UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Context and background: Corona virus (COVID) has rapidly gained a foothold and caused a global pandemic. Particularists try their best to tackle this global crisis. New challenges outlined from various medical perspectives may require a novel design solution. Asymptomatic COVID-19 carriers show different health conditions and no symptoms; hence, a differentiation process is required to avert the risk of chronic virus carriers. Objectives: Laboratory criteria and patient dataset are compulsory in constructing a new framework. Prioritisation is a popular topic and a complex issue for patients with COVID-19, especially for asymptomatic carriers due to multi-laboratory criteria, criterion importance and trade-off amongst these criteria. This study presents new integrated decision-making framework that handles the prioritisation of patients with COVID-19 and can detect the health conditions of asymptomatic carriers. Methods: The methodology includes four phases. Firstly, eight important laboratory criteria are chosen using two feature selection approaches. Real and simulation datasets from various medical perspectives are integrated to produce a new dataset involving 56 patients with different health conditions and can be used to check asymptomatic cases that can be detected within the prioritisation configuration. The first phase aims to develop a new decision matrix depending on the intersection between ?multi-laboratory criteria? and ?COVID-19 patient list?. In the second phase, entropy is utilised to set the objective weight, and TOPSIS is adapted to prioritise patients in the third phase. Finally, objective validation is performed. Results: The patients are prioritised based on the selected criteria in descending order of health situation starting from the worst to the best. The proposed framework can discriminate among mild, serious and critical conditions and put patients in a queue while considering asymptomatic carriers. Validation findings revealed that the patients are classified into four equal groups and showed significant differences in their scores, indicating the validity of ranking. Conclusions: This study implies and discusses the numerous benefits of the suggested framework in detecting/recognising the health condition of patients prior to discharge, supporting the hospitalisation characteristics, managing patient care and optimising clinical prediction rule. ? 2020 Elsevier B.V. |
References |
Abdel-Basset, M., El-hoseny, M., Gamal, A., & Smarandache, F. (2019). A novel model for evaluation hospital medical care systems based on plithogenic sets. Artificial Intelligence in Medicine, 100 doi:10.1016/j.artmed.2019.101710 Abdulkareem, K. H., Arbaiy, N., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., & Salih, M. M. (2021). A new standardisation and selection framework for real-time image dehazing algorithms from multi-foggy scenes based on fuzzy delphi and hybrid multi-criteria decision analysis methods. Neural Computing and Applications, 33(4), 1029-1054. doi:10.1007/s00521-020-05020-4 Acampora, G., Cook, D. J., Rashidi, P., & Vasilakos, A. V. (2013). A survey on ambient intelligence in healthcare. Proceedings of the IEEE, 101(12), 2470-2494. doi:10.1109/JPROC.2013.2262913 Adalja, A. A., Toner, E., & Inglesby, T. V. (2020). Priorities for the US health community responding to COVID-19. JAMA - Journal of the American Medical Association, 323(14), 1343-1344. doi:10.1001/jama.2020.3413 Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., . . . Xia, L. (2020). Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in china: A report of 1014 cases. Radiology, 296(2), E32-E40. doi:10.1148/radiol.2020200642 Akdag, H., Kalayci, T., Karagöz, S., Zülfikar, H., & Giz, D. (2014). The evaluation of hospital service quality by fuzzy MCDM. Applied Soft Computing Journal, 23, 239-248. doi:10.1016/j.asoc.2014.06.033 Alao, M. A., Ayodele, T. R., Ogunjuyigbe, A. S. O., & Popoola, O. M. (2020). Multi-criteria decision based waste to energy technology selection using entropy-weighted TOPSIS technique: The case study of lagos, nigeria. Energy, 201 doi:10.1016/j.energy.2020.117675 Albahri, A. S., Al-Obaidi, J. R., Zaidan, A. A., Albahri, O. S., Hamid, R. A., Zaidan, B. B., . . . Hashim, M. (2020). Multi-biological laboratory examination framework for the prioritization of patients with COVID-19 based on integrated AHP and group VIKOR methods. International Journal of Information Technology and Decision Making, 19(5), 1247-1269. doi:10.1142/S0219622020500285 Alberdi, A., Aztiria, A., & Basarab, A. (2016). On the early diagnosis of alzheimer's disease from multimodal signals: A survey. Artificial Intelligence in Medicine, 71, 1-29. doi:10.1016/j.artmed.2016.06.003 Al-Gwaiz, L. A., & Babay, H. H. (2007). The diagnostic value of absolute neutrophil count, band count and morphologic changes of neutrophils in predicting bacterial infections. Medical Principles and Practice, 16(5), 344-347. doi:10.1159/000104806 Almahdi, E. M., Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., Albahri, O. S., & Albahri, A. S. (2019). Mobile-based patient monitoring systems: A prioritisation framework using multi-criteria decision-making techniques. Journal of Medical Systems, 43(7) doi:10.1007/s10916-019-1339-9 Al-Qaness, M. A. A., Ewees, A. A., Fan, H., & Aziz, M. A. E. (2020). Optimization method for forecasting confirmed cases of COVID-19 in china. Applied Sciences, 9(3) doi:10.3390/JCM9030674 Araujo, C. A. S., Wanke, P., & Siqueira, M. M. (2018). A performance analysis of brazilian public health: TOPSIS and neural networks application. International Journal of Productivity and Performance Management, 67(9), 1526-1549. doi:10.1108/IJPPM-11-2017-0319 Bae, H. -., Kang, J. E., & Lim, Y. -. (2019). Assessing the health vulnerability caused by climate and air pollution in korea using the fuzzy TOPSIS. Sustainability (Switzerland), 11(10) doi:10.3390/su11102894 Bahadori, M., Izadi, M., Karamali, M., Teymourzadeh, E., & Yaghoubi, M. (2014). Research priorities in a military health organization using multi-criteria decision making techniques. Journal of Military Medicine, 16(1), 37-44. Retrieved from www.scopus.com Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D. -., Chen, L., & Wang, M. (2020). Presumed asymptomatic carrier transmission of COVID-19. JAMA - Journal of the American Medical Association, 323(14), 1406-1407. doi:10.1001/jama.2020.2565 Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17), 13051-13069. doi:10.1016/j.eswa.2012.05.056 Campos, M., Jimenez, F., Sanchez, G., Juarez, J. M., Morales, A., Canovas-Segura, B., & Palacios, F. (2020). A methodology based on multiple criteria decision analysis for combining antibiotics in empirical therapy. Artificial Intelligence in Medicine, 102 doi:10.1016/j.artmed.2019.101751 Cao, H., Ruan, L., Liu, J., & Liao, W. (2020). The clinical characteristic of eight patients of COVID-19 with positive RT-PCR test after discharge. Journal of Medical Virology, 92(10), 2159-2164. doi:10.1002/jmv.26017 Chen, H., & Qin, R. (2012). Revenue management of transportation infrastructure during the service life using real options. Decision making in service industries: A practical approach (pp. 257-278) doi:10.1201/b12665 Retrieved from www.scopus.com Cheng, T. -., Wei, C. -., & Tseng, V. S. (2006). Feature selection for medical data mining: Comparisons of expert judgment and automatic approaches. Paper presented at the Proceedings - IEEE Symposium on Computer-Based Medical Systems, , 2006 165-170. doi:10.1109/CBMS.2006.87 Retrieved from www.scopus.com Christenson, J., Etherington, J., Grafstein, E., Innes, G., Pennington, S., Wanger, K., . . . Gao, M. (2000). Early discharge of patients with presumed opioid overdose: Development of a clinical prediction rule. Academic Emergency Medicine, 7(10), 1110-1118. doi:10.1111/j.1553-2712.2000.tb01260.x Christenson, J., Innes, G., McKnight, D., Thompson, C. R., Wong, H., Yu, E., . . . Singer, J. (2006). A clinical prediction rule for early discharge of patients with chest pain. Annals of Emergency Medicine, 47(1), 1-10. doi:10.1016/j.annemergmed.2005.08.007 Cook, T. M., El-Boghdadly, K., McGuire, B., McNarry, A. F., Patel, A., & Higgs, A. (2020). Consensus guidelines for managing the airway in patients with COVID-19: Guidelines from the difficult airway society, the association of anaesthetists the intensive care society, the faculty of intensive care medicine and the royal college of anaesthetists. Anaesthesia, 75(6), 785-799. doi:10.1111/anae.15054 Eghbali-Zarch, M., Tavakkoli-Moghaddam, R., Esfahanian, F., Sepehri, M. M., & Azaron, A. (2018). Pharmacological therapy selection of type 2 diabetes based on the SWARA and modified MULTIMOORA methods under a fuzzy environment. Artificial Intelligence in Medicine, 87, 20-33. doi:10.1016/j.artmed.2018.03.003 Feng, W., Dauphin, G., Huang, W., Quan, Y., & Liao, W. (2019). New margin-based subsampling iterative technique in modified random forests for classification. Knowledge-Based Systems, 182 doi:10.1016/j.knosys.2019.07.016 Gao, X., Yan, X., Gao, P., Gao, X., & Zhang, S. (2020). Automatic detection of epileptic seizure based on approximate entropy, recurrence quantification analysis and convolutional neural networks. Artificial Intelligence in Medicine, 102 doi:10.1016/j.artmed.2019.101711 Garg, H., Agarwal, N., & Tripathi, A. (2015). Entropy based multi-criteria decision making method under fuzzy environment and unknown attribute weights. Glob J Technol Optim, 6(3), 13-20. Retrieved from www.scopus.com Hall, L. O., Paul, R., Goldgof, D. B., & Goldgof, G. M. (2020). Finding covid-19 from chest x-rays using deep learning on a small dataset. Finding Covid-19 from Chest x-Rays using Deep Learning on a Small Dataset, Retrieved from www.scopus.com Hanratty, B., Burton, J. K., Goodman, C., Gordon, A. L., & Spilsbury, K. (2020). Covid-19 and lack of linked datasets for care homes: The pandemic has shed harsh light on the need for a live minimum dataset. The BMJ, 369 doi:10.1136/bmj.m2463 Heng-ming, P., Xiao-kang, W., Tie-li, W., Ya-hua, L., & Jian-qiang, W. (2020). A multi-criteria decision support framework for inland nuclear power plant site selection under Z-information: A case study in hunan province of china. Mathematics, 8(2) doi:10.3390/math8020252 Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., . . . Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in wuhan, china. The Lancet, 395(10223), 497-506. doi:10.1016/S0140-6736(20)30183-5 Iglesias, N., Juarez, J. M., & Campos, M. (2020). Comprehensive analysis of rule formalisms to represent clinical guidelines: Selection criteria and case study on antibiotic clinical guidelines. Artificial Intelligence in Medicine, 103 doi:10.1016/j.artmed.2019.101741 Jalal, A., Khalid, N., & Kim, K. (2020). Automatic recognition of human interaction via hybrid descriptors and maximum entropy markov model using depth sensors. Entropy, 22(8) doi:10.3390/E22080817 Kalid, N., Zaidan, A. A., Zaidan, B. B., Salman, O. H., Hashim, M., Albahri, O. S., & Albahri, A. S. (2018). Based on real time remote health monitoring systems: A new approach for prioritization “Large scales data” patients with chronic heart diseases using body sensors and communication technology. Journal of Medical Systems, 42(4) doi:10.1007/s10916-018-0916-7 Khan, A. M. R., Prasad, P. N., & Rajamanoharane, S. (2010). A decision-making framework for service quality measurements in hospitals. International Journal of Enterprise Network Management, 4(1), 80-91. doi:10.1504/IJENM.2010.034478 Killerby, M. E., Link-Gelles, R., Haight, S. C., Schrodt, C. A., England, L., Gomes, D. J., . . . Tate, J. E. (2020). Characteristics associated with hospitalization among patients with covid-19 - metropolitan atlanta, georgia, march-april 2020. Morbidity and Mortality Weekly Report, 69(25), 790-794. doi:10.15585/MMWR.MM6925E1 Kovalchuk, S. V., Krotov, E., Smirnov, P. A., Nasonov, D. A., & Yakovlev, A. N. (2018). Distributed data-driven platform for urgent decision making in cardiological ambulance control. Future Generation Computer Systems, 79, 144-154. doi:10.1016/j.future.2016.09.017 Lan, L., Xu, D., Ye, G., Xia, C., Wang, S., Li, Y., & Xu, H. (2020). Positive RT-PCR test results in patients recovered from COVID-19. JAMA - Journal of the American Medical Association, 323(15), 1502-1503. doi:10.1001/jama.2020.2783 Larsson, S., Thelander, U., & Friberg, S. (1992). C-reactive protein (CRP) levels after elective orthopedic surgery. Clinical Orthopaedics and Related Research, 275, 237-242. doi:10.1097/00003086-199202000-00035 Li, Y., Li, T., & Liu, H. (2017). Recent advances in feature selection and its applications. Knowledge and Information Systems, 53(3), 551-577. doi:10.1007/s10115-017-1059-8 Liu, H. -., Wu, J., & Li, P. (2013). Assessment of health-care waste disposal methods using a VIKOR-based fuzzy multi-criteria decision making method. Waste Management, 33(12), 2744-2751. doi:10.1016/j.wasman.2013.08.006 Majumder, P., Biswas, P., & Majumder, S. (2020). Application of new topsis approach to identify the most significant risk factor and continuous monitoring of death of COVID-19. Electronic Journal of General Medicine, 17(6) doi:10.29333/ejgm/7904 Martínez, V., Navarro, C., Cano, C., Fajardo, W., & Blanco, A. (2015). DrugNet: Network-based drug-disease prioritization by integrating heterogeneous data. Artificial Intelligence in Medicine, 63(1), 41-49. doi:10.1016/j.artmed.2014.11.003 Meng, Y., Wu, P., Lu, W., Liu, K., Ma, K., Huang, L., . . . Wu, P. (2020). Sex-specific clinical characteristics and prognosis of coronavirus disease-19 infection in wuhan, china: A retrospective study of 168 severe patients. PLoS Pathogens, 16(4) doi:10.1371/journal.ppat.1008520 Miao, F., Wen, B., Hu, Z., Fortino, G., Wang, X. -., Liu, Z. -., . . . Li, Y. (2020). Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques. Artificial Intelligence in Medicine, 108 doi:10.1016/j.artmed.2020.101919 Mohammed, M. A., Abdulkareem, K. H., Al-Waisy, A. S., Mostafa, S. A., Al-Fahdawi, S., Dinar, A. M., . . . De La Torre Diez, I. (2020). Benchmarking methodology for selection of optimal COVID-19 diagnostic model based on entropy and TOPSIS methods. IEEE Access, 8, 99115-99131. doi:10.1109/ACCESS.2020.2995597 Monshi, M. M. A., Poon, J., & Chung, V. (2020). Deep learning in generating radiology reports: A survey. Artificial Intelligence in Medicine, 106 doi:10.1016/j.artmed.2020.101878 Munda, G. (2005). Multiple Criteria Decision Analysis: State of the Art Surveys, 78, 23. Retrieved from www.scopus.co Ozernoy, V. M. (1997). Proceedings of the XIth International Conference on MCDM, 1–6 August 1994, Coimbra, Portugal, Retrieved from www.scopus.com Parsons, L. M., Somoskövi, Á., Gutierrez, C., Lee, E., Paramasivan, C. N., Abimiku, A., . . . Nkengasong, J. (2011). Laboratory diagnosis of tuberculosis in resource-poor countries: Challenges and opportunities. Clinical Microbiology Reviews, 24(2), 314-350. doi:10.1128/CMR.00059-10 Peng, J. -., Tian, C., Zhang, W. -., Zhang, S., & Wang, J. -. (2020). An integrated multi-criteria decision-making framework for sustainable supplier selection under picture fuzzy environment. Technological and Economic Development of Economy, 26(3), 573-598. doi:10.3846/tede.2020.12110 Petrilli, C. M., Jones, S. A., Yang, J., Rajagopalan, H., O'Donnell, L., Chernyak, Y., . . . Horwitz, L. I. (2020). Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in new york city: Prospective cohort study. The BMJ, 369 doi:10.1136/bmj.m1966 Qu, Y., Yue, G., Shang, C., Yang, L., Zwiggelaar, R., & Shen, Q. (2019). Multi-criterion mammographic risk analysis supported with multi-label fuzzy-rough feature selection. Artificial Intelligence in Medicine, 100 doi:10.1016/j.artmed.2019.101722 Rajak, M., & Shaw, K. (2019). Evaluation and selection of mobile health (mHealth) applications using AHP and fuzzy TOPSIS. Technology in Society, 59 doi:10.1016/j.techsoc.2019.101186 Redenovic, Z., & Veselinovic, I. (2017). Integrated AHP-TOPSIS method for the assessment of health management information systems efficiency. Econ.Themes, 55(1), 121-142. Retrieved from www.scopus.com Reyes, O., Pérez, E., Luque, R. M., Castaño, J., & Ventura, S. (2020). A supervised machine learning-based methodology for analyzing dysregulation in splicing machinery: An application in cancer diagnosis. Artificial Intelligence in Medicine, 108 doi:10.1016/j.artmed.2020.101950 Richardson, S., Hirsch, J. S., Narasimhan, M., Crawford, J. M., McGinn, T., Davidson, K. W., . . . Zanos, T. P. (2020). Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the new york city area. JAMA - Journal of the American Medical Association, 323(20), 2052-2059. doi:10.1001/jama.2020.6775 Rocha, A., Martins, A., Freire, J. C., Kamel Boulos, M. N., Vicente, M. E., Feld, R., . . . Rodríguez-Molinero, A. (2013). Innovations in health care services: The CAALYX system. International Journal of Medical Informatics, 82(11), E307-E320. doi:10.1016/j.ijmedinf.2011.03.003 Seising, R., & Tabacchi, M. E. (2013). Fuzziness and Medicine: Philosophical Reflections and Application Systems in Health Care, 302 Retrieved from www.scopus.com Shanafelt, T. D., Kay, N. E., Call, T. G., Zent, C. S., Jelinek, D. F., LaPlant, B., . . . Hanson, C. A. (2008). MBL or CLL: Which classification best categorizes the clinical course of patients with an absolute lymphocyte count ≥ 5 × 109 L-1 but a B-cell lymphocyte count < 5 × 109 L-1? Leukemia Research, 32(9), 1458-1461. doi:10.1016/j.leukres.2007.11.030 Shen, C., Wang, Z., Zhao, F., Yang, Y., Li, J., Yuan, J., . . . Liu, L. (2020). Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA - Journal of the American Medical Association, 323(16), 1582-1589. doi:10.1001/jama.2020.4783 Shine, B., de Beer, F. C., & Pepys, M. B. (1981). Solid phase radioimmunoassays for human C-reactive protein. Clinica Chimica Acta, 117(1), 13-23. doi:10.1016/0009-8981(81)90005-X Singh, P. (2020). A neutrosophic-entropy based adaptive thresholding segmentation algorithm: A special application in MR images of parkinson's disease. Artificial Intelligence in Medicine, 104 doi:10.1016/j.artmed.2020.101838 Singh, R., & Avikal, S. (2020). COVID-19: A decision-making approach for prioritization of preventive activities. International Journal of Healthcare Management, 13(3), 257-262. doi:10.1080/20479700.2020.1782661 Tai, P. C., & Spry, C. J. F. (1976). Studies on blood eosinophils. I. patients with a transient eosinophilia. Clinical and Experimental Immunology, 24(3), 415-422. Retrieved from www.scopus.com Tajiri, J., & Noguchi, S. (2004). Antithyroid drug-induced agranulocytosis: Special reference to normal white blood cell count agranulocytosis. Thyroid, 14(6), 459-462. doi:10.1089/105072504323150787 Tinetti, M., Dindo, L., Smith, C. D., Blaum, C., Costello, D., Ouellet, G., . . . Naik, A. (2019). Challenges and strategies in patients' health priorities-aligned decision-making for older adults with multiple chronic conditions. PLoS ONE, 14(6) doi:10.1371/journal.pone.0218249 Vitoriano, R. P., & Botti, L. C. L. (2018). Using cross entropy optimization to model active galactic nuclei light curves from VLBA MOJAVE images. Astrophysical Journal, 854(1) doi:10.3847/1538-4357/aaa4f8 Wang, L., Zhang, H. -., Wang, J. -., & Wu, G. -. (2020). Picture fuzzy multi-criteria group decision-making method to hotel building energy efficiency retrofit project selection. RAIRO-Operations Research, 54(1), 211-229. Retrieved from www.scopus.com Wei, J., Xu, H., Xiong, J., Shen, Q., Fan, B., Ye, C., . . . Hu, F. (2020). 2019 novel coronavirus (covid-19) pneumonia: Serial computed tomography findings. Korean Journal of Radiology, 21(4), 494-497. doi:10.3348/kjr.2020.0112 World Health Organization (WHO). (2020). Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases. Laboratory Testing for 2019 Novel Coronavirus (2019-nCoV) in Suspected Human Cases, Retrieved from www.scopus.com Wu, J., Liu, J., Zhao, X., Liu, C., Wang, W., Wang, D., . . . Li, L. (2020). Clinical characteristics of imported cases of coronavirus disease 2019 (COVID-19) in jiangsu province: A multicenter descriptive study. Clinical Infectious Diseases, 71(15), 706-712. doi:10.1093/cid/ciaa199 Wu, Z., Xu, J., Jiang, X., & Zhong, L. (2019). Two MAGDM models based on hesitant fuzzy linguistic term sets with possibility distributions: VIKOR and TOPSIS. Information Sciences, 473, 101-120. doi:10.1016/j.ins.2018.09.038 Yas, Q. M., Zaidan, A. A., Zaidan, B. B., Rahmatullah, B., & Abdul Karim, H. (2018). Comprehensive insights into evaluation and benchmarking of real-time skin detectors: Review, open issues & challenges, and recommended solutions. Measurement: Journal of the International Measurement Confederation, 114, 243-260. doi:10.1016/j.measurement.2017.09.027 Yuen, K. -., Ye, Z. -., Fung, S. -., Chan, C. -., & Jin, D. -. (2020). SARS-CoV-2 and COVID-19: The most important research questions. Cell and Bioscience, 10(1) doi:10.1186/s13578-020-00404-4 Zamani Esfahlani, F., Visser, K., Strauss, G. P., & Sayama, H. (2018). A network-based classification framework for predicting treatment response of schizophrenia patients. Expert Systems with Applications, 109, 152-161. doi:10.1016/j.eswa.2018.05.005 Zhang, J., Chen, M., Zhao, S., Hu, S., Shi, Z., & Cao, Y. (2016). ReliefF-based EEG sensor selection methods for emotion recognition. Sensors (Switzerland), 16(10) doi:10.3390/s16101558 Zhang, J. -., Yan, K., Ye, H. -., Lin, J., Zheng, J. -., & Cai, T. (2020). SARS-CoV-2 turned positive in a discharged patient with COVID-19 arouses concern regarding the present standards for discharge. International Journal of Infectious Diseases, 97, 212-214. doi:10.1016/j.ijid.2020.03.007
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., . . . China Novel Coronavirus Investigating and Research Team. (2020). A novel coronavirus from patients with pneumonia in china, 2019. New England Journal of Medicine, 382(8), 727-733. doi:10.1056/NEJMoa2001017 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |