 El-Denglawey, A. (2018). Illumination effect on the structural and optical properties of nano meso nickel (II) tetraphenyl-21H, 23H-porphyrin films induces new two hours photo bleached optical sensor. Journal of Luminescence, 194, 381-386. doi:10.1016/j.jlumin.2017.10.070 Elkholy, H., Othman, H., Hager, I., Ibrahim, M., & de Ligny, D. (2020). Thermal and optical properties of binary magnesium tellurite glasses and their link to the glass structure. Journal of Alloys and Compounds, 823 doi:10.1016/j.jallcom.2020.153781 Fares, H., Jlassi, I., Elhouichet, H., & Férid, M. (2014). Investigations of thermal, structural and optical properties of tellurite glass with WO3 adding. Journal of Non-Crystalline Solids, 396-397, 1-7. doi:10.1016/j.jnoncrysol.2014.04.012 Faznny, M. F., Halimah, M. K., Eevon, C., Latif, A. A., Muhammad, F. D., Asyikin, A. S., . . . Zaitizila, I. (2020). Comprehensive study on the nonlinear optical properties of lanthanum nanoparticles and lanthanum oxide doped zinc borotellurite glasses. Optics and Laser Technology, 127 doi:10.1016/j.optlastec.2020.106161 Greenwood, G. W. (1956). The growth of dispersed precipitates in solutions. Acta Metall., 4(5), 243-248. Retrieved from www.scopus.com Gupta, P., & Ramrakhiani, M. (2009). Influence of the particle size on the optical properties of CdSe nanoparticles. Open Nanosci.J., 3(1), 15-19. Retrieved from www.scopus.com Halimah, M. K., Faznny, M. F., Azlan, M. N., & Sidek, H. A. A. (2017). Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Results in Physics, 7, 581-589. doi:10.1016/j.rinp.2017.01.014 Hisam, R., & Yahya, A. K. (2019). Elastic moduli, optical and electrical properties of mixed electronic-ionic 30Li 2 O-4MoO 3 -(66-x)TeO 2 -xV 2 O 5 tellurite glass system. Results in Physics, 13 doi:10.1016/j.rinp.2019.102219 Jaidass, N., Krishna Moorthi, C., Mohan Babu, M., & Reddi Babu, M. (2017). Spectroscopic properties of sm 3+ doped lithium zinc borosilicate glasses. Mech.Mater.Sci.Eng.J., Retrieved from www.scopus.com Jiménez, J. A., Lysenko, S., Liu, H., & Sendova, M. (2011). Luminescence of trivalent samarium ions in silver and tin co-doped aluminophosphate glass. Optical Materials, 33(8), 1215-1220. doi:10.1016/j.optmat.2011.02.013 Kamiya, H., Gotoh, K., Shimada, M., Uchikoshi, T., Otani, Y., Fuji, M., . . . Miyahara, M. (2008). CHAPTER 3 - CHARACTERISTICS AND BEHAVIOR OF NANOPARTICLES AND ITS DISPERSION SYSTEMS. Nanoparticle Technology Handbook, , 113-176. Retrieved from www.scopus.com Kassab, L. R. P., Camilo, M. E., Amâncio, C. T., Silva, D. M. D., & Martinelli, J. R. (2011). Effects of gold nanoparticles in the green and red emissions of TeO 2-PbO-GeO2 glasses doped with Er3+-yb 3+. Optical Materials, 33(12), 1948-1951. doi:10.1016/j.optmat.2011.03.040 Khattak, G. D., & Salim, M. A. (2002). X-ray photoelectron spectroscopic studies of zinc-tellurite glasses. Journal of Electron Spectroscopy and Related Phenomena, 123(1), 47-55. doi:10.1016/S0368-2048(01)00371-1 Manara, D., Grandjean, A., & Neuville, D. R. (2009). Structure of borosilicate glasses and melts: A revision of the yun, bray and dell model. Journal of Non-Crystalline Solids, 355(50-51), 2528-2531. doi:10.1016/j.jnoncrysol.2009.08.033 Meera, B. N., Sood, A. K., Chandrabhas, N., & Ramakrishna, J. (1990). Raman study of lead borate glasses. Journal of Non-Crystalline Solids, 126(3), 224-230. doi:10.1016/0022-3093(90)90823-5 Mohammed Aliyu, A., & Ahmed, N. E. (2019). Structure and physical properties of 30MgSO 4 -(70–x) P 2 O 5 -xSm 2 O 3 glasses. EDUCATUM J.Sci.Math.Technol., 6(2), 22-34. Retrieved from www.scopus.com Mohd Saidi, M. S. A., Ghoshal, S. K., Hamzah, K., Arifin, R., Omar, M. F., Roslan, M. K., & Sazali, E. S. (2018). Visible light emission from Dy3+ doped tellurite glass: Role of silver and titania nanoparticles co-embedment. Journal of Non-Crystalline Solids, 502, 198-209. doi:10.1016/j.jnoncrysol.2018.09.012 Mostafa, A. M. A., Issa, S. A. M., Zakaly, H. M. H., Zaid, M. H. M., Tekin, H. O., Matori, K. A., . . . Elsaman, R. (2020). The influence of heavy elements on the ionizing radiation shielding efficiency and elastic properties of some tellurite glasses: Theoretical investigation. Results in Physics, 19 doi:10.1016/j.rinp.2020.103496 Nanda, K., Kundu, R. S., Sharma, S., Mohan, D., Punia, R., & Kishore, N. (2015). Study of vibrational spectroscopy, linear and non-linear optical properties of Sm3+ ions doped BaO-ZnO-B2O3 glasses. Solid State Sciences, 45, 15-22. doi:10.1016/j.solidstatesciences.2015.04.008 Nazrin, S. N., Halimah, M. K., Muhammad, F. D., Latif, A. A., Iskandar, S. M., & Asyikin, A. S. (2021). Experimental and theoretical models of elastic properties of erbium-doped zinc tellurite glass system for potential fiber optic application. Materials Chemistry and Physics, 259 doi:10.1016/j.matchemphys.2020.123992 Peng, S., Wu, L., Wang, B., Yang, F., Qi, Y., & Zhou, Y. (2015). Intense visible upconversion and energy transfer in Ho3+/Yb3+ codoped tellurite glasses for potential fiber laser. Optical Fiber Technology, 22, 95-101. doi:10.1016/j.yofte.2015.01.016 Qi, Y., Zhou, Y., Wu, L., Yang, F., Peng, S., Zheng, S., & Yin, D. (2014). Silver nanoparticles enhanced 1.53 μm band fluorescence of er 3+/Yb3+ codoped tellurite glasses. Journal of Luminescence, 153, 401-407. doi:10.1016/j.jlumin.2014.03.069 Rammah, Y. S., Özpolat, Ö. F., Alım, B., Şakar, E., El-Mallawany, R., & El-Agawany, F. I. (2020). Assessment of gamma-ray attenuation features for La+3 co-doped zinc borotellurite glasses. Radiation Physics and Chemistry, 176 doi:10.1016/j.radphyschem.2020.109069 Somaily, H. H., Algarni, H., Alraddadi, S., Rammah, Y. S., Nutaro, T., & Al-Buriahi, M. S. (2020). Mechanical, optical, and beta/gamma shielding properties of alkali tellurite glasses: Role of ZnO. Ceramics International, 46(18), 28594-28602. doi:10.1016/j.ceramint.2020.08.017 Tafida, R. A., Halimah, M. K., Muhammad, F. D., Chan, K. T., Onimisi, M. Y., Usman, A., . . . Umar, S. A. (2020). Structural, optical and elastic properties of silver oxide incorporated zinc tellurite glass system doped with Sm3+ ions. Materials Chemistry and Physics, 246 doi:10.1016/j.matchemphys.2020.122801 Thomas, V., Sofin, R. G. S., Allen, M., Thomas, H., Biju, P. R., Jose, G., & Unnikrishnan, N. V. (2017). Optical analysis of samarium doped sodium bismuth silicate glass. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 171, 144-148. doi:10.1016/j.saa.2016.07.055 Toy, R., Hayden, E., Shoup, C., Baskaran, H., & Karathanasis, E. (2011). The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology, 22(11) doi:10.1088/0957-4484/22/11/115101 Umar, S. A., & Ibrahim, G. G. (2020). Theoretical elastic moduli of TeO2 – B2O3 – SiO2 glasses. Educ.JSMT, 7(2), 18-30. Retrieved from www.scopus.com Yusof, N. N., Ghoshal, S. K., Jupri, S. A., & Azlan, M. N. (2020). Synergistic effects of Nd3+ and ag nanoparticles doping on spectroscopic attributes of phosphate glass. Optical Materials, 110 doi:10.1016/j.optmat.2020.110403 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |