UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
In order to achieve phytoremediation during agricultural production, it is essential to identify high genotypes yield that is able of accumulating many types of heavy metals not in the edible parts which have significant nutritional value but in the non-edible parts. This study conducted to estimate the heavy metal ATPases 5 (HMA5), Phytochelatins synthase (PCs) and metallothionein 2 (MT2) genes expression in plant Vicia faba in response to an elevated concentration of copper and zinc in nutrient media. Using Quantitative Real-Time PCR (RT-qPCR) technique, the results of hydroponic culture methods with high concentrations of copper (75 �Mol / L) and high concentration of zinc (500 � Mol / L) showed high expression level for the three genes of Vicia faba plant compared with control. Established that the expression of the genes under the influence of copper ion was higher than the expression under zinc ion influence. Besides that, gene expression increased with increased exposure time to zinc ion, also in the case of copper ion exposure time, all genes expression slightly increases with increased exposure time. In response to excess copper and zinc, an increase in the expression of genes (HMA5, PCs and MT2) involved in plant protection, providing the possibility of its transfer from the cytosol to the apoplast demonstrate that this plant might be useful for phytoremediation of moderately polluted areas with copper or zinc. ? 2021, Institute of Medico-Legal Publications. All rights reserved. |
References |
Alobaidi, K. (2016). Tolerance of vicia faba to elevated concentrations of copper ions in nutrient medium. International Journal of Current Microbiology and Applied Sciences, 5, 642-651. Retrieved from www.scopus.com Alobaidi, K. (2013). Physiological Mechanisms of Three Plant Resistance Species of the Genus Brassica to High Concentrations of Copper Ions, Retrieved from www.scopus.com Andrés-Colás, N., Sancenón, V., Rodríguez-Navarro, S., Mayo, S., Thiele, D. J., Ecker, J. R., . . . Peñarrubia, L. (2006). The arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant Journal, 45(2), 225-236. doi:10.1111/j.1365-313X.2005.02601.x Aune, D., Chan, D. S. M., Lau, R., Vieira, R., Greenwood, D. C., Kampman, E., & Norat, T. (2011). Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ (Online), 343(7833), 1082. doi:10.1136/bmj.d6617 Bothe, H. (2011). Plants in heavy metal soils. Detoxification of Heavy Metals, Soil Biology, 30, 35-57. Retrieved from www.scopus.com Campos, M. D., Frederico, A. M., Nothnagel, T., Arnholdt-Schmitt, B., & Cardoso, H. (2015). Selection of suitable reference genes for reverse transcription quantitative real-time PCR studies on different experimental systems from carrot (daucus carota L.). Scientia Horticulturae, 186, 115-123. doi:10.1016/j.scienta.2014.12.038 De Abreu-Neto, J. B., Turchetto-Zolet, A. C., De Oliveira, L. F. V., Bodanese Zanettini, M. H., & Margis-Pinheiro, M. (2013). Heavy metal-associated isoprenylated plant protein (HIPP): Characterization of a family of proteins exclusive to plants. FEBS Journal, 280(7), 1604-1616. doi:10.1111/febs.12159 Del Buono, D., Terzano, R., Panfili, I., & Bartucca, M. L. (2020). Phytoremediation and detoxification of xenobiotics in plants: Herbicide-safeners as a tool to improve plant efficiency in the remediation of polluted environments. A mini-review. International Journal of Phytoremediation, 22(8), 789-803. doi:10.1080/15226514.2019.1710817 El Alaoui, A., Bechtaoui, N., Benidire, L., El Gharmali, A., Achouak, W., Daoui, K., . . . Oufdou, K. (2019). Growth and heavy metals uptake by vicia faba in mining soil and tolerance of its symbiotic rhizobacteria. Environment Protection Engineering, 45(1), 83-96. doi:10.5277/epel90107 Fatnassi, I. C., Chiboub, M., Saadani, O., Jebara, M., & Jebara, S. H. (2015). Impact of dual inoculation with rhizobium and PGPR on growth and antioxidant status of vicia faba L. under copper stress. Comptes Rendus - Biologies, 338(4), 241-254. doi:10.1007/s00344-011-9195y Haque, N., Peralta-Videa, J. R., Jones, G. L., Gill, T. E., & Gardea-Torresdey, J. L. (2008). Screening the phytoremediation potential of desert broom (baccharis sarothroides gray) growing on mine tailings in arizona, USA. Environmental Pollution, 153(2), 362-368. doi:10.1016/j.envpol.2007.08.024 Hasan, M. K., Cheng, Y., Kanwar, M. K., Chu, X. -., Ahammed, G. J., & Qi, Z. -. (2017). Responses of plant proteins to heavy metal stress—a review. Frontiers in Plant Science, 8 doi:10.3389/fpls.2017.01492 Huber, R., Keller, E., & Schwendimann, F. (1987). Effects of biological nitrogen fixation by faba beans (vicia faba L.) on the nitrogen economy of the soil. Faba Bean Information Service, Retrieved from www.scopus.com Jensen, E. S., Peoples, M. B., & Hauggaard-Nielsen, H. (2010). Faba bean in cropping systems. Field Crops Research, 115(3), 203-216. doi:10.1016/j.fcr.2009.10.008 Kabata-Pendias, A. (2010). Trace elements in soils and plants: Fourth edition. Trace elements in soils and plants, fourth edition (pp. 1-520) doi:10.1201/b10158 Retrieved from www.scopus.com Karimah, K., Yuniati, R., & Handayani, W. (2020). In vitro culture from internodes of melastoma malabathricum L. on murashige and skoog (1962) modified medium with thidiazuron and 1-naphthaleneacetic acid. Paper presented at the IOP Conference Series: Earth and Environmental Science, , 481(1) doi:10.1088/1755-1315/481/1/012007 Retrieved from www.scopus.com Kumar Yadav, K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S., & Ahmad Khan, S. (2018). Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecological Engineering, 120, 274-298. doi:10.1016/j.ecoleng.2018.05.039 Kumar, S. S., Kadier, A., Malyan, S. K., Ahmad, A., & Bishnoi, N. R. (2017). Phytoremediation and rhizoremediation: Uptake, mobilization and sequestration of heavy metals by plants. Plant-microbe interactions in agro-ecological perspectives (pp. 367-394) doi:10.1007/978-981-10-6593-4_15 Retrieved from www.scopus.com Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 Macarulla, M. T., Medina, C., De Diego, M. A., Chávarri, M., Zulet, M. A., Martínez, J. A., . . . Portillo, M. P. (2001). Effects of the whole seed and a protein isolate of faba bean (vicia faba) on the cholesterol metabolism of hypercholesterolaemic rats. British Journal of Nutrition, 85(5), 607-614. doi:10.1079/bjn2000330 Masuda, T., & Goldsmith, P. D. (2009). World soybean production: Area harvested, yield, and long-term projections. International Food and Agribusiness Management Review, 12(4), 143-162. Retrieved from www.scopus.com Mateos-Aparicio, I., Redondo-Cuenca, A., Villanueva-Suárez, M. -., Zapata-Revilla, M. -., & Tenorio-Sanz, M. -. (2010). Pea pod, broad bean pod and okara, potential sources of functional compounds. LWT, 43(9), 1467-1470. doi:10.1016/j.lwt.2010.05.008 Migocka, M. (2015). Copper-transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems. IUBMB Life, 67(10), 737-745. doi:10.1002/iub.1437 Multari, S., Stewart, D., & Russell, W. R. (2015). Potential of fava bean as future protein supply to partially replace meat intake in the human diet. Comprehensive Reviews in Food Science and Food Safety, 14(5), 511-522. doi:10.1111/1541-4337.12146 Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x Nadgórska-Socha, A., Kafel, A., Kandziora-Ciupa, M., Gospodarek, J., & Zawisza-Raszka, A. (2013). Accumulation of heavy metals and antioxidant responses in vicia faba plants grown on monometallic contaminated soil. Environmental Science and Pollution Research, 20(2), 1124-1134. doi:10.1007/s11356-012-1191-7 Ofuya, Z. M., & Akhidue, V. (2005). The role of pulses in human nutrition: A review. J.Appl.Sci.Environ.Manage, 9(3), 99-104. Retrieved from www.scopus.com Page, V., & Feller, U. (2005). Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Annals of Botany, 96(3), 425-434. doi:10.1093/aob/mci189 Piršelová, B., Kuna, R., Lukáč, P., & Havrlentová, M. (2016). Effect of cadmium on growth, photosynthetic pigments, iron and cadmium accumulation of faba bean (vicia faba cv. aštar). Agriculture (Pol'Nohospodarstvo), 62(2), 72-79. doi:10.1515/agri-2016-0008 Prasad, R. (2017). Role of phytochelatins (PCs), metallothioneins (MTs), and heavy metal ATPase (HMA) genes in heavy metal tolerance. Mycoremediation and Environmental Sustainability, , 39-60. Retrieved from www.scopus.com Ramya Kuber, B., & Thaakur Santh, R. (2007). Herbs containing L- dopa: An up-date. Ancient Science of Life, 27(1), 50-55. Retrieved from www.scopus.com Roncarati, F., Sáez, C. A., Greco, M., Gledhill, M., Bitonti, M. B., & Brown, M. T. (2015). Response differences between ectocarpus siliculosus populations to copper stress involve cellular exclusion and induction of the phytochelatin biosynthetic pathway. Aquatic Toxicology, 159, 167-175. doi:10.1016/j.aquatox.2014.12.009 Rout, G. R., & Das, P. (2009). Effect of metal toxicity on plant growth and metabolism: I. zinc. Sustainable agriculture (pp. 873-884) doi:10.1007/978-90-481-2666-8_53 Retrieved from www.scopus.com Russell, W. R., Gratz, S. W., Duncan, S. H., Holtrop, G., Ince, J., Scobbie, L., . . . Flint, H. J. (2011). High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. American Journal of Clinical Nutrition, 93(5), 1062-1072. doi:10.3945/ajcn.110.002188 Sharma, S. S., & Dietz, K. -. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57(4), 711-726. doi:10.1093/jxb/erj073 Singh, A. K., Bharati, R. C., Manibhushan, N. C., & Pedpati, A. (2013). An assessment of faba bean (vicia faba L.) current status and future prospect. Afr.J.Agric.Res., 8(50), 6634-6641. Retrieved from www.scopus.com Sun, R. -., Zhou, Q. -., Sun, F. -., & Jin, C. -. (2007). Antioxidative defense and proline/phytochelatin accumulation in a newly discovered cd-hyperaccumulator, solanum nigrum L. Environmental and Experimental Botany, 60(3), 468-476. doi:10.1016/j.envexpbot.2007.01.004 Wei, Z., Wong, J. W., & Chen, D. (2003). Speciation of heavy metal binding non-protein thiols in agropyron elongatum by size-exclusion HPLC-ICP-MS. Microchemical Journal, 74(3), 207-213. doi:10.1016/S0026-265X(03)00002-X Windey, K., de Preter, V., & Verbeke, K. (2012). Relevance of protein fermentation to gut health. Molecular Nutrition and Food Research, 56(1), 184-196. doi:10.1002/mnfr.201100542 Xu, J., Yin, H., & Li, X. (2009). Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, solanum nigrum L. Plant Cell Reports, 28(2), 325-333. doi:10.1007/s00299-008-0643-5 Zengin, F. K., & Munzuroglu, O. (2005). Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (phaseolus vulgaris L.) seedlings. Acta Biologica Cracoviensia Series Botanica, 47(2), 157-164. Retrieved from www.scopus.com |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |